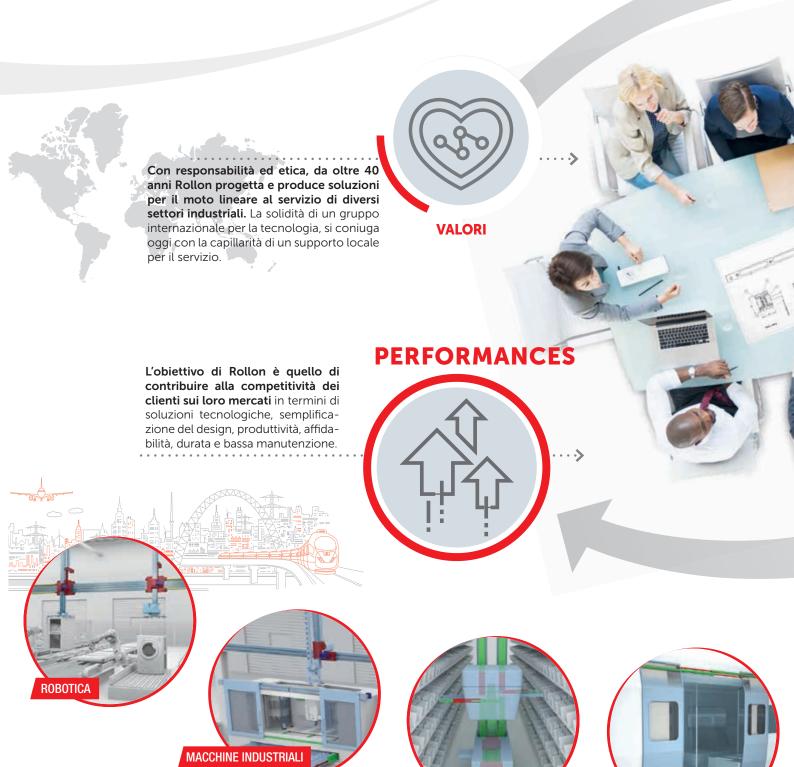


Speedy Rail A

Via Postumia,83 – 31050 Ponzano Veneto (TV) Tel. 0422 961811 r.a. – Fax. 0422 961830/26

www.morotreviso.com - info@morotreviso.com


Iei. 0422 961611 f.a. – Fax. 0422 961630/26 Altri punti vendita: Treviso – Via dei Da Prata, 34 (lat. V.le della Repubblica) Tel. 0422 42881 f.a. – Fax. 0422 428840 Conegliano – Via dell'Industria, 24 Tel. 0438 41823 – 0438 370747 – Fax 0438 428860

PROGETTIAMO E PRODUCIAMO PER ESSERTI VICINO

Un processo industrializzato che sfocia in vari livelli di personalizzazione

LOGISTICA

FERROVIARIO

COLLABORAZIONE

Consulenza tecnica di alto livello e competenze trasversali permettono di intercettare le esigenze del cliente e tradurle in linee guida in un'ottica di continuo confronto, mentre la forte specializzazione in diversi settori industriali opera da acceleratore di progetti nello sviluppo di applicazioni innovative.

Rollon si prende carico della progettazione e dello sviluppo di soluzioni per il moto lineare, sollevando i propri clienti da ogni aspetto non strettamente correlato al loro core business. Da componenti a catalogo a sistemi meccanicamente integrati creati ad hoc: tecnologia e competenza si traducono nella qualità delle nostre applicazioni.

MEDICALE

SOLUZIONI LINEARI DIVERSIFICATE PER OGNI ESIGENZA APPLICATIVA

Guide lineari e telescopiche

Attuatori lineari e sistemi per l'automazione

Actuator Line

Attuatori lineari con differenti configurazioni e trasmissioni, disponibili con azionamento a cinghia, vite o pignone e cremagliera in base alle differenti esigenze in termini di precisione e velocità. Guide con cuscinetti o sistemi a ricircolo di sfere per diverse capacità di carico e ambienti critici.

Actuator System Line

Attuatori integrati per l'automazione industriale, trovano applicazione in numerosi settori industriali: dall'asservimento delle macchine industriali a impianti di assemblaggio di precisione, linee di packaging e linee di produzione ad alta velocità. Nasce dall'evoluzione della Actuator Line al fine di soddisfare le richieste più esigenti dei nostri clienti.

Speedy Rail A

1 Serie SAB	
Descrizione serie SAB	SRA-2
I componenti	SRA-3
Il sistema di movimentazione lineare	SRA-4
SAB 60V	SRA-5
SAB 120VX	SRA-6
SAB 120VZ	SRA-7
SAB 120CX	SRA-8
SAB 120CZ	SRA-9
SAB 180V	SRA-10
SAB 180C	SRA-11
SAB 250C	SRA-12
Alberi sporgenti, Albero bisporgente	SRA-13
Albero cavo, Unità lineari in parallelo	SRA-14
Accessori	SRA-15
Codice di ordinazione	SRA-18
2 Serie ZSY	
Descrizione serie ZSY	SRA-19
I componenti	SRA-20
II sistema di movimentazione lineare	SRA-21
ZSY 180V	SRA-22
Accessori	SRA-23
Codice di ordinazione	SRA-26
3 Serie SAR	
Descrizione serie SAR	SRA-27
I componenti	SRA-28
Il sistema di movimentazione lineare	SRA-29
SAR 120V	SRA-30
SAR 120C	SRA-31
SAR 180C	SRA-32
SAR 250C	SRA-33
Caratteristiche cremagliera, Lubrificazione, Accessori	SRA-34
Codice di ordinazione	SRA-37

Carico statico e durata	SL-2
Carico statico e durata Uniline	SL-4
Avvertenze e note legali	
Scheda dati	

Descrizione serie SAB

Fig. 1

SAB:

La serie SAB è composta da attuatori lineari auto-portanti in alluminio estruso, azionati tramite una cinghia in poliuretano. Grazie ad un profondo trattamento superficiale anodico duro, e alle rotelle in compound plastico, la serie SAB offre dinamiche eccezionalmente elevate, grande capacità di carico, assenza di manutenzione e lubrificazione, totale affidabilità in ambienti sporchi e silenziosità unica.

La serie SAB si caratterizza per l'utilizzo di **guide a rotelle cilindriche o sagomate a "V"** come componenti di movimentazione lineare. Le rotelle, leggere e facili da assemblare, sono rivestite di uno speciale compound plastico che garantisce una lunga durata in totale assenza di manutenzione, anche in presenza di agenti inquinanti. Grazie a queste caratteristiche, questi prodotti sono particolarmente indicati per gli ambienti sporchi e le applicazioni di automazione industriale con dinamiche elevate. La serie SAB è disponibile con profili di differenti taglie: 60 - 120 - 180 - 250 mm.

Vantaggi principali:

- Elevata durata
- Autoportante per la massima libertà progettuale
- Dinamiche elevate
- Elevate capacità di carico
- Massima affidabilità in ambienti sporchi
- Assenza di lubrificazione
- Silenziosità unica
- Sistema auto-allineante

I componenti

Profilo in alluminio

Gli attuatori lineari della serie SAB sono realizzati in lega leggera di alluminio, ottenuti per estrusione di precisione e sottoposti, su tutta la superficie esterna, a trattamenti che conferiscono una durezza superficiale comparabile a quella degli acciai temprati. Ne deriva un'ottima resistenza all'usura anche in presenza di agenti inquinanti. Questi attuatori lineari infatti possono lavorare in ambiente polveroso in assenza di sistemi di protezione.

Cinghia di trazione

L'azionamento degli attuatori lineari della serie SAB avviene tramite una cinghia dentata in poliuretano, rinforzata con cavi in acciaio. Per alcune applicazioni la cinghia rappresenta la soluzione ideale, in quanto si rivela la più efficace in presenza di alte trazioni, spazi contenuti e dove sia richiesta una bassa rumorosità. Alcuni dei vantaggi dell'azionamento a cinghia riguardano: alta velocità, alta accelerazione, bassa rumorosità e nessuna lubrificazione richiesta.

Carro

Il carro delle unità lineari della serie SAB è interamente in alluminio anodizzato. Le dimensioni variano in relazione ai modelli.

Dati generali alluminio utilizzato: AL 6060

Composizione chimica [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurità
Resto	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 1

Caratteristiche fisiche

Densità	Modulo di elasticità	Coefficiente di dilatazione termica (20°-100°C)	Conducibilità termica (20°C)	Calore specifico (0°-100°C)	Resistività	Temp. di fusione
kg	kN	10-6	W	J	0 400	
dm ³	mm²	K	m . K	kg . K	Ω . m . 10 ⁻⁹	°C
2.7	69	23	200	880-900	33	600-655

Tab. 2

Caratteristiche meccaniche

Rm	Rp (02)	А	НВ
N — mm²	N —— mm²	%	_
205	165	10	60-80

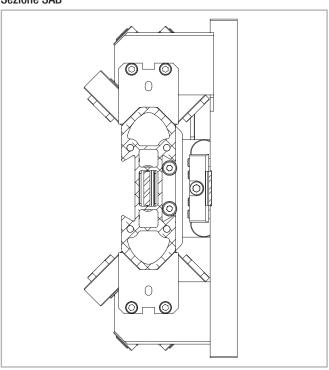
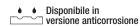
a di movimentazione lineare

Il sistema di movimentazione lineare risulta determinante per la capacità di carico, la velocità e l'accelerazione massima. Negli attuatori lineari Rollon serie SAB vengono utilizzate rotelle cilindriche o sagomate a "V".

SAB con rotelle cilindriche e sagomate a "V"

Per la serie SAB è prevista un'ampia gamma di rotelle, nelle versioni cilindriche e sagomate a "V", e supporti a due o più rotelle. Le rotelle sono rivestite di uno speciale compound plastico che garantisce una lunga durata in totale assenza di manutenzione, anche in presenza di agenti inquinanti. Inoltre sono dotate di cuscinetti volventi e possono essere fornite con lubrificatore per ingrassaggio periodico o lubrificate a vita con grasso speciale ad alta tecnologia, che mantiene inalterate le sue caratteristiche nel tempo. Tutti i supporti sono dotati di perni concentrici ed eccentrici per la rapida registrazione del contatto fra le rotelle e la guida. I supporti sono montati sui carrelli quando la rotaia e fissa e sulla struttura quando la rotaia e mobile.

Sezione SAB

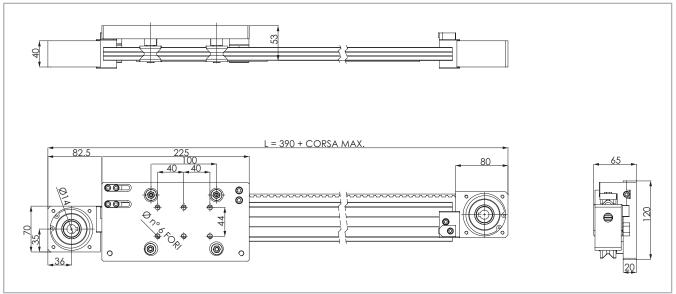

Fig. 2

Figure 1 To No Room 1 To No Roo

≥ SAB 60V

Dimensioni SAB 60V

La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

Fig. 3

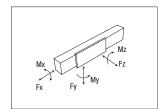
Dati tecnici

	Tipo
	SAB 60V
Lunghezza corsa utile max. [mm]	7250
Ripetibilità max.di posizionamento [mm]*1	± 0,2
Velocità max.di traslazione [m/s]	7
Accelerazione max. [m/s²]	8
Tipo di cinghia	10 AT 10
Tipo di puleggia	Z 19
Diametro primitivo della puleggia [mm]	60,479
Spostamento carro per giro puleggia [mm]	190
Peso del carro [kg]	1,7
Peso corsa zero [kg]	3,8
Peso per ogni 100 mm di corsa utile [kg]	0,13
Dimensione guide [mm]	60x20

 $^{^{\}star}$ 1) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Momenti d'inerzia del profilo di alluminio

Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm ⁴]
SAB 60V	0,014	0,002	0,003
			Tab. 5


Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo	Largh.	Peso
	cinghia	cinghia [mm]	[kg/m]
SAB 60V	10 AT 10	10	0.064

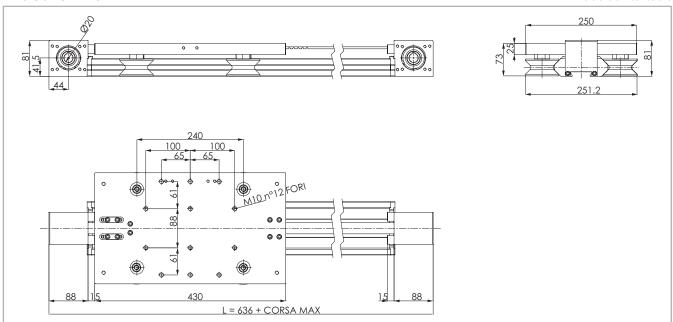
Tab. 6

Lunghezza della cinghia (mm) = 2 x L - 80



Capacità di carico

Tipo	F [N	: X V]	F [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.					
SAB 60V	706	374	540	400	9	20	27


Tab. 4

Momenti non cumulabili, applicati al carrello e riferiti ad una durata teorica della guida Speedy Rail e delle rotelle fino a 80.000 Km.

