

RIDUTTORI PENDOLARI SERIE RP TORQUE ARM SPEED REDUCER RP SERIES

O.C.R. S.R.L. - Tutti i diritti sono Riservati.

Il presente catalogo è di proprietà di OCR SRL ne sono pertanto vietate la divulgazione intera o parziale, la copia o l'appropriazione di quanto in esso contenuto senza consenso esplicito e scritto della OCR SRL stessa.

INDICE CONTENTS

- 1 INTRODUZIONE
- 2 CARATTERISTICHE COSTRUTTIVE
- **3 DESIGNAZIONE**
- 4 FATTORE DI SERVIZIO, SOVRACCARICHI
- 5 POTENZE, MOMENTI TORCENTI, RAPPORTI DI RIDUZIONE
- 6 CARICHI RADIALI SULL'ALBERO VELOCE, TRASMISSIONE A CINGHIA
- 7 DIMENSIONI E PESI
- 8 SCELTA DEL RIDUTTORE
- 9 DISPOSITIVO ANTIRETRO, CAPACITA' DI CARICO
- 10 ESECUZIONI SPECIALI ED ACCESSORI
- 11 INSTALLAZIONE
- 12 LUBRIFICAZIONE, POSIZIONI DI LAVORO
- 13 NORME DI SICUREZZA
- 14 STATO DI FORNITURA
- 15 TARGHETTA DI IDENTIFICAZIONE
- 16 PARTICOLARI DI RICAMBIO
- 17 APPLICAZIONI
- 1 INTRODUCTION
- 2 TECHNICAL INFORMATION
- 3 DESIGNATION
- 4 SERVICE FACTOR, MAXIMUM LOADS
- 5 POWER, TORQUE AND GEAR RATIOS
- 6 RADIAL LOADS ON THE HIGH-SPEED SHAFT, BELT DRIVEN
- 7 DIMENSIONS AND WEIGHTS
- 8 CORRECT SELECTION OF SPEED REDUCER
- 9 BACKSTOP DEVICE, LOAD CAPACITIES
- 10 SPECIAL EXECUTIONS AND ACCESSORIES
- 11 INSTALLATION
- 12 LUBRICATION, OPERATING POSITIONS
- 13 SAFETY REGULATIONS
- 14 CONDITIONS WHEN SUPPLIED
- 15 IDENTIFICATION PLATE
- 16 SPARE PARTS
- 17 APPLICATIONS

INTRODUZIONE INTRODUCTION

I riduttori pendolari SERIE RP, vengono installati direttamente sull'albero della macchina da comandare, nei casi in cui è necessaria la trasmissione a cinghia tra motore e riduttore. Il tenditore oltre ad ancorare il riduttore, serve per mantenere la corretta tensione delle cinghie. I riduttori pendolari sono impiegati per il comando di : trasportatori, coclee, elevatori, miscelatori, sgretolatori.

Offrono i seguenti vantaggi:

- Estrema facilità di montaggio.
- Assenza di giunti e basamenti.
- Possibilità di impedire il moto in un senso di rotazione.
- Possibilità di ottenere un campo di velocità di uscita variando le pulegge del motore e del riduttore.
- Varie esecuzioni speciali ed accessori.

SERIES RP shaft-mounted speed reducers, are directly installed on the shaft of the driven equipment, using a belt drive between motor and gearbox.

The torque arm anchors the reducer and also maintains the right belt tension.

Shaft-mounted speed reducers are used for driving: **conveyors**, **screws**, **elevators**, **mixers** and **crushers**.

Advantages:

- Quick and easy to install.
- No need for a coupling or base plate.
- Ability to prevent rotation in one direction.
- Speed selection by choice of gear ratio as well as motor pulley variation.
- Various special executions and accessories.