Dimensioni SAB 120VX

Disponibile in versione anticorrosione

La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

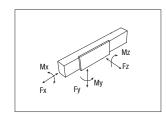
Fig. 4

Dati tecnici

	Tipo
	SAB 120VX
Lunghezza corsa utile max. [mm]	7056
Ripetibilità max.di posizionamento [mm]*1	± 0,2
Velocità max.di traslazione [m/s]	6
Accelerazione max. [m/s²]	8
Tipo di cinghia	25 AT 10HPF
Tipo di puleggia	Z 15
Diametro primitivo della puleggia [mm]	47,746
Peso del carro [kg]	8,22
Peso corsa zero [kg]	17,0
Peso per ogni 100 mm di corsa utile [kg]	0,472
Dimensione guide [mm]	120x40

 $^{^{\}star}$ 1) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Momenti d'inerzia del profilo di alluminio


Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
SAB 120VX	0,214	0,026	0,043
			Tab. 9

Cinghia di trazione

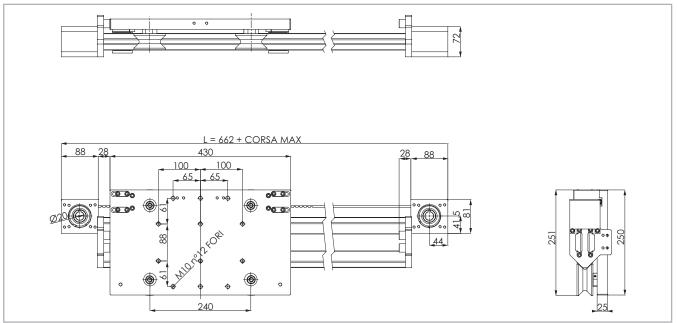
La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso [kg/m]
SAB 120VX	25 AT 10HPF	25	0.16
			Tab. 10

Lunghezza della cinghia (mm) = $2 \times L - 300$

Capacità di carico

Tipo	F [N	: X V]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.					
SAB 120VX	1349	715	1400	800	39.3	96	168


Tab. 8

Momenti non cumulabili, applicati al carrello e riferiti ad una durata teorica della guida Speedy Rail e delle rotelle fino a 80.000 Km.

SAB 120VZ

Dimensioni SAB 120VZ

Disponibile in ☐ versione anticorrosione

La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

Fig. 5

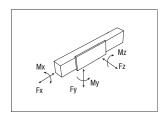
Dati tecnici

	Tipo
	SAB 120VZ
Lunghezza corsa utile max. [mm]*1	7040
Ripetibilità max.di posizionamento [mm]*2	± 0,2
Velocità max.di traslazione [m/s]	6
Accelerazione max. [m/s²]	8
Tipo di cinghia	25 AT 10HPF
Tipo di puleggia	Z 15
Diametro primitivo della puleggia [mm]	47,746
Spostamento carro per giro puleggia [mm]	150
Peso del carro [kg]	9,1
Peso corsa zero [kg]	17,9
Peso per ogni 100 mm di corsa utile [kg]	0,472
Dimensione guide [mm]	120x40
*1) È possibile realizzare corse più lunghe tramite speciali giunzioni Rollon	Tab. 12

^{*1)} È possibile realizzare corse più lunghe tramite speciali giunzioni Rollon

Momenti d'inerzia del profilo di alluminio

Tipo	l _x [10 ⁷ mm ⁴]	l _y [10 ⁷ mm ⁴]	_p [10 ⁷ mm ⁴]
SAB 120VZ	0,214	0,026	0,043
			Tab. 13


Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

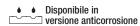
Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso [kg/m]
SAB 120VZ	25 AT 10HPF	25	0.16

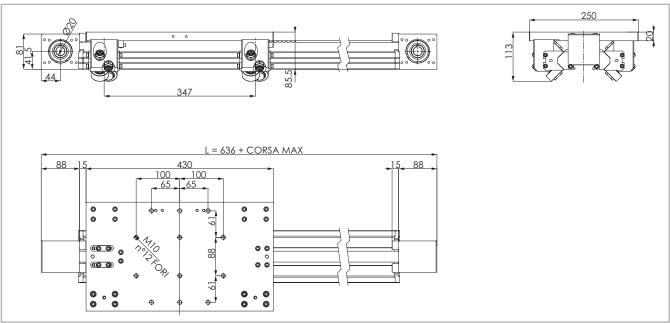
Tab. 14

Lunghezza della cinghia (mm) = 2 x L - 310

Capacità di carico

Tipo	F [1	: X N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.					
SAB 120VZ	1349	715	1400	800	39.3	96	168


Momenti non cumulabili, applicati al carrello e riferiti ad una durata teorica della guida Speedy Rail e delle rotelle fino a 80.000 Km.


Tab. 15

^{*2)} La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Dimensioni SAB 120CX

La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

Fig. 6

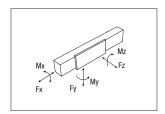
Dati tecnici

	Tipo
	SAB 120CX
Lunghezza corsa utile max. [mm]	7056
Ripetibilità max.di posizionamento [mm]*1	± 0,2
Velocità max.di traslazione [m/s]	6
Accelerazione max. [m/s ²]	10
Tipo di cinghia	25 AT 10HPF
Tipo di puleggia	Z 15
Diametro primitivo della puleggia [mm]	47,746
Spostamento carro per giro puleggia [mm]	150
Peso del carro [kg]	8,5
Peso corsa zero [kg]	17,3
Peso per ogni 100 mm di corsa utile [kg]	0,472
Dimensione guide [mm]	120x40
*1) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato	Tab. 16

^{*1)} La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Momenti d'inerzia del profilo di alluminio

Tipo	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
SAB 120CX	0,214	0,026	0,043


Tab. 17

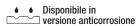
Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso [kg/m]
SAB 120CX	25 AT 10HPF	25	0.16
			Tab. 18

Lunghezza della cinghia (mm) = 2 x L - 300

Capacità di carico


Tipo	F [N	: X N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.					
SAB 120CX	1349	715	2489	2489	98	432	432

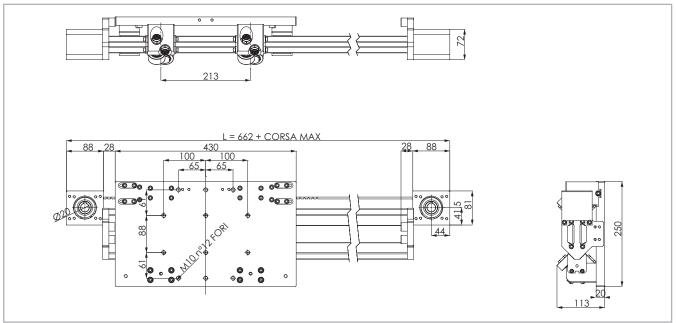

Momenti non cumulabili, applicati al carrello e riferiti ad una durata teorica della guida Speedy Rail e delle rotelle fino a 80.000 Km.

Figure 1 To Rock To Ro

SAB 120CZ

Dimensioni SAB 120CZ

La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

Fig. 7

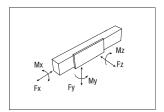
Dati tecnici

	Tipo
	SAB 120CZ
Lunghezza corsa utile max. [mm]*1	7040
Ripetibilità max.di posizionamento [mm]*2	± 0,2
Velocità max.di traslazione [m/s]	6
Accelerazione max. [m/s²]	10
Tipo di cinghia	25 AT 10HPF
Tipo di puleggia	Z 15
Diametro primitivo della puleggia [mm]	47,746
Spostamento carro per giro puleggia [mm]	150
Peso del carro [kg]	9,4
Peso corsa zero [kg]	18,2
Peso per ogni 100 mm di corsa utile [kg]	0,472
Dimensione guide [mm]	120x40

^{*1)} È possibile realizzare corse più lunghe tramite speciali giunzioni Rollon *2) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Tab. 20

Momenti d'inerzia del profilo di alluminio

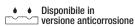

Tipo	_x [10 ⁷ mm ⁴]	l _y [10 ⁷ mm ⁴]	l _p [10 ⁷ mm⁴]
SAB 120CZ	0,214	0,026	0,043
			Tab. 21

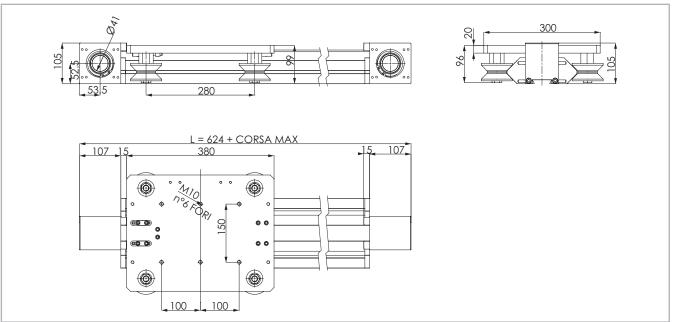
Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso [kg/m]
SAB 120CZ	25 AT 10HPF	25	0.16
			Tab. 22

Lunghezza della cinghia (mm) = 2 x L - 300


Capacità di carico


Tipo	F [I	: X N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.					
SAB 120CZ	1349	715	2489	2489	98	265	265

Momenti non cumulabili, applicati al carrello e riferiti ad una durata teorica della guida Speedy Rail e delle rotelle fino a 80.000 Km.

Dimensioni SAB 180V

La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

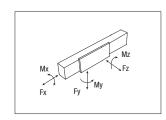
Fig. 8

Dati tecnici

	Tipo
	SAB 180V
Lunghezza corsa utile max. [mm]	7114
Ripetibilità max.di posizionamento [mm]*1	± 0,2
Velocità max.di traslazione [m/s]	8
Accelerazione max. [m/s ²]	8
Tipo di cinghia	40 AT10
Tipo di puleggia	Z 21
Diametro primitivo della puleggia [mm]	66,84
Spostamento carro per giro puleggia [mm]	210
Peso del carro [kg]	8,3
Peso corsa zero [kg]	27,6
Peso per ogni 100 mm di corsa utile [kg]	1,06
Dimensione guide [mm]	180x60
*1) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato	Tab. 24

^{*1)} La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Momenti d'inerzia del profilo di alluminio


Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
SAB 180V	1,029	0,128	0,260
			Tab. 25

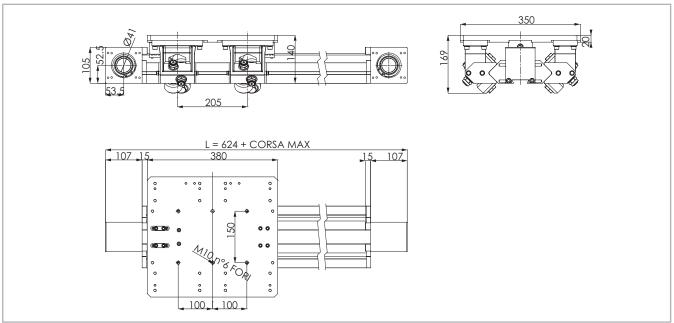
Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso [kg/m]
SAB 180V	40 AT10	40	0,23
			Tab. 26

Lunghezza della cinghia (mm) = 2 x L - 220

Capacità di carico


Tipo	F [t	: X N]	F _y [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.					
SAB 180V	3154	1671	1400	800	58	112	196

Momenti non cumulabili, applicati al carrello e riferiti ad una durata teorica della guida Speedy Rail e delle rotelle fino a 80.000 Km.

Spe. For Moreo

SAB 180C

Dimensioni SAB 180C

La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

Fig. 9

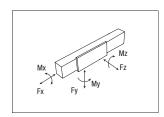
Dati tecnici

	Tipo
	SAB 180C
Lunghezza corsa utile max. [mm]	7114
Ripetibilità max.di posizionamento [mm]*1	± 0,2
Velocità max.di traslazione [m/s]	8
Accelerazione max. [m/s²]	10
Tipo di cinghia	40 AT10
Tipo di puleggia	Z 21
Diametro primitivo della puleggia [mm]	66,84
Spostamento carro per giro puleggia [mm]	210
Peso del carro [kg]	16,0
Peso corsa zero [kg]	30,8
Peso per ogni 100 mm di corsa utile [kg]	1,06
Dimensione guide [mm]	180x60

^{*1)} La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Momenti d'inerzia del profilo di alluminio

Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	Ι _p [10 ⁷ mm⁴]
SAB 180C	1,029	0,128	0,260
			Tab. 29


Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

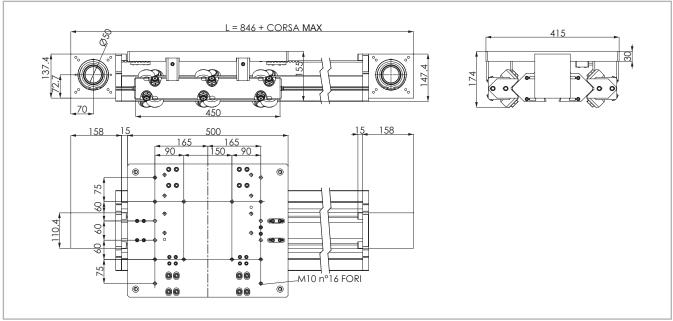
Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso [kg/m]
SAB 180C	40 AT 10	40	0,23

Tab. 30

Lunghezza della cinghia (mm) = 2 x L - 210

Capacità di carico

Tipo	F []	: Nj	F _, [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.					
SAB 180C	3154	1671	3620	3620	246	371	371


Tab. 28

Momenti non cumulabili, applicati al carrello e riferiti ad una durata teorica della guida Speedy Rail e delle rotelle fino a 80.000 Km.

Tab. 31

Dimensioni SAB 250C

La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

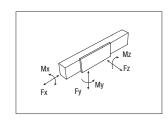
Fig. 10

Dati tecnici

	Tipo
	SAB 250C
Lunghezza corsa utile max. [mm]	6970
Ripetibilità max.di posizionamento [mm]*1	± 0,2
Velocità max.di traslazione [m/s]	10
Accelerazione max. [m/s²]	10
Tipo di cinghia	50 AT 10
Tipo di puleggia	Z 27
Diametro primitivo della puleggia [mm]	85,94
Spostamento carro per giro puleggia [mm]	270
Peso del carro [kg]	32,3
Peso corsa zero [kg]	57,7
Peso per ogni 100 mm di corsa utile [kg]	1,55
Dimensione guide [mm]	250x180
*1) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato	Tab. 32

^{*1)} La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Momenti d'inerzia del profilo di alluminio


Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
SAB 250C	2,735	0,412	0,840
			Tab. 33

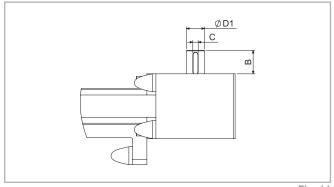
Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso [kg/m]
SAB 250C	50 AT 10	50	0,34
			Tab. 34

Lunghezza della cinghia (mm) = 2 x L - 330

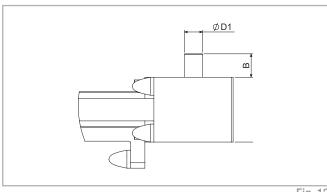
Capacità di carico


Tipo	F [I	= Ňj	F [Ň]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.					
SAB 250C	4980	2640	5431	5431	558	597	644

Momenti non cumulabili, applicati al carrello e riferiti ad una durata teorica della guida Speedy Rail e delle rotelle fino a 80.000 Km.

Alberi sporgenti

Albero sporgente tipo AS

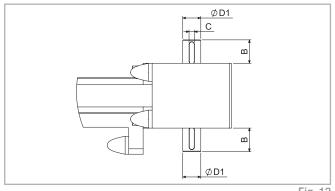


Unità	Tipo di albero	Linguetta C	В	D1	Kit albero sporgente
SAB 60	AS 14	5x5	32	14h7	G002486
SAB 120	AS 20	6x6	26	20h7	G002488

Tab. 36

Fig. 11

Posizione dell'albero sporgente a destra o a sinistra rispetto alla testata motrice


Е	ï	n	-1	2	
١.	I	y		_	

Unità	Tipo di albero		В	D1	Kit albero sporgente
SAB 180	AS 20	Liscio	36	20h7	G000828
SAB 250	AS 25	Liscio	50	25h7	G000649

Tab. 37

Albero bisporgente

Albero bisporgente tipo AS

Unità	Tipo di albero	Linguetta C	В	D1	Kit albero sporgente
SAB 60	AS 14	5x5	32	14h7	G002487
SAB 120	AS 20	6x6	26	20h7	G002489

Tab. 38

LIG T'	
riy. R	i

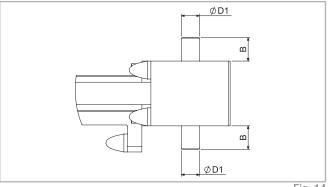
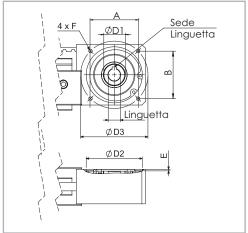


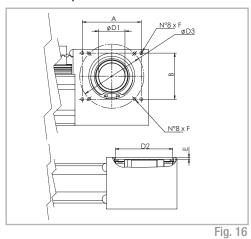
Fig. 14


Unità	Tipo di albero		В	D1	Kit albero sporgente
SAB 180	AS 20	Liscio	36	20h7	2 x G000828
SAB 250	AS 25	Liscio	50	25h7	2 x G000649

Tab. 39

Posizione dell'albero sporgente a destra o a sinistra rispetto alla testata motrice

Albero cavo tipo AC


Unità	Tipo di albero	Linguetta	D1	D2	D3	E	F	АХВ
SAB 60	AC 14	5 X 5	14H7	65	78	1.5	M5	-
SAB 120	AC 20	6 X 6	20H7	55	72	3.5	M6	72,8 x 59,2
								Tob 40

Tab. 40

Fig. 15

Per il montaggio dei riduttori standard scelti da Rollon è prevista una flangia di connessione (opzionale). Per ulteriori informazioni contattare i nostri uffici.

Albero cavo tipo FP

Unità	Tipo di albero		D1	D2	D3	E	F	АХВ
SAB 180	FP 41	Liscio	41H7	72	100	3.5	M6	92 x 72
SAB 250	FP 50	Liscio	25H7	95	130	3.5	M8	109 x 109

Tab. 41

Unità lineari in parallelo

Kit di sincronizzazione per l'utilizzo delle unità lineari SAB in parallelo

Quando è indispensabile realizzare una movimentazione costituita da due unità lineari in parallelo, si rende necessario l'impiego di un kit di sincronizzazione, che è composto da giunti di precisione a lamelle originali Rollon completi di calettatori conici e albero cavo di trasmissione in alluminio.

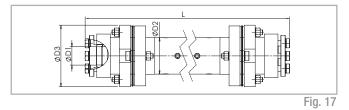
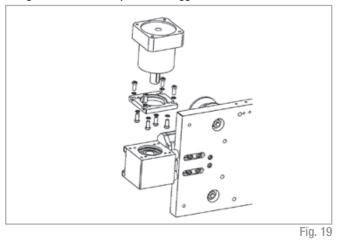


Fig. 18

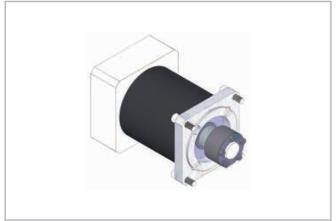

Dimensioni (mm)

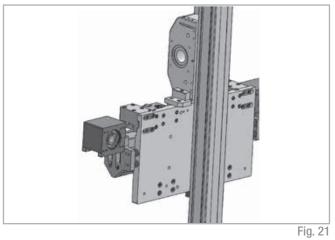
Unità	Tipo di albero	D1	D2	D3	Codice
SAB 60	AP 15	15	40	69,5	GK15P1A
SAB 120	AP 20	20	40	69,5	GK20P1A
SAB 180	AP 20	20	40	69,5	GK20P1A
SAB 250	AP 25	25	70	99	GK25P1A

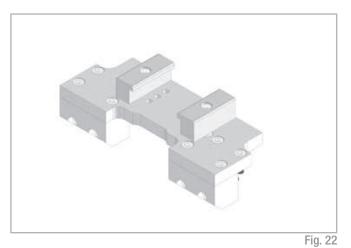
T MORO

Accessori

Flangia di adattamento per il montaggio del riduttore

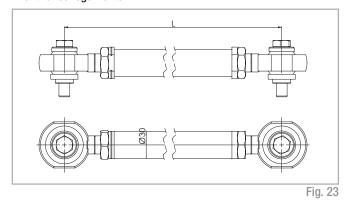



Fig. 20


Il kit di assemblaggio include: calettatore, piastra di intefaccia, componenti per il fissaggio

Unità	Tipo di riduttore (non incluso)	Codice
SAB60	MP060; PLE060; CP060	G002375
	PLE080	G002411
	PGII080	G002422
SAB120	MP080	G002426
	PLE060; CP060; PGII060	G002427
	MP060	G002432
	P3	G000824
	MP080	G000826
	LC90; MPV01; LP090; PE4	G000827
SAB180	MP105	G000830
SADIOU	PE3; LP070; LC070	G001078
	SP060; PLN070	G000829
	SP070; PLN090	G000859
	SW040	G000866
	MP130	G000482
	LC120; MPV02; LP120; PE5	G000483
SAB 250	LC090; LP090; PE4	G000525
3AD 230	MP105	G000527
	SP075; PLN090	G000526
	SW050	G000717

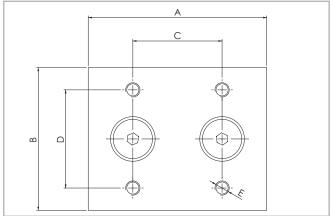
Tab. 43



In caso di ordine di due unità lineari per un Sistema Y-Z deve essere specificato nell'ordine, al fine di predisporre la foratura dei carri per il kit di assemblaggio.

	Sistema di assi Y-Z	Codice
100	S-SMART 65 on SAB 120	G002440
	S-SMART 80 on SAB 180	G000990

Tab. 44


Tiranti di collegamento

Unità	Codce
SAB 60	
SAB 120	GT125xxxxx1A
SAB 180	
SAB 250	GT205xxxxx1A

Tab. 45

Kit spacer

Unità	А	В	С	D	Е	Codce
SAB 60	50	40	30	25	M6	G002343
SAB 120	100	80	50	55	M8	G002362
SAB 180	100	125	50	70	M10	G002466
SAB 250	100	145	50	80	M12	G002523

Tab. 46

Fig. 24

Inserto per SAB 180V - SAB 180C - SAB250C

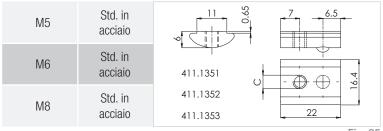


Fig. 25

Inserto inseribile frontalmente: SAB 180V - SAB 180C - SAB 250C

M4	Std. in acciaio	411.1360	16	9	411.2534		-	496 — 	-+-	-+-		-
M5	Std. in acciaio	411.1361	16	9 6	411.2533	-ф-		496 —————		- ∳		-
M6	Std. in acciaio	411.1362	16	9	411.3633		-6-	496 — \$ —	-		-6-	
M8	Std. in acciaio	411.1363	16									

Fig. 26

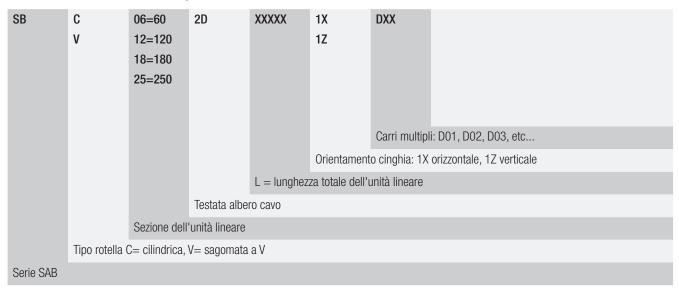
Code di rondine per: SAB 120C - SAB 120V - SAB 180V - SAB 180C - SAB 250C

M12	Std. in acciaio	411.0470 411.0588 411.0469 411.0503 411.0745 411.0845
M12	Std. in acciaio	411.0888 411.1185 411.1048
M10	Std. in acciaio	411.1120 411.1117 411.1178
M10	Std. in acciaio	411.1186
M8	Std. in acciaio	411.1113 411.1112 411.0675 411.1111 411.1174
M6	Std. in acciaio	411.0682
M8	Std. in acciaio	411.1675

Fig. 27

Code di rondine per: SAB 60V

	po o oo .	
M8	Std. in acciaio	4 国 411.3532
M6	Std. in acciaio	4 + + + + + + + + + + + + + + + + + + +
M5	Std. in acciaio	411.2732 411.2733
M4	Std. in acciaio	◆ 臣 411.1732


Fig. 28

Codice di ordinazione

Codice di identificazione per l'unità lineare SAB

Per creare i codici identificativi per i prodotti Actuator Line, è possibile visitare: http://configureactuator.rollon.com

Orientamento destra/sinistra

		∇	
			Destra
	•		
			Sinistra
		\Box	Onnour

Serie ZSY V

Descrizione serie ZSY

La serie ZSY è composta da attuatori lineari auto-portanti in alluminio estruso, azionati tramite una cinghia in poliuretano. Grazie ad un profondo trattamento superficiale anodico duro, e alle rotelle in compound plastico, la serie ZSY offre dinamiche eccezionalmente elevate, grande capacità di carico, assenza di manutenzione e lubrificazione, totale affidabilità in ambienti sporchi e silenziosità unica. La serie ZSY si caratterizza per l'utilizzo di guide con rotelle sagomate a "V" come componenti di movimentazione lineare. Le rotelle, leggere e facili da assemblare, sono rivestite di uno speciale compound plastico che garantisce una lunga durata in totale assenza di manutenzione, anche in presenza di agenti inquinanti. Grazie a queste caratteristiche, questi prodotti sono particolarmente indicati per gli ambienti sporchi e le applicazioni di automazione industriale con dinamiche elevate.