-La serie comprende otto **grandezze** cui corrispondono otto interassi nominali:

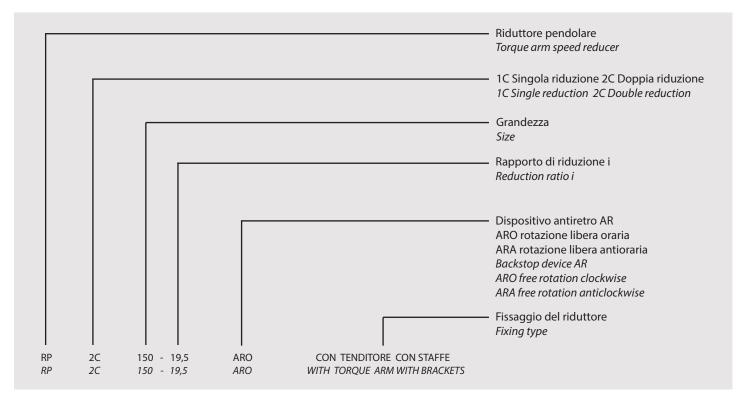
-Available in eight different **sizes**:

85 - 105 - 125 - 150 - 165 - 180 - 210 - 250

-Rapporti di riduzione nominali :

-Nominal reduction ratios:

4 - 10 - 16 - 20 - 25


- -Potenze da 0.6 kW a 155 kW.
- -Momenti torcenti da 160 Nm a 11280 Nm.
- -Rendimenti : 0.98 per riduttori a singola riduzione, 0.96 per riduttori a doppia riduzione.
- -Capacità di carico degli ingranaggi calcolata a pressione superficiale e a rottura secondo le normative ISO 6336, DIN 3990, AGMA 2001-R88
- -Rated power from 0.6 kW to 155 kW.
- -Rated output torques from 160 Nm to 11280 Nm.
- -Efficiency: in general 0.98 for single-stage, 0.96 for double-stage units.
- **-Gear load capacities** calculated for both surface pressure and tooth root fatigue to ISO 6336, DIN 3990 and AGMA 2001-B88 standards.

Carcassa in ghisa grigia con nervature di rinforzo. **Casing** grey cast iron with reinforcement and cooling ribs. Anelli di tenuta con labbro parapolvere. **Seals** with double lip. Ingranaggi in acciaio 16 CrNi4 o 20MnCr5 o 18NiCrMo5, cementati e temprati, dentatura Dispositivo antiretro disponibile, a richiesta su elicoidale con profilo controllato o rettificato. tutte le grandezze. Gears made from either 16CrNi4 or 20MnCr5 or **Backstop device** available on request for all sizes. 18 NiCrMo5, helical teeth, casehardened with run-in or ground profile. **Lubrificazione** a bagno d'olio con tappi di carico con sfiato, livello e scarico. Cuscinetti volventi a sfera e a rulli. **Lubrication** oil bath with filler plugs with Bearings ball and/or taper roller type. breathers, level and drain plugs. Albero lento cavo in acciaio Fe510 con Fissaggio del riduttore per mezzo di un cava linguetta e gola per anello elastico. tenditore con staffe. **Hollow shaft** made from steel Fe510 with **Torque arm with brackets** to mount to gear box. keyway and groove for circlip. Verniciatura esterna di colore blu RAL 5010. Albero veloce con linguetta e foro filettato External paint blue RAL 5010. in testa. **High-speed shaft** with keyway and threaded hole on top.

Designazione tipo / Typical designation

Questa designazione può essere completata o modificata, inoltre vanno aggiunti, se presenti, gli accessori, vedi CAPITOLO 10 ESECUZIONI SPECIALI ED ACCESSORI E CAPITOLO 12 LUBRIFICAZIONE, POSIZIONI DI LAVORO.

This designation can be completed or modified and accessories, if included, can be added, see CHAPTER 10 SPECIAL EXECUTIONS AND ACCESSORIES and CHAPTER 12 LUBRICATION, OPERATING POSITIONS.