Gli attuatori lineari della serie ZSY nascono per soddisfare le esigenze di movimentazione verticale nelle applicazioni a portale o per applicazioni dove il profilo in alluminio deve essere in movimento ed il carro deve rimanere fisso. È ideale per realizzare un asse "Z" in un sistema a 3 assi. La serie ZSY è disponibile esclusivamente con profilo di taglia 180 mm.

Vantaggi principali:

- Elevata durata
- Autoportante per la massima libertà progettuale
- Dinamiche elevate
- Elevate capacità di carico
- Massima affidabilità in ambienti sporchi
- Assenza di lubrificazione
- Silenziosità unica
- Sistema auto-allineante

Profilo in alluminio

Gli attuatori lineari della serie ZSY sono realizzati in lega leggera di alluminio, ottenuti per estrusione di precisione e sottoposti, su tutta la superficie esterna, a trattamenti che conferiscono una durezza superficiale comparabile a quella degli acciai temprati. Ne deriva un'ottima resistenza all'usura anche in presenza di agenti inquinanti. Questi attuatori lineari infatti possono lavorare in ambiente polveroso in assenza di sistemi di protezione.

Cinghia di trazione

L'azionamento degli attuatori lineari della serie ZSY avviene tramite una cinghia dentata in poliuretano, rinforzata con cavi in acciaio. Per alcune applicazioni la cinghia rappresenta la soluzione ideale, in quanto si rivela

la più efficace in presenza di alte trazioni, spazi contenuti e dove sia richiesta una bassa rumorosità. Alcuni dei vantaggi dell'azionamento a cinghia riguardano: alta velocità, alta accelerazione, bassa rumorosità e nessuna lubrificazione richiesta.

Carro

Il carro delle unità lineari della serie ZSY è interamente in alluminio anodizzato.

Dati generali alluminio utilizzato: AL 6060

Composizione chimica [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurità
Resto	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 47

Caratteristiche fisiche

Densità	Modulo di elasticità	Coefficiente di dilatazione termica (20°-100°C)	Conducibilità termica (20°C)	Calore specifico (0°-100°C)	Resistività	Temp. di fusione
kg	kN	10-6	W	J		
					Ω . m . 10 ⁻⁹	°C
dm ³	mm²	K	m . K	kg . K		
2.7	69	23	200	880-900	33	600-655

Tab. 48

Caratteristiche meccaniche

Rm	Rp (02)	А	НВ
N — mm²	N —— mm²	%	_
205	165	10	60-80

Il sistema di movimentazione lineare

Il sistema di movimentazione lineare risulta determinante per la capacità di carico, la velocità e l'accelerazione massima. Negli attuatori lineari Rol-Ion serie ZSY vengono utilizzate rotelle sagomate a "V".

ZSY con rotelle sagomate a "V"

Le rotelle sono rivestite di uno speciale compound plastico che garantisce una lunga durata in totale assenza di manutenzione, anche in presenza di agenti inquinanti. Inoltre sono dotate di cuscinetti volventi e possono essere fornite con lubrificatore per ingrassaggio periodico o lubrificate a vita con grasso speciale ad alta tecnologia, che mantiene inalterate le sue caratteristiche nel tempo. Tutti i supporti sono dotati di perni concentrici ed eccentrici per la rapida registrazione del contatto fra le rotelle e la guida. I supporti sono montati sui carrelli quando la rotaia e fissa e sulla struttura quando la rotaia e mobile.

Sezione ZSY 180

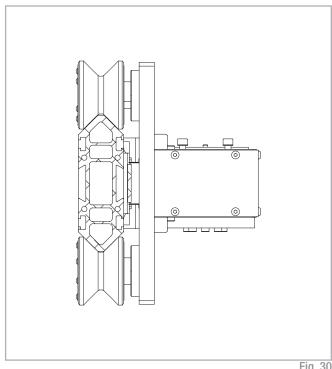
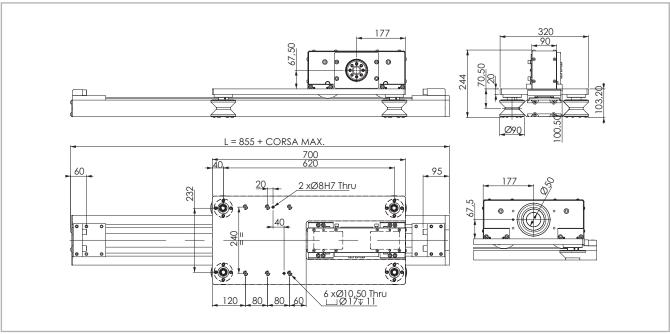



Fig. 30

Dimensioni ZSY 180V

La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

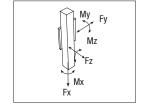
Fig. 31

Dati tecnici

	Tipo
	ZSY 180V
Lunghezza corsa utile max. [mm]	2500
Ripetibilità max.di posizionamento [mm]*1	± 0,2
Velocità max.di traslazione [m/s]	8
Accelerazione max. [m/s²]	8
Tipo di cinghia	50 AT 10HPF
Tipo di puleggia	Z 30
Diametro primitivo della puleggia [mm]	95,49
Spostamento carro per giro puleggia [mm]	300
Peso del carro [kg]	25,7
Peso corsa zero [kg]	36
Peso per ogni 100 mm di corsa utile [kg]	1,06
Dimensione guide [mm]	180x60
*1) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato	Tab. 50

^{*1)} La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Momenti d'inerzia del profilo di alluminio


Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
ZSY 180V	1,029	0,128	0,260
			Tab. 51

Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso [kg/m]
ZSY 180V	50 AT 10HPF	50	0.34

Tab. 52

Capacità di carico

Tipo	F [N	: X V]	F [N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.					
ZSY 180V	4980	2880	2300	2600	188	806	713

Momenti non cumulabili, applicati al carrello e riferiti ad una durata teorica della guida Speedy Rail e delle rotelle fino a 80.000 Km.

Accessori

Flangia di adattamento per il montaggio del riduttore

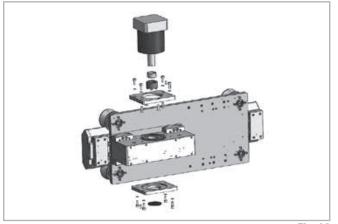
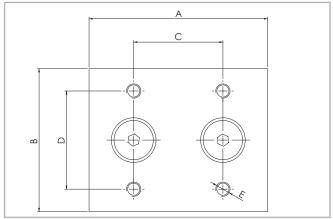


Fig. 32

Fig. 33

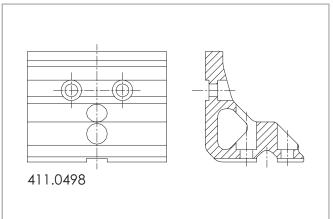

Il kit di assemblaggio include: calettatore, piastra di intefaccia, componenti per il fissaggio

Unità	Tip di riduttore (non incluso)	Codice kit di montaggio
	LP120; PE5; LC120	G001856
	SP100; P5	G001857
	PSF321	G001858
ZSY 180V	PSF521	G001859
	EP120TT	G001860
	MP105	G001861
	MP080	G001951

Tab. 54

Per altri materiali di riduttori, rivolgersi a Rollon.

Kit spacer


		_	_	_
F	İ	g		34

Unità	А	В	С	D	E	Codice
ZSY 180V	100	125	50	70	M10	G002466

er giunzione - Lato maggiore (Ø12.5 - Ø20) Alluminio

Fig. 35

Squadretta per giunzione - Lato maggiore (Ø12.5 - Ø20) Alluminio

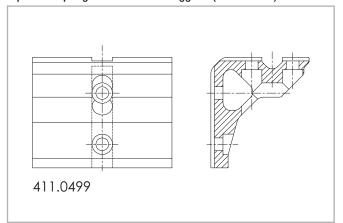
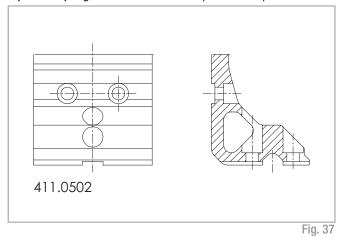



Fig. 36

Squadretta per giunzione - Lato minore (Ø12.5 - Ø20) Alluminio

Squadretta per giunzione - Lato minore (Ø12.5 - Ø20) Alluminio

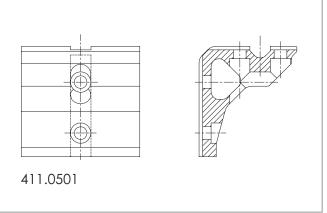


Fig. 38

Inserto per: ZSY 180V

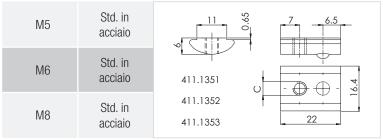


Fig. 39

Inserto inseribile frontalmente per: ZSY 180V

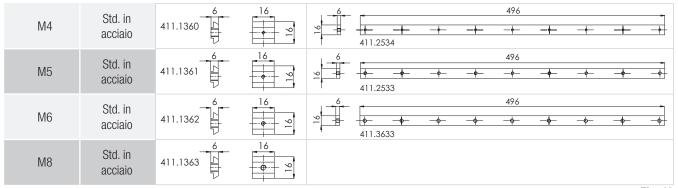


Fig. 40

Code di rondine per: ZSY 180V

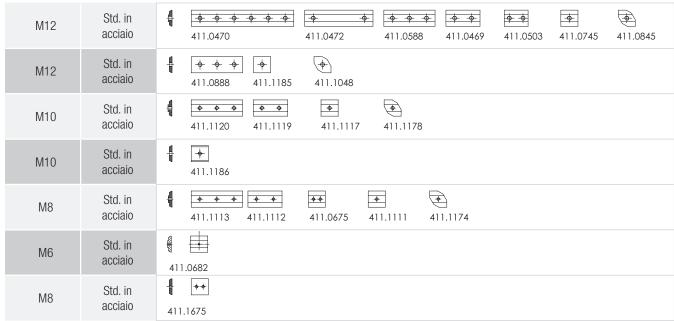
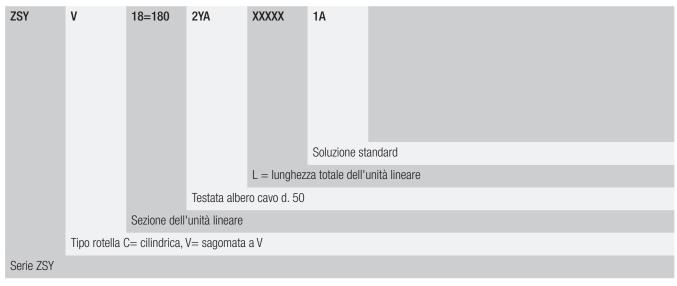
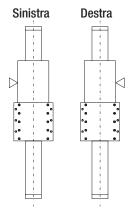



Fig. 41

Codice di ordinazione


Codice di identificazione per l'unità lineare ZSY

Per creare i codici identificativi per i prodotti Actuator Line, è possibile visitare: http://configureactuator.rollon.com

Orientamento destra/sinistra

Serie SAR 🗸 🗸

Descrizione serie SAR

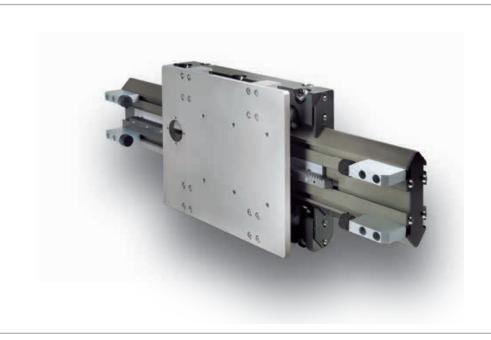


Fig. 42

La serie **SAR** è composta da attuatori lineari auto-portanti in alluminio estruso, azionati tramite un sistema a pignone e cremagliera. Grazie ad un profondo trattamento superficiale anodico duro, e alle rotelle in compound plastico, la serie SAB offre dinamiche eccezionalmente elevate, grande capacità di carico, assenza di manutenzione e lubrificazione, totale affidabilità in ambienti sporchi e silenziosità unica.

La serie SAR si caratterizza per l'utilizzo di guide a rotelle cilindriche o sagomate a "V" come componenti di movimentazione lineare. Le rotelle, leggere e facili da assemblare, sono rivestite di uno speciale compound plastico che garantisce una lunga durata in totale assenza di manutenzione, anche in presenza di agenti inquinanti. Grazie a queste caratteristiche, questi prodotti sono particolarmente indicati per gli ambienti sporchi e le applicazioni di automazione industriale con dinamiche elevate. La serie SAR è disponibile con profili di differenti taglie: 120 -180 - 250 mm.

Vantaggi principali:

- Elevata durata
- Autoportante per la massima libertà progettuale
- Dinamiche elevate
- Elevate capacità di carico
- Massima affidabilità in ambienti sporchi
- Assenza di lubrificazione
- Silenziosità unica
- Sistema auto-allineante
- Corse potenzialmente infinite grazie alle versioni giuntate

Profilo in alluminio

Gli attuatori lineari della serie SAR sono realizzati in lega leggera di alluminio, ottenuti per estrusione di precisione e sottoposti, su tutta la superficie esterna, a trattamenti che conferiscono una durezza superficiale comparabile a quella degli acciai temprati. Ne deriva un'ottima resistenza all'usura anche in presenza di agenti inquinanti. Questi attuatori lineari infatti possono lavorare in ambiente polveroso in assenza di sistemi di protezione

Pignone e cremagliera

L'azionamento degli attuatori lineari della serie SAR avviene tramite un sistema a pignone e cremagliera. Questa opzione è ideale per ottenere corse lunghe e permettere il montaggio di carri multipli indipendenti. Il pignone e la cremagliera sono entrambi temprati, per consentire al sis

tema di funzionare al meglio anche in ambienti sporchi, e i denti inclinati favoriscono elevata capacità di carico, bassa rumorosità e una movimentazione lineare fluida. Gli attuatori lineari della serie SAR possono essere forniti con un kit di lubrificazione, per eliminare le operazioni di ingrassaggio periodico.

Carro

Il carro delle unità lineari della serie SAR è interamente in alluminio anodizzato. Le dimensioni variano in relazione ai modelli.

Dati generali alluminio utilizzato: AL 6060

Composizione chimica [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurità
Resto	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 56

Caratteristiche fisiche

Densità	Modulo di elasticità	Coefficiente di dilatazione termica (20°-100°C)	Conducibilità termica (20°C)	Calore specifico (0°-100°C)	Resistività	Temp. di fusione
kg	kN	10-6	W	J	0 400	00
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10^{-9}	°C
2,7	69	23	200	880-900	33	600-655

Tab. 57

Caratteristiche meccaniche

Rm	Rp (02)	А	НВ
N mm²	N — mm²	%	_
205	165	10	60-80

Il sistema di movimentazione lineare

Il sistema di movimentazione lineare risulta determinante per la capacità di carico, la velocità e l'accelerazione massima. Negli attuatori lineari Rollon serie SAR vengono utilizzate rotelle cilindriche o sagomate a "V".

SAR con rotelle cilindriche e sagomate a "V"

Per la serie SAR è prevista un'ampia gamma di rotelle, nelle versioni cilindriche e sagomate a "V", e supporti a due o più rotelle. Le rotelle sono rivestite di uno speciale compound plastico che garantisce una lunga durata in totale assenza di manutenzione, anche in presenza di agenti inquinanti. Inoltre sono dotate di cuscinetti volventi e possono essere fornite con lubrificatore per ingrassaggio periodico o lubrificate a vita con grasso speciale ad alta tecnologia, che mantiene inalterate le sue caratteristiche nel tempo. Tutti i supporti sono dotati di perni concentrici ed eccentrici per la rapida registrazione del contatto fra le rotelle e la guida. I supporti sono montati sui carrelli quando la rotaia e fissa e sulla struttura quando la rotaia e mobile.

Sezione SAR

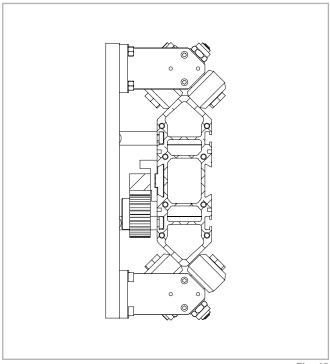
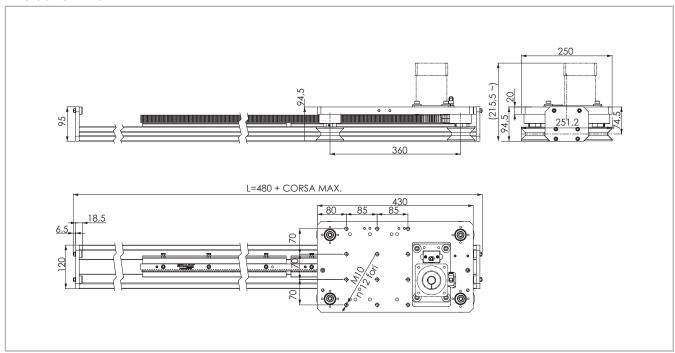



Fig. 43

Dimensioni SAR 120V

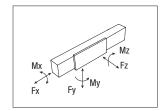
La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

Fig. 44

Dati tecnici

	Tipo
	SAR 120V
Lunghezza corsa utile max. [mm]*1	NO LIMITS
Ripetibilità max.di posizionamento [mm]*2	± 0,15
Velocità max.di traslazione [m/s]	3
Accelerazione max. [m/s²]	8
Modulo cremagliera	m 2
Diametro primitivo del pignone [mm]	54
Spostamento carro per giro pignone [mm]	169,65
Peso del carro [kg]	7
Peso corsa zero [kg]	12
Peso per ogni 100 mm di corsa utile [kg]	1,1
Dimensione guide [mm]	120x40
*1) È possibile realizzare corse più lunghe tramite speciali giunzioni Rollon	Tab. 59

^{*1)} È possibile realizzare corse più lunghe tramite speciali giunzioni Rollon


Momenti d'inerzia del profilo di alluminio

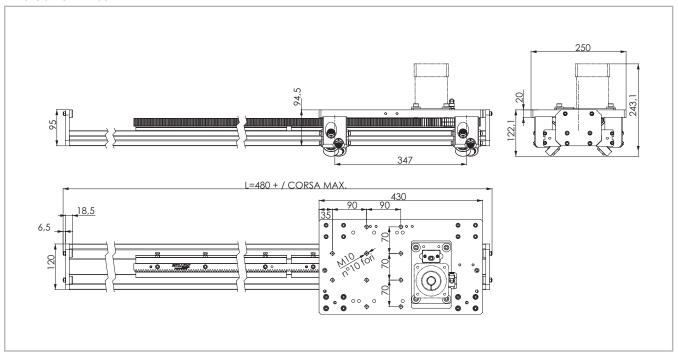
Tipo	l _x [mm⁴]	l _y [mm⁴]	_p [10 ⁷ mm ⁴]
SAR 120V	0,214	0,026	0,043
			Tab. 60

Caratteristiche della cremagliera

Tipo	Tipo di cremagliera	Modulo cremagliera	Qualità
SAR 120V	Denti dritti, temprata	m 2	Q10

Tab. 61

Capacità di carico


Tipo	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAR 120V	1633	1400	800	39.3	144	252

Momenti non cumulabili, applicati al carrello e riferiti ad una durata teorica della guida Speedy Rail e delle rotelle fino a 80.000 Km.

^{*2)} La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato.

SAR 120C

Dimensioni SAR 120C

La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

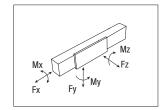
Fig. 45

Dati tecnici

	Tipo
	SAR 120C
Lunghezza corsa utile max. [mm]*1	NO LIMITS
Ripetibilità max.di posizionamento [mm]*2	± 0,15
Velocità max.di traslazione [m/s]	3
Accelerazione max. [m/s²]	10
Modulo cremagliera	m 2
Diametro primitivo del pignone [mm]	54
Spostamento carro per giro pignone [mm]	169,65
Peso del carro [kg]	8,4
Peso corsa zero [kg]	13,5
Peso per ogni 100 mm di corsa utile [kg]	1,1
Dimensione guide [mm]	120x40
*1) È possibile realizzare corse più lunghe tramite speciali giunzioni Rollon	Tab. 63

^{*1)} È possibile realizzare corse più lunghe tramite speciali giunzioni Rollon *2) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato.

Momenti d'inerzia del profilo di alluminio

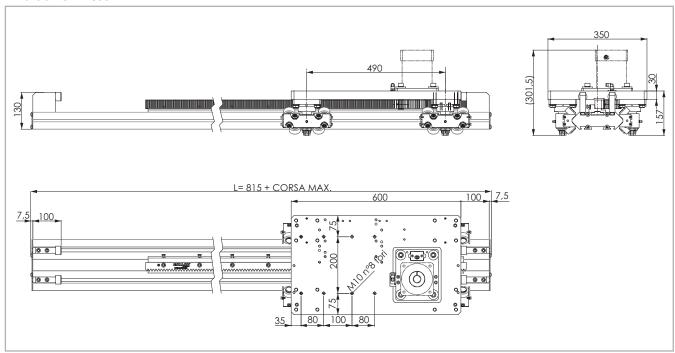

Tipo	l _x	l _y	l _p
	[mm⁴]	[mm⁴]	[10 ⁷ mm⁴]
SAR 120C	0,214	0,026	0,043

Tab. 64

Caratteristiche della cremagliera

Tipo	Tipo di cremagliera	Modulo cremagliera	Qualità
SAR 120C	Denti dritti, temprata	m 2	Q10

Tab. 65


Capacità di carico

Tipo	F _.	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAR 120C	1633	2489	2489	98	432	432

Momenti non cumulabili, applicati al carrello e riferiti ad una durata teorica della guida Speedy Rail e delle rotelle fino a 80.000 Km.

Dimensioni SAR 180C

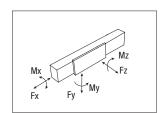
La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

Fig. 46

Dati tecnici

	Tipo
	SAR 180C
Lunghezza corsa utile max. [mm]*1	NO LIMITS
Ripetibilità max.di posizionamento [mm]*2	± 0,15
Velocità max.di traslazione [m/s]	3
Accelerazione max. [m/s²]	10
Modulo cremagliera	m3
Diametro primitivo del pignone [mm]	63
Spostamento carro per giro pignone [mm]	197.92
Peso del carro [kg]	31,3
Peso corsa zero [kg]	47
Peso per ogni 100 mm di corsa utile [kg]	2
Dimensione guide [mm]	180x40
*1) È possibile realizzare corse più lunghe tramite speciali giunzioni Rollon	Tab. 67

^{*1)} È possibile realizzare corse più lunghe tramite speciali giunzioni Rollon *2) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato


Momenti d'inerzia del profilo di alluminio

Туре	l _x [mm⁴]	l _y [mm⁴]	_p [10 ⁷ mm ⁴]
SAR 180C	1,029	0,128	0,260
			Tab. 68

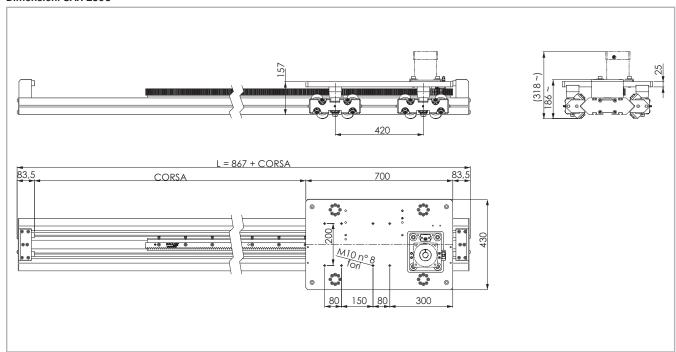
Caratteristiche della cremagliera

Tipo	Tipo di cremagliera	Modulo cremagliera	Qualità
SAR 180C	Denti dritti, temprata	m3	Q10

Tab. 69

Capacità di carico

Tipo	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAR 180C	1905	4978	4978	246	1220	1220


Momenti non cumulabili, applicati al carrello e riferiti ad una durata teorica della guida Speedy Rail e delle rotelle fino a 80.000 Km.