FATTORE DI SERVIZIO, SOVRACCARICHI SERVICE FACTOR, MAXIMUM LOADS

Il fattore di servizio fs tiene conto delle diverse condizioni di funzionamento alle quali può essere sottoposto il riduttore. E' composto dai fattori di servizio **fs1** e **fs2**.

Il fattore di servizio fs1 tiene conto della natura del carico e del tempo di funzionamento.

The service factor fs takes in account the various operational conditions under which the reducer is used.

It is made up of service factors **fs1** and **fs2**.

Service factor **fs1** takes in account the **nature of the load and the operating time**.

Fattore di servizio fs1/Service factor fs1

Natura del carico		Ore giornaliere di funzionamento Running time hours per days					
Nature of load	1 ÷ 2	2 ÷ 4	4 ÷ 10	10 ÷ 16	16 ÷ 24		
Uniforme <i>Uniform</i>	0.8	0.9	1	1.2	1.4		
Sovraccarichi moderati ≈ 1.3 M2 Moderate overloading	1	1.12	1.25	1.5	1.7		
Sovraccarichi forti Heavy overloading ≈ 2 M2	1.3	1.5	1.75	2	2.25		

Il fattore di servizio fs2 tiene conto del numero di avviamenti per ora.

Service factor **fs2** takes in account the **stops and starts per hour**.

Fattore di servizio fs2/Service factor fs2

Numero di avviamenti / ora					
Starts / h					
≤ 8	9 ÷ 20	9 ÷ 20 21 ÷ 35 36			
1	1.1	1.2	1.3		

Il fattore di servizio risultante è dato da:

 $fs = fs_1 \cdot fs_2$

Nel caso di sovraccarichi della macchina azionata, dovuti a :

- -Avviamenti a pieno carico (specialmente per bassi rapporti di riduzione).
- -Potenza applicata superiore a quella richiesta.
- -Frenature.
- -Urti.

<u>Verificare che il massimo valore del momento torcente sia sempre inferiore a 2 • M2.</u>

I valori del fattore di servizio sono orientativi e possono essere modificati in funzione delle esperienze fatte sulle più disparate applicazioni.

Un margine di sicurezza o affidabilità è già inserita nelle prestazioni di catalogo del riduttore. Se per particolari esigenze (difficoltà di manutenzione, grande importanza del riduttore nel ciclo produttivo), è necessaria una affidabilità maggiore, si aumenti il fattore di servizio.

Le potenze e i momenti torcenti indicati nelle tabelle del catalogo si riferiscono ad un funzionamento uniforme da $4\div10$ ore giornaliere e per un numero di avviamenti/ora ≤ 8 : fs=1.

By combining the two service factors, the overall service factor is obtained:

$$fs = fs_1 \cdot fs_2$$

When an overload situation occurs, for instance:

- Starting up with full load (especially for low gear ratios).
- Demand power exceeds calculated demand.
- Braking.
- Shocks occur.

Make sure that the maximum torque is always below 2·M2.

Service factor values are indicative and can be modified according to experience in the various applications.

A safety or reliability margin is included in the performance specifications in the catalogue. For particular requirements (or when maintenance is difficult after all, the gearbox is a key component in a production cycle), the service factor should be increased.

Power and torque indicated in the catalogue tables are nominal fs=1 and relate to uniform operation from $4\div10$ hours per day and up to 8 stops and starts per hour.