Tab. 70

SAR 250C

Dimensioni SAR 250C

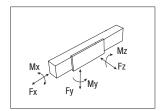
La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

Fig. 47

Dati tecnici

	Tipo
	SAR 250C
Lunghezza corsa utile max. [mm]*1	NO LIMITS
Ripetibilità max.di posizionamento [mm]*2	± 0,15
Velocità max.di traslazione [m/s]	3
Accelerazione max. [m/s²]	10
Modulo cremagliera	m3
Diametro primitivo del pignone [mm]	63
Spostamento carro per giro pignone [mm]	197,92
Peso del carro [kg]	40
Peso corsa zero [kg]	64
Peso per ogni 100 mm di corsa utile [kg]	2,5
Dimensione guide [mm]	250x80

Momenti d'inerzia del profilo di alluminio


Tipo	l _x	l _y	լ _ր
	[mm⁴]	[mm⁴]	[10 ⁷ mm⁴]
SAR 250C	2,735	0,412	0,840

Tab. 72

Caratteristiche della cremagliera

Tipo	Tipo di cremagliera	Modulo cremagliera	Qualità
SAR 250C	Denti dritti, temprata	m3	Q10

Tab. 73

Capacità di carico

Туре	F _x	F _y	F _z	M _x	M _y	M _z
	[N]	[N]	[N]	[Nm]	[Nm]	[Nm]
SAR 250C	1905	7240	7240	744	1521	1521

Tab. 71

Momenti non cumulabili, applicati al carrello e riferiti ad una durata teorica della guida Speedy Rail e delle rotelle fino a 80.000 Km.

Tab. 74

^{*1)} È possibile realizzare corse più lunghe tramite speciali giunzioni Rollon *2) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

ne della cremagliera

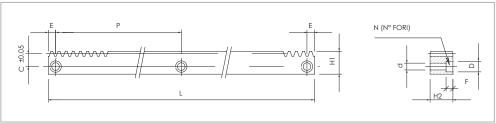


Fig. 48

Codice	С	D	d	E	F	H1	H2	L	N	Р	Mod.	Trattamento superficiale / Materiale
1006919	10	11	7	62,8	7	20	20	1005,31	8	125,7	2	Fosfatazione al Manganese nera /SAE1141
1006920	10	11	7	62,8	7	20	20	2010,6	16	125,7	2	Fosfatazione al Manganese nera /SAE1141
1006430	10	11	7	19,41	7	20	20	998,82	9	120	2	INOX aisi 304
1006242	18	15	10	63,6	9	30	30	1017,6	8	127,2	3	Fosfatazione al Manganese nera /SAE1141
1006243	18	15	10	63,6	9	30	30	2035,2	16	127,2	3	Fosfatazione al Manganese nera /SAE1141

Tab. 75

Lubrificazione

Sistema di lubrificazione automatico programmabile per cremagliere

L'erogazione del grasso avviene tramite un lubrificatore automatico a cartuccia. (durata un anno circa) (a). Il grasso viene uniformemente distribuito sulla cremagliera da un pignone in feltro (1). Prevedere un kit per ogni cremagliera.

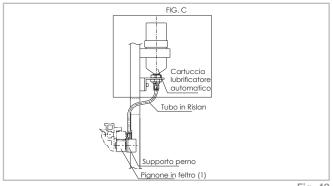


Fig. 49

Accessori

Kit spacer

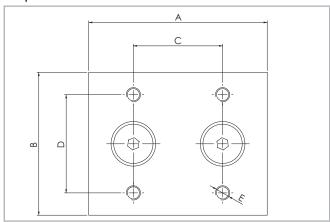


Fig. 50

Unità	A	В	С	D	E	Codice
SAR 120	100	80	50	55	M8	G002362
SAR 180	100	125	50	70	M10	G002466
SAR 250	100	145	50	80	M12	G002523

Tab. 76

Flangia di adattamento per il montaggio del riduttore

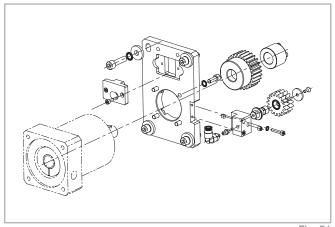


Fig. 51

Il kit di assemblaggio include: calettatore, piastra di intefaccia, componenti per il fissaggio

Unità	Tip di riduttore (non incluso)	Codice kit di montaggio
SAR 120	MP080	G002853
SAR 180 SAR 250	MP080 MP105	G003120 G002854

Tab. 77

Per altri materiali di riduttori, rivolgersi a Rollon.

AR 180C - SAR 180V - SAR 250C

M5	Std. in acciaio	7 6.5
M6	Std. in acciaio	411.1351
M8	Std. in acciaio	411.1352 411.1353 22

Fig. 53

Inserto inseribile frontalmente per: SAR 180C - SAR 180V - SAR 250C

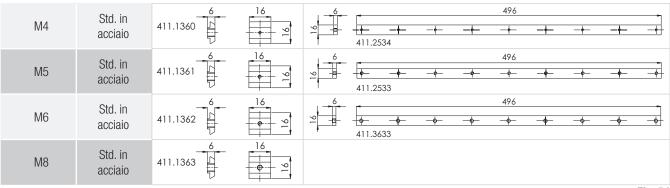


Fig. 54

Code di rondine per: SAR 120C - SAR 120V - SAR 180C - SAR 180V - SAR 250C

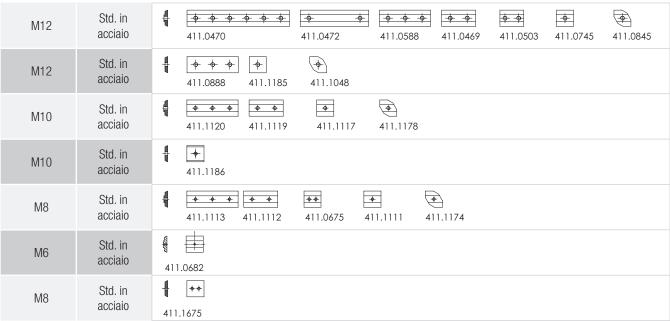
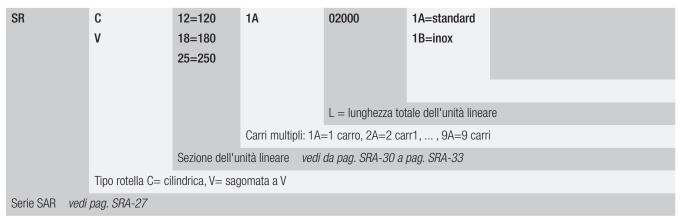



Fig. 55



Codice di ordinazione // ~

Codice di identificazione per l'unità lineare SAR

Per creare i codici identificativi per i prodotti Actuator Line, è possibile visitare: http://configureactuator.rollon.com

Carico statico e durata

Carico statico

Per la verifica statica, la capacità di carico radiale F_y , la capacità di carico assiale F_z e i momenti M_{x^1} M_y e M_z indicano i valori di carico max. ammissibili. Carichi maggiori pregiudicherebbero le caratteristiche di scorrimento. Per la verifica del carico statico si impiega un fattore di sicurezza S_0 che tiene conto dei parametri dell'applicazione ed è definito più dettagliatamente nella seguente tabella:

Tutti i valori indicati per le capacità di carico fanno riferimento all'attuatore fissato su una struttura rigida. Per le applicazioni a sbalzo è necessario considerare la flessione del profilo dell'attuatore.

Fattore di sicurezza S_o

Assenza di urti e vibrazioni, frequenze di inversione modeste e poco frequenti, elevata precisione di montaggio, nessuna deformazione elastica	2 - 3
Condizioni di montaggio normali	3 - 5
Urti e vibrazioni, frequenze di inversione molto frequenti, deformazioni elastiche evidenti	5 - 7

Fig. 1

Il rapporto tra il massimo carico ammissibile e quello effettivo deve essere almeno uguale al reciproco del fattore di sicurezza $S_{\scriptscriptstyle 0}$ adottato.

$$\frac{P_{fy}}{F_{v}} \leq \frac{1}{S_{0}}$$

$$\frac{P_{fz}}{F_{z}} \leq \frac{1}{S_{0}}$$

$$\frac{M_1}{M_x} \le \frac{1}{S_0}$$

$$\frac{M_2}{M_y} \le \frac{1}{S_0}$$

$$\frac{M_3}{M_z} \le \frac{1}{S_0}$$

Fig. 2

Le formule riportate sopra valgono per una singola condizione di carico. Se agiscono contemporaneamente due o più forze descritte, eseguire la sequente verifica:

$$\frac{P_{fy}}{F_{y}} + \frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}} \le \frac{1}{S_{0}}$$

 P_{fy} = carico applicato (Direzione y) (N)

= Carico statico (Direzione y) (N)

= Carico applicato (Direzione z) (N)

 F_z = Carico statico (Direzione z) (N) M_1 , M_2 , M_3 = momenti esterni (Nm)

 M_{y} , M_{y} , M_{z} = momenti massimi ammissibili nelle diverse direzioni di carico (Nm)

Il fattore di sicurezza S_0 può essere prossimo alla soglia inferiore indicata se è possibile determinare con sufficiente esattezza le forze in azione. Se il sistema è soggetto a urti e vibrazioni, scegliere il valore più alto. Per le applicazioni dinamiche sono necessari dei fattori di sicurezza più elevati. Per ulteriori informazioni contattare il nostro servizio tecnico.

Fattore di sicurezza della cinghia riferito a F_{χ}

Fig. 3

Impatti e vibrazioni	Velocità / accellerazione	Orientamento	Fattore di sicurezza		
Nessun impatto	Bassa	orizzontale	1.4		
e/o vibrazioni	Dassa	verticale	1.8		
Impatti e/o	Media	orizzontale	1.7		
vibrazioni leggere	ivieula	verticale	2.2		
Impatti e/o	Alta	orizzontale	2.2		
vibrazioni forti	Alla	verticale 3			
			Tah 1		

Durata

Calcolo della durata

Il coefficiente di carico dinamico C è una misura convenzionale utilizzata per calcolare la durata. Questo carico corrisponde a una durata nominale

di 100 km. Il rapporto tra la durata calcolata, il coefficiente di carico dinamico e il carico equivalente è definito dalla formula seguente:

$$L_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_{i}})^{3}$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_{i}})^{3}$$

$$E_{km} = \text{durata teorica (km)}$$

$$E_{km} = \text{coefficiente di carico dinamico (N)}$$

$$E_{eq} = \text{carico applicato equivalente (N)}$$

$$E_{eq} = \text{coefficiente di impiego (vedi tab. 2)}$$

Fig. 4

Il carico equivalente P_{eq} corrisponde negli effetti alla somma dei momenti e delle forze in azione contemporaneamente su un cursore. Se le diverse componenti di carico sono note, P si ricava nel modo seguente:

Per SP

$$P_{eq} = P_{fy} + P_{fz} + (\frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Fig. 5

Per CI e CE

$$P_{eq} = P_{fy} + (\frac{P_{fz}}{F_z} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Fig. 6

Si considera che i carichi esterni siano costanti nel tempo. Carichi temporanei che non superano la capacità massima di carico non hanno alcun effetto rilevante sulla durata e possono essere quindi trascurati.

Coefficiente di impiego f_i

f _i	
Assenza di urti e vibrazioni, frequenze di inversione modeste e poco frequenti, condizioni ambientali pulite, basse velocità (<1 m/s)	1,5 - 2
Leggere vibrazioni, velocità medie (1-2,5 m/s) e frequenze media di inversione	2 - 3
Urti e vibrazioni, velocità elevate (>2,5 m/s) e frequenze di inversione molto frequenti, molta sporcizia	>3
	Tab. 2

Durata Speedy Rail A

La durata prevista per gli attuatori della famiglia SRA è di 80.000 Km.

Carico statico e durata Uniline

Carico statico

Per la verifica statica, la capacità di carico radiale F_y , la capacità di carico assiale F_z e i momenti M_{x^1} , M_{y} e M_{z} indicano i valori di carico max. ammissibili. Carichi maggiori pregiudicherebbero le caratteristiche di scorrimento. Per la verifica del carico statico si impiega un fattore di sicurezza So che tiene conto dei parametri dell'applicazione ed è definito più dettagliatamente nella seguente tabella:

Fattore di sicurezza S₀

Assenza di urti e vibrazioni, frequenze di inversione modeste e poco frequenti, elevata precisione di montaggio, nessuna deformazione elastica	1 - 1.5
Condizioni di montaggio normali	1.5 - 2
Urti e vibrazioni, frequenze di inversione molto frequenti, deformazioni elastiche evidenti	2 - 3.5

Fig. 7

Il rapporto tra il massimo carico ammissibile e quello effettivo deve essere almeno uguale al reciproco del fattore di sicurezza S₀ adottato.

$$\frac{P_{fy}}{F_{v}} \le \frac{1}{S_{0}} \qquad \frac{P_{fz}}{F_{z}} \le \frac{1}{S_{0}}$$

$$\frac{P_{fz}}{F_{7}} \leq \frac{1}{S_{0}}$$

$$\frac{M_1}{M_x} \le \frac{1}{S_0}$$

$$\frac{M_2}{M_y} \le \frac{1}{S_0}$$

$$\frac{M_3}{M_z} \le \frac{1}{S_0}$$

Fig. 8

Le formule riportate sopra valgono per una singola condizione di carico. Se agiscono contemporaneamente due o più forze descritte, eseguire la seguente verifica:

$$\frac{P_{fy}}{F_{v}} + \frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{v}} + \frac{M_{3}}{M_{z}} \leq \frac{1}{S_{0}}$$

= Carico applicato (Direzione y) (N)

= Carico statico (Direzione y) (N)

= Carico applicato (Direzione z) (N)

= Carico statico (Direzione z) (N)

 M_1 , M_2 , M_3 = momenti esterni (Nm)

 M_{y} , M_{y} , M_{z} = momenti massimi ammissibili

nelle diverse direzioni di carico (Nm)

Il fattore di sicurezza S_0 può essere prossimo alla soglia inferiore indicata se è possibile determinare con sufficiente esattezza le forze in azione. Se il sistema è soggetto a urti e vibrazioni, scegliere il valore più alto. Per le applicazioni dinamiche sono necessari dei fattori di sicurezza più elevati.

Per ulteriori informazioni contattare il nostro servizio tecnico.

Fig. 9

Formule per il calcolo

Momenti M_v e M_z per unità lineari con cursore lungo

I carichi ammissibili per i momenti M_y e M_z dipendono dalla lunghezza del cursore. I momenti ammissibili M_{zn} e M_{yn} per le varie lunghezze del cursore vengono calcolati in base alla seguente formula:

$$S_n = S_{min} + n \cdot \Delta S$$

$$M_{zn} = (1 + \frac{S_n - S_{min}}{K}) \cdot M_{z min}$$

$$M_{yn} = (1 + \frac{S_n - S_{min}}{K}) \cdot M_{y min}$$

 M_{zn} = momento ammissibile (Nm)

 $M_{z min} = valori minimi (Nm)$

 M_{vn} = momento ammissibile (Nm)

 $M_{y min} = valori minimi (Nm)$

 S_n = lunghezza del cursore (mm)

 S_{min} = lunghezza minima del cursore (mm)

 ΔS = coefficiente del cambio di lunghezza del cursore

K = costante

Fig. 10

Tipo	M _{y min}	M _{z min}	S _{min}	ΔS	К
	[Nm]	[Nm]	[mm]		
A40L	22	61	240		74
A55L	82	239	310		110
A75L	287	852	440		155
C55L	213	39	310		130
C75L	674	116	440	10	155
E55L	165	239	310		110
E75L	575	852	440		155
ED75L (M _z)	1174	852	440		155
ED75L (M _y)	1174	852	440		270

Tab. 3

M, per unità lineari con cursore doppio

I carichi ammissibili per i momenti M_y e M_z dipendono dal valore per l'interasse cursori. I momenti ammissibili M_{yn} e M_{zn} per l'interasse cursori presente vengono calcolati in base alla seguente formula:

$$L_n = L_{min} + n \cdot \Delta L$$

$$M_{y} = (\frac{L_{n}}{L_{min}}) \cdot M_{y \, min}$$

$$M_z = (\frac{L_n}{L_{min}}) \cdot M_{z \, min}$$

M_v = momento ammissibile (Nm)

M_z = momento ammissibile (Nm)

 $M_{v \min} = valori minimi (Nm)$

 $M_{z \min} = \text{valori minimi (Nm)}$

L_n = interasse cursori (mm)

 L_{min} = valore minimo per l'interasse cursori (mm)

 ΔL = coefficiente del cambio di lunghezza del cursore

Fig. 11

[Nm] [Nm] [mm] A40D 70 193 235 5 A55D 225 652 300 5 A75D 771 2288 416 8 C55D 492 90 300 5 C75D 1809 312 416 8 E55D 450 652 300 5	Tipo	M _{y min}	M _{z min}	L _{min}	ΔL
A55D 225 652 300 5 A75D 771 2288 416 8 C55D 492 90 300 5 C75D 1809 312 416 8		[Nm]	[Nm]	[mm]	
A75D 771 2288 416 8 C55D 492 90 300 5 C75D 1809 312 416 8	A40D	70	193	235	5
C55D 492 90 300 5 C75D 1809 312 416 8	A55D	225	652	300	5
C75D 1809 312 416 8	A75D	771	2288	416	8
	C55D	492	90	300	5
E55D 450 652 300 5	C75D	1809	312	416	8
	E55D	450	652	300	5
E75D 1543 2288 416 8	E75D	1543	2288	416	8
ED75D 3619 2288 416 8	ED75D	3619	2288	416	8

Tab. 4

Durata

Calcolo della durata

Il coefficiente di carico dinamico C è una misura convenzionale utilizzata per calcolare la durata. Questo carico corrisponde a una durata nominale di 100 km. I valori per le varie unità lineari sono riportate nella tabella

45 sottostante. Il rapporto tra la durata calcolata, il coefficiente di carico dinamico e il carico equivalente è definito dalla formula seguente:

$$L_{km} = 100 \text{ km} \cdot (\frac{C}{P} \cdot \frac{f_c}{f_i} \cdot f_h)^3$$

 L_{km} = durata teorica (km)

C = coefficiente di carico dinamico (N)

P = carico applicato equivalente (N)

f = coefficiente di contatto (vedi tab. 5)

 f_i = coefficiente di impiego (vedi tab. 6)

f_b = coefficiente di corsa (vedi fig.13)

Fig. 12

Il carico equivalente P corrisponde negli effetti alla somma dei momenti e delle forze in azione contemporaneamente su un cursore. Se le diverse componenti di carico sono note, P si ricava nel modo seguente:

$$P = P_{fy} + (\frac{P_{fz}}{F_Z} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Fig. 13

Si considera che i carichi esterni siano costanti nel tempo. Carichi temporanei che non superano la capacità massima di carico non hanno alcun effetto rilevante sulla durata e possono essere quindi trascurati.

Coefficiente di impiego f_i

f_i	
Assenza di urti e vibrazioni, frequenze di inversione modeste e poco frequenti, condizioni ambientali pulite, basse velocità (<1 m/s)	1 - 1,5
Leggere vibrazioni, velocità medie (1-2,5 m/s) e frequenze media di inversione	1,5 - 2
Urti e vibrazioni, velocità elevate (>2,5 m/s) e frequenze di inversione molto frequenti, molta sporcizia	2 - 3,5

Tab. 5

Coefficiente di contatto f

f _c	
Cursore standard	1
Cursore lungo	0.8
Cursore doppio	0.8

Tab. 6

Coefficiente di corsa f,

Il coefficiente di corsa f_h tiene conto del maggiore carico su piste e perni volventi per le corse brevi, a parità di percorso totale. Dal diagramma seguente si possono ricavare i corrispondenti valori (per corse maggiori di 1 m rimane f_h =1):



Fig. 14

Determinazione della coppia motrice

La coppia $C_{\rm m}$ necessaria nella testa motrice dell'asse lineare viene calcolata mediante la seguente formula:

$$C_{m} = C_{v} + (F \cdot \frac{D_{p}}{2})$$

 C_m = coppia motrice (Nm)

 $C_{_{v}}$ = coppia a vuoto standard (Nm)

F = forza applicata sulla cinghia (N)

D_n = diametro primitivo della puleggia (m)

Avvertenze e note legali

Si raccomanda, prima dell'incorporazione della quasi macchina, di consultare il presente paragrafo con attenzione, unitamente al manuale di assemblaggio fornito con i singoli moduli. Le informazioni contenute in questo paragrafo e nel manuale dei singoli moduli sono dirette a personale altamente qualificato e certificato e in possesso delle competenze adeguate per l'incorporazione della quasi macchina.

Precauzione nell'installazione e negli spostamenti. Attrezzatura di peso notevole.

Durante la movimentazione dell'asse o del sistema di assi verificare sempre che i punti di appoggio o ancoraggio non permettano flessioni.

Prima della movimentazione, con lo scopo di stabilizzare l'asse o il sistema di assi, è obbligatorio bloccare saldamente e opportunamente le parti mobili. Nella movimentazione di assi con traslazione verticale (ASSI Z) o di sistemi misti (orizzontale X e/o più verticali Z) è obbligatorio portare gli assi con movimento verticale al corrispondente finecorsa inferiore.

Non sovraccaricare. Non sottoporre a sollecitazioni di torsione.

Non lasciare esposto agli agenti atmosferici

Prima di montare il motore sul riduttore, si consiglia di eseguire un precollaudo del motore stesso, senza collegamento al riduttore. Il collaudo di tale componente non è stato effettuato dal fabbricante della quasi macchina. Sarà pertanto onere del cliente di Rollon eseguire il collaudo dello stesso, al fine di verificarne il corretto funzionamento.

Il fabbricante non può essere considerato responsabile delle conseguenze eventualmente derivanti da un utilizzo improprio o diverso da quello per il quale l'asse o il sistema di assi è stato progettato, o derivanti dall'inosservanza in fase di incorporazione delle norme della Buona Tecnica e di quanto previsto dal presente manuale.

Evitare danneggiamenti.

Non intervenire con attrezzi inadeguati.

Attenzione alle parti in movimento. Non appoggiare oggetti sull'asse

Installazioni speciali: verificare la profondità delle filettature sulle parti in movimento.

Assicurarsi che il montaggio del sistema sia eseguito su pavimento piano.

Nell'uso rispettare accuratamente i valori prestazionali specifici dichiarati a catalogo o, nei casi particolari, le caratteristiche prestazionali di carico e dinamica, previste in fase di avamprogetto.

Per quei moduli o parti del sistema di moduli con movimento verticale (assi Z), è obbligatorio montare motori autofrenanti per neutralizzare il rischio di caduta dell'asse.

Le immagini presenti in questo manuale sono da considerarsi puramente indicative e non vincolanti; per tanto la fornitura potrebbe differire dalle immagini ivi contenute e che Rollon S.p.A ha ritenuto utile inserire al solo unico titolo esemplicativo.

I sistemi forniti da Rollon S.p.A non sono pensati\previsti per lavorare in ambienti ATEX.

Rischi residui

- rischi di tipo meccanico per la presenza di elementi mobili (assi Y,Z);
- rischio di incendio conseguente alla infiammabilità delle cinghie utilizzate sugli assi, per temperature superiori a 250 °C con contatto di fiamma;
- rischio di caduta dell'asse Z durante le operazioni di movimentazione e montaggio della quasi macchina, prima della messa in opera;
- rischio di caduta dell'asse Z durante le operazioni di manutenzione in caso di caduta della tensione di alimentazione elettrica;
- rischio di schiacciamento in corrispondenza delle superfici a movimento divergente e convergente;
- rischio di taglio e abrasione.

Componenti base

La Quasi Macchina oggetto di questo catalogo, è da considerarsi mera fornitura di assi cartesiani semplici e dei loro accessori concordati in fase di stipulazione del contratto col cliente.