POTENZE, MOMENTI TORCENTI, RAPPORTI DI RIDUZIONE POWER, TORQUE AND GEAR RATIOS

Grandezza / Size					
		85			
Rapporto di riduzione Reduction ratio		n 1 /min	P ₂ kW	M ₂ Nm	
i= 3.64	355 280 220 180 140 110 90	1292 1019 801 655 510 400 328	5.95 5.13 4.35 3.85 3.21 2.68 2.34	160 175 189 204 219 233 248	
Rapporto di riduzione Reduction ratio	_	n 1 /min <i>m</i>	P ₂ kW	M2 Nm	
i= 9.71	140 110 90 71 56 45 35.5	1359 1068 874 689 544 437 345	4.08 3.42 2.97 2.48 2.06 1.75 1.45	278 297 315 334 352 371 389	
Rapporto di riduzione Reduction ratio	n2 n1 giri/min rpm		P ₂	M ₂ Nm	
i = 16.9	90 71 56 45 35.5 28 22	1521 1200 946 761 600 473 372	3.23 2.65 2.18 1.81 1.48 1.21 0.98	343 357 371 385 399 413 427	
Rapporto di riduzione Reduction ratio	_	n 1 /min <i>m</i>	P ₂ kW	M ₂ Nm	
i = 20.1	71 56 45 35.5 28 22 18	1427 1126 905 714 563 442 362	2.48 2.04 1.71 1.4 1.14 0.93 0.79	334 348 362 376 389 403 417	
Rapporto di riduzione Reduction ratio		n 1 /min <i>m</i>	P ₂ kW	M ₂ Nm	
i = 22.3	56 45 35.5 28 22 18 14	1249 1004 792 624 491 401 312	2.06 1.71 1.38 1.11 0.9 0.75 0.6	352 362 371 380 389 399 408	

Si consiglia di non entrare ad una velocità superiore a 1400 giri/min. Entrare preferibilmente ad una velocità pari a circa 710 giri/min. Per velocità inferiori a 355 giri/min, il momento torcente relativo ad un determinato rapporto rimane costante, la potenza diminuisce al diminuire della velocità.

Per velocità inferiori a 355 giri/min, VEDI CAPITOLO 12 LUBRIFICAZIONE, POSIZIONI DI LAVORO.

				U
	Grand	ezza / <i>Size</i>	1	
	1	105		
Rapporto di riduzione Reduction ratio		n 1 /min	P ₂	M ₂ Nm
i= 4.23	355 280 220 180 140 110 90	1502 1184 931 761 592 465 381	11.8 10.3 8.9 7.9 6.64 5.61 4.9	317 351 385 419 453 487 520
Rapporto di riduzione Reduction ratio	_	n 1 /min <i>om</i>	P ₂ kW	M ₂ Nm
i = 10.1	140 110 90 71 56 45 35.5	1414 1111 909 717 566 455 359	7.1 5.9 5.08 4.22 3.48 2.93 2.41	484 512 539 567 594 622 649
Rapporto di riduzione Reduction ratio	_	n 1 /min <i>om</i>	P ₂ kW	M ₂ Nm
i = 15.7	90 71 56 45 35.5 28 22	1413 1115 879 707 557 440 345	6.01 4.99 4.13 3.47 2.86 2.35 1.93	638 671 704 737 770 803 836
Rapporto di riduzione Reduction ratio		n 1 /min	P ₂	M ₂
i = 20.1	71 56 45 35.5 28 22 18	1427 1126 905 714 563 442 362	4.71 3.87 3.24 2.66 2.18 1.77	633 660 688 715 743 770 798
Rapporto di riduzione Reduction ratio		n2 n1 giri/min rpm		M ₂
i = 25.3	56 45 35.5 28 22 18	1417 1139 898 708 557 455 354	3.72 3.05 2.45 1.97 1.58 1.31 1.04	635 647 660 672 684 697 709

Input speed should not exceed 1400 rpm. The preferred input speed when starting should of 710 rpm. For input speeds below 355 rpm, the given torques values remain constant, while power ratings reduce constantly with the speed.

For input speeds below 355 rpm, see CHAPTER 12 LUBRICATION, OPERATING POSITIONS.

Grandezza / Size						
	1	125				
Rapporto di riduzione Reduction ratio	_	n 1 /min <i>pm</i>	P ₂ kW	M ₂ Nm		
i= 3.29	355 280 220 180 140 110 90	1168 921 724 592 461 362 296	21.9 19 16.3 14.4 12.1 10.2 8.9	588 647 706 766 825 884 943		
Rapporto di riduzione Reduction ratio	_	n 1 /min <i>m</i>	P ₂ kW	M2 Nm		
i = 10.2	140 1428 110 1122 90 918 71 724 56 571 45 459 35.5 362		i = 10.2		11.3 9.9 8.9 7.6 6.5 5.62 4.74	774 858 942 1025 1109 1193 1276
Rapporto di riduzione Reduction ratio	n ₂ n ₁ giri/min rpm		P ₂	M ₂ Nm		
i = 15.8	90 71 56 45 35.5 28 22	1422 1122 885 711 561 442 348	10.3 8.6 7.11 5.99 4.94 4.07 3.33	1096 1154 1213 1271 1330 1388 1447		
Rapporto di riduzione Reduction ratio	_	n 1 /min <i>m</i>	P ₂ kW	M ₂ Nm		
i = 17.4	71 56 45 35.5 28 22 18	1235 974 783 618 487 383 313	7.9 6.57 5.54 4.57 3.77 3.08 2.63	1066 1121 1175 1230 1284 1338 1393		
Rapporto di riduzione Reduction ratio		n 1 /min <i>om</i>	P ₂ kW	M ₂ Nm		
i = 21.7	56 45 35.5 28 22 18 14	1215 977 770 608 477 391 304	6.4 5.36 4.4 3.61 2.94 2.49 2.01	1092 1138 1184 1230 1276 1322 1368		

Si consiglia di non entrare ad una velocità superiore a 1400 giri/min. Entrare preferibilmente ad una velocità pari a circa 710 giri/min. Per velocità inferiori a 355 giri/min, il momento torcente relativo ad un determinato rapporto rimane costante, la potenza diminuisce al diminuire della velocità.

Per velocità inferiori a 355 giri/min, VEDI CAPITOLO 12 LUBRIFICAZIONE, POSIZIONI DI LAVORO.

Grandezza / Size						
150						
Rapporto di riduzione	n ₂	n 1	P ₂	M ₂		
Reduction ratio		/min <i>m</i>	kW	Nm		
i= 3.46	355 280 220 180 140 110 90	1228 969 761 623 484 381 311	31.5 27.5 23.7 21.1 17.7 15	848 938 1028 1118 1208 1298 1388		
Rapporto di riduzione Reduction ratio	_	n 1 /min	P ₂	M2 Nm		
i = 11.3	140 1582 110 1243 90 1017 71 802 56 633 45 509 35.5 401		19.2 16.5 14.6 12.4 10.5 9 7.58	1310 1431 1553 1674 1796 1917 2039		
Rapporto di riduzione Reduction ratio	_	n 1 /min <i>m</i>	P ₂	M ₂ Nm		
i = 16.1	90 71 56 45 35.5 28 22	1449 1143 902 725 572 451 354	17 14.2 11.8 9.9 8.2 6.76 5.54	1809 1908 2007 2106 2205 2304 2403		
Rapporto di riduzione Reduction ratio		n 1 /min <i>om</i>	P ₂ kW	M2 Nm		
i = 19.5	71 1385 56 1092 45 878 35.5 692 28 546 22 429 18 351		12.7 10.5 8.8 7.21 5.91 4.82 4.09	1710 1787 1863 1940 2016 2093 2169		
Rapporto di riduzione Reduction ratio		n 1 /min <i>m</i>	P ₂ kW	M ₂ Nm		
i = 23.9	56 45 35.5 28 22 18 14	1338 1076 848 669 526 430 335	11 9.1 7.43 6.04 4.89 4.12 3.3	1872 1935 1998 2061 2124 2187 2250		

Input speed should not exceed 1400 rpm. The preferred input speed when starting should of 710 rpm. For input speeds below 355 rpm, the given torques values remain constant, while power ratings reduce constantly with the speed.

For input speeds below 355 rpm, see CHAPTER 12 LUBRICATION, OPERATING POSITIONS.