Sono quindi da considerarsi esclusi dal contratto:

- 1. il montaggio presso il cliente (diretto o finale)
- 2. la messa in opera presso il cliente (diretto o finale)
- 3. il collaudo presso il cliente (diretto o finale)

Resta perciò inteso che le suddette operazioni di cui ai punti 1.; 2.; 3. non sono a carico di Rollon.

Rollon è fornitore di Quasi Macchine, si demanda al cliente (diretto o finale) il collaudo e la verifica in sicurezza delle attrezzature che, per definizione, non possono essere verificate teoricamente o collaudate presso la nostra sede dove l'unica movimentazione possibile è quella di tipo manuale (ad esempio: motori o riduttori, movimentazione degli assi cartesiani che non sia quella manuale, freni di sicurezza, cilindri stopper, sensori meccanici o induttivi, deceleratori, fine corsa meccanici, cilindri pneumatici, ecc.). La quasi-macchina non deve essere messa in servizio finché la macchina finale in cui deve essere incorporata non sia stata dichiarata in conformità, se del caso, con le disposizioni della Direttiva Macchine 2006/42/CE.

Indicazioni di carattere ambientale

Rollon opera nel rispetto dell'ambiente, in modo da limitare l'impatto ambientale. di seguito si illustrano alcune indicazioni di carattere ambientale per una corretta gestione della nostra fornitura.

I nostri prodotti sono costituiti principalmente da:

Materiale	Particolare della fornitura
Leghe di alluminio	Profilati, piastre, particolari vari
Acciai di varia composizione	Viteria, cremagliere, pignoni e guide
Plastica	PA6 - Catenarie PVC - Coperchi e raschiatori pattini
Gomma di vario tipo	Tamponi, guarnizioni
Lubrificanti di vario tipo	Utilizzati per la lubrificazione delle guide di scorrimento e cuscinetti
Protettivo antiruggine	Olio protettivo antiruggine
Legno, polietilene, cartone	Imballo per il trasporto

A fine vita del prodotto è quindi possibile indirizzare al recupero i diversi particolari, nel rispetto delle normative vigenti in materia di rifiuti.

ze di sicurezza per movimentazione e trasporto

- Il costruttore ha posto particolare attenzione all'imballo per minimizzare i rischi legati alle fasi di spedizione, movimentazione e trasporto.
- Per facilitare il trasporto, la spedizione può essere eseguita con alcuni componenti smontati ed opportunamente protetti e imballati.
- Effettuare la movimentazione (carico e scarico) secondo le informazioni riportate direttamente sulla macchina, sull'imballo e nel manuale d'uso.
- Il personale autorizzato ad effettuare il sollevamento e la movimentazione della macchina e dei suoi componenti, deve possedere capacità ed esperienza acquisita e riconosciuta nel settore specifico e deve avere la padronanza dei mezzi di sollevamento che utilizza.
- Durante il trasporto e/o l'immagazzinamento, la temperatura deve rimanere entro i limiti consentiti per evitare danni irreversibili ai componenti elettrici ed elettronici.
- La movimentazione e il trasporto devono essere effettuati con mezzi di portata adeguata mediante l'ancoraggio nei punti previsti indicati sugli assi.
- NON tentare in alcun modo di by-passare le modalità di movimentazione e i punti previsti per il sollevamento.
- In fase di movimentazione, se le condizioni lo richiedono, avvalersi di uno o più aiutanti per ricevere adeguate segnalazioni.
- Nel caso in cui la macchina debba essere trasferita con mezzi di trasporto, verificare che essi siano adeguati allo scopo ed eseguire le manovre di carico e scarico senza rischi per l'operatore e per le persone direttamente coinvolte.
- Assicurarsi, prima di effettuare il trasferimento su mezzi di trasporto, che la macchina e i suoi componenti siano adeguatamente ancorati e che la loro sagoma non superi gli ingombri massimi previsti. Se necessario, predisporre le opportune segnalazioni.
- NON effettuare la movimentazione con un campo visivo non sufficiente e in presenza di ostacoli lungo il tragitto per raggiungere l'area di insediamento.
- NON far transitare o sostare persone nel raggio di azione durante le fasi di sollevamento e movimentazione dei carichi.
- Scaricare gli assi nelle immediate vicinanze dell'area di insediamento ed immagazzinarli in un ambiente protetto dagli agenti atmosferici.
- La non osservanza delle informazioni riportate può comportare rischi per la sicurezza e la salute delle persone e può arrecare danni economici.
- Il responsabile dell'installazione deve disporre del progetto per poter organizzare e monitorare tutte le fasi operative.
- Il responsabile dell'installazione deve verificare che i dispositivi e le attrezzature per il sollevamento, concordati in fase contrattuale, siano resi disponibili.
- Il responsabile dell'area di insediamento e quello dell'installazione devono attuare un "piano di sicurezza" nel rispetto delle leggi vigenti sui posti di lavoro.

- Il "piano di sicurezza" deve tenere conto di tutte le attività lavorative circostanti e degli spazi perimetrali indicati nel progetto dell'area di insediamento.
- Segnalare e delimitare l'area di insediamento in modo opportuno per impedire l'accesso alla zona di installazione da parte di personale non autorizzato.
- La zona di installazione deve essere in condizioni ambientali adeguate (luminosità, aerazione, ecc.).
- La temperatura dell'ambiente di installazione deve essere compresa nei limiti minimi e massimi consentiti.
- Verificare che l'ambiente di installazione sia al riparo da agenti atmosferici, senza sostanze corrosive e privo del rischio di esplosione e/o incendio.
- L'installazione in ambienti con rischio di esplosione e/o incendio può essere effettuata SOLO se la macchina è stata DICHIARATA CONFORME per tale impiego.
- Controllare che l'area di insediamento sia stata allestita in modo corretto, come previsto in fase contrattuale e in base a quanto indicato nel relativo progetto.
- L'area di insediamento va allestita preventivamente per poter effettuare l'installazione in modo completo, secondo le modalità e nei tempi previsti.

Nota

- Valutare preventivamente, se la macchina deve interagire con altre unità produttive, che l'integrazione possa avvenire in modo corretto, conforme e privo di rischi.
- Il responsabile deve affidare gli interventi di installazione e assemblaggio SOLO a tecnici autorizzati con competenze riconosciute.
- Effettuare gli allacciamenti alle fonti di energia (elettrica, pneumatica, ecc.) a regola d'arte, secondo i requisiti normativi e legislativi di pertinenza.
- Il collegamento, l'allineamento e il livellamento effettuati a "regola d'arte" sono fondamentali, per evitare interventi supplementari e assicurare il corretto funzionamento.
- Al completamento degli allacciamenti, verificare attraverso un controllo generale se tutti gli interventi sono stati effettuati correttamente e se i requisiti richiesti sono stati rispettati.
- La non osservanza delle informazioni riportate può comportare rischi per la sicurezza e la salute delle persone e può arrecare danni economici.

Trasporto

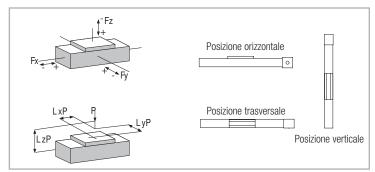
- Il trasporto, anche in funzione del luogo di destinazione, può essere effettuato con mezzi diversi.
- Effettuare il trasporto con mezzi idonei e di portata adeguata.
- Assicurarsi che la macchina e i suoi componenti siano adeguatamente ancorati al mezzo di trasporto.

Movimentazione e sollevamento

- Collegare correttamente i dispositivi di sollevamento ai punti previsti sui colli e/o sulle parti smontate.
- Prima di effettuare la movimentazione, leggere le istruzioni, in particolare quelle sulla sicurezza, riportate sul manuale di installazione, sui colli e/o sulle parti smontate.
- NON tentare in alcun modo di by-passare le modalità e i punti previsti per il sollevamento, lo spostamento e la movimentazione di ogni collo e/o parte smontata.
- Sollevare lentamente il collo all'altezza minima indispensabile e spostarlo con la massima cautela per evitare pericolose oscillazioni.
- NON effettuare la movimentazione con un campo visivo non sufficiente e in presenza di ostacoli lungo il tragitto per raggiungere l'area di insediamento.
- NON far transitare o sostare persone nel raggio di azione durante le fasi di sollevamento e movimentazione dei carichi.
- Evitare di accatastare i colli uno sull'altro per non danneggiarli e per ridurre il rischio di spostamenti improvvisi e pericolosi.
- In caso di immagazzinamento prolungato, controllare periodicamente che non vi siano variazioni nelle condizioni di stoccaggio dei colli.

Controllo integrità assi dopo spedizione

Ogni spedizione viene accompagnata da un documento ("Packing list"), che riporta l'elenco e la descrizione degli assi.


- Al ricevimento controllare che il materiale ricevuto corrisponda a quanto indicato nel documento di accompagnamento.
- Controllare che gli imballi siano perfettamente integri e, nel caso di spedizione senza imballo, controllare che ogni asse sia integro.
- In caso di danni o mancanza di alcune parti, contattare il costruttore per concordare le procedure da adottare.

Dati generali:	Data:	Richiesta N°:
Indirizzo:	Interlocutore:	
Società:	Cap/Città:	
Tel:	Fax:	
E-Mail:		

Dati tecnici:

				Asse X	Asse Y	Asse Z
Corsa utile (Comprese extra corse di sicurezza)		S	[mm]			
Peso da traslare		Р	[kg]			
	Direzione X	LxP	[mm]			
Posizione del baricentro del peso	Direzione Y	LyP	[mm]			
Direzione Z		LzP	[mm]			
Forze supplementari Direzione (+/-)		Fx (Fy, Fz)	[N]			
	Direzione X	Lx Fx (Fy, Fz)	[mm]			
Posizione delle forze	Direzione Y	Ly Fx (Fy, Fz)	[mm]			
Direzione Z		Lz Fx (Fy, Fz)	[mm]			
Posizione di montaggio (Orizzontale/verticale/trasversale)						
Velocità max.		V	[m/s]			
Accelerazione max.			[m/s ²]			
Precisione di posizionamento		Δs	[mm]			
Durata richiesta		L	[ore]			

ATTENZIONE: Si prega di inserire disegni, schizzi e scheda del ciclo di lavoro

EUROPA

ROLLON S.p.A. - ITALY (Headquarters)

Via Trieste 26 I-20871 Vimercate (MB) Phone: (+39) 039 62 59 1

www.rollon.com - infocom@rollon.com

ROLLON S.p.A. - RUSSIA (Rep. Office)

117105, Moscow, Varshavskoye shosse 17, building 1 Phone: +7 (495) 508-10-70 www.rollon.ru - info@rollon.ru

AMERICA

ROLLON Corporation - USA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492

www.rollon.com - info@rolloncorp.com

ASIA

ROLLON Ltd - CHINA

No. 1155 Pang Jin Road, China, Suzhou, 215200 Phone: +86 0512 6392 1625 www.rollon.cn.com - info@rollon.cn.com

Consultate le altre linee di prodotto

ROLLON GmbH - GERMANY

Bonner Strasse 317-319 D-40589 Düsseldorf Phone: (+49) 211 95 747 0 www.rollon.de - info@rollon.de

ROLLON Ltd - UK (Rep. Office)

The Works 6 West Street Olney Buckinghamshire, United Kingdom, MK46 5 HR

Phone: +44 (0) 1234964024

www.rollon.uk.com - info@rollon.uk.com

ROLLON - SOUTH AMERICA

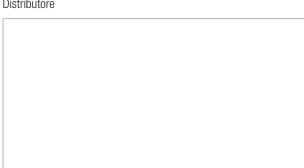
101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492

www.rollon.com - info@rolloncorp.com

ROLLON India Pvt. Ltd. - INDIA

1st floor, Regus Gem Business Centre, 26/1 Hosur Road, Bommanahalli, Bangalore 560068 Phone: (+91) 80 67027066

www.rollonindia.in - info@rollonindia.in


Distributore

ROLLON S.A.R.L. - FRANCE

Les Jardins d'Eole, 2 allée des Séquoias F-69760 Limonest

Phone: (+33) (0) 4 74 71 93 30 www.rollon.fr - infocom@rollon.fr

ROLLON - JAPAN

Tokyo 105-0022 Japan

Phone +81 3 6721 8487

www.rollon.jp - info@rollon.jp

3F Shiodome Building, 1-2-20 Kaigan, Minato-ku,

Tutti gli indirizzi dei nostri partners nel mondo possono essere consultati sul sito internet www.rollon.com