	Grandezza / Size						
	1	165					
Rapporto di riduzione Reduction ratio	_	n ₁ /min	P ₂ kW	M ₂ Nm			
i = 3.21	355 280 220 180 140 110 90	1140 899 706 578 449 353 289	44.2 38 32.3 28.4 23.6 19.8	1189 1295 1401 1507 1613 1719 1826			
Rapporto di riduzione Reduction ratio	_	n 1 /min <i>m</i>	P ₂ kW	M2 Nm			
i = 11.6	110 90 71 56 45 35.5 28	1276 1044 824 650 522 412 325	20.5 17.8 14.9 12.4 10.5 8.7 7.19	1778 1890 2003 2115 2228 2340 2453			
Rapporto di riduzione Reduction ratio	_	n 1 /min <i>m</i>	P ₂	M ₂ Nm			
i = 15.1	90 71 56 45 35.5 28 22	1359 1072 846 680 536 423 332	20.8 17.7 15 12.9 10.8 9 7.5	2205 2381 2556 2732 2907 3083 3258			
Rapporto di riduzione Reduction ratio	_	n 1 /min <i>m</i>	P ₂ kW	M ₂ Nm			
i = 20	71 56 45 35.5 28 22 18	1420 1120 900 710 560 440 360	16.7 13.9 11.8 9.8 8.1 6.64 5.67	2250 2376 2502 2628 2754 2880 3006			
Rapporto di riduzione Reduction ratio		n 1 /min <i>m</i>	P ₂ kW	M ₂ Nm			
i = 22.5	56 45 35.5 28 22 18 14	1260 1013 799 630 495 405 315	13.2 11.1 9.1 7.5 6.14 5.22 4.21	2250 2354 2457 2561 2664 2768 2871			

Si consiglia di non entrare ad una velocità superiore a 1400 giri/min. Entrare preferibilmente ad una velocità pari a circa 710 giri/min. Per velocità inferiori a 355 giri/min, il momento torcente relativo ad un determinato rapporto rimane costante, la potenza diminuisce al diminuire della velocità.

Per velocità inferiori a 355 giri/min, VEDI CAPITOLO 12 LUBRIFICAZIONE, POSIZIONI DI LAVORO.

	Grand	ezza / Size	,	
	1	180		
Rapporto di riduzione Reduction ratio		n ₁ /min	P ₂ kW	M ₂ Nm
i =3.21	355 280 220 180 140 110 90	1140 899 706 578 449 353 289	54.9 47.5 40.6 35.9 30 25.2 21.9	1478 1620 1761 1903 2044 2186 2327
Rapporto di riduzione Reduction ratio	_	n ₁ /min	P ₂ kW	M ₂ Nm
i = 11.8	110 90 71 56 45 35.5 28	1298 1062 838 661 531 419 330	27.9 24.9 21.2 17.9 15.4 12.9	2426 2637 2849 3060 3272 3483 3695
Rapporto di riduzione Reduction ratio	_	n2 n1 giri/min rpm		M ₂ Nm
i = 15.6	90 71 56 45 35.5 28 22	1404 1108 874 702 554 437 343	26.8 22.4 18.7 15.8 13.1 10.8 8.9	2844 3015 3186 3357 3528 3699 3870
Rapporto di riduzione <i>Reduction ratio</i>	_	n ₁ /min	P ₂ kW	M ₂ Nm
i = 18.8	71 - 56 - 45 - 35.5 - 28 - 22 - 18	1335 1053 846 667 526 414 338	21.1 17 13.9 11.2 9 7.21 6.01	2835 2894 2952 3011 3069 3128 3186
Rapporto di riduzione Reduction ratio		n ₂ n ₁ giri/min <i>rpm</i>		M ₂ Nm
i = 24	56 45 35.5 28 22 18 14	1344 1080 852 672 528 432 336	17.7 14.5 11.7 9.4 7.6 6.32 5.01	3015 3083 3150 3218 3285 3353 3420

Input speed should not exceed 1400 rpm. The preferred input speed when starting should of 710 rpm. For input speeds below 355 rpm, the given torques values remain constant, while power ratings reduce constantly with the speed.

For input speeds below 355 rpm, see CHAPTER 12 LUBRICATION, OPERATING

For input speeds below 355 rpm, see CHAPTER 12 LUBRICATION, OPERATING POSITIONS.

	Grand	ezza / Size		
		210		
Rapporto di riduzione Reduction ratio	n2 n1 giri/min rpm		P ₂ kW	M ₂ Nm
i = 3.21	355 280 220 180 140 110 90	1140 899 706 578 449 353 289	103 87 73.5 64.1 52.9 44 38	2774 2983 3192 3400 3609 3818 4027
Rapporto di riduzione Reduction ratio	_	n 1 /min <i>pm</i>	P ₂ kW	M ₂ Nm
i = 10.1	140 110 90 71 56 45 35.5	1414 1111 909 717 566 455 359	60 50.7 44.3 37.2 31.2 26.5 22	4091 4397 4703 5009 5315 5621 5927
Rapporto di riduzione Reduction ratio	_	n2 n1 giri/min rpm		M ₂ Nm
i = 16.1	90 71 56 45 35.5 28 22	1449 1143 902 725 572 451 354	45 37.9 31.8 27.1 22.6 18.8 15.5	4775 5099 5423 5747 6071 6395 6719
Rapporto di riduzione Reduction ratio	_	n 1 /min <i>m</i>	P ₂ kW	M ₂ Nm
i = 20.3	71 56 45 35.5 28 22 18	1441 1137 914 721 568 447 365	35 28.7 23.9 19.6 16 13	4707 4892 5076 5261 5445 5630 5814
Rapporto di riduzione Reduction ratio		n 1 /min <i>om</i>	P ₂ kW	M ₂ Nm
i = 23	56 45 35.5 28 22 18	1288 1035 817 644 506 414 322	31.3 26.1 21.3 17.4 14.2 12 9.6	5333 5535 5738 5940 6143 6345 6548

Si consiglia di non entrare ad una velocità superiore a 1400 giri/min. Entrare preferibilmente ad una velocità pari a circa 710 giri/min. Per velocità inferiori a 355 giri/min, il momento torcente relativo ad un determinato rapporto rimane costante, la potenza diminuisce al diminuire della ve-

Per velocità inferiori a 355 giri/min, VEDI CAPITOLO 12 LUBRIFICAZIONE, POSIZIONI DI LAVORO.

	Cuand	/ Si		
		ezza / Size		
Rapporto di riduzione	n 2	250 n ₁	P ₂	M ₂
Reduction ratio	_	/min <i>m</i>	kW	Nm
i= 3.43	355 280 220 180 140 110 90	1218 960 755 617 480 377 309	155 132 112 98 81 67.6 58.5	4170 4509 4849 5188 5528 5867 6206
Rapporto di riduzione Reduction ratio	_	n 1 /min <i>m</i>	P ₂ kW	M ₂ Nm
i= 9.87	140 110 90 71 56 45 35.5	1382 1086 888 701 553 444 350	96 83 74.1 63.3 53.8 46.3	6547 7205 7862 8520 9178 9835 10493
Rapporto di riduzione Reduction ratio	n2 n1 giri/min rpm		P ₂	M ₂ Nm
i = 15.5	90 71 56 45 35.5 28 22	1395 1101 868 698 550 434 341	74 62.6 52.8 45.1 37.7 31.4 26	7853 8424 8995 9566 10138 10709 11280
Rapporto di riduzione Reduction ratio		n 1 /min <i>m</i>	P ₂ kW	M ₂ Nm
i = 19.2	71 56 45 35.5 28 22 18	1363 1075 864 682 538 422 346	59 48.9 41.2 34 28 22.9 19.5	7939 8338 8736 9134 9533 9931 10330
Rapporto di riduzione Reduction ratio		n ₁ /min	P ₂	M ₂ Nm
i = 24.5	56 45 35.5 28 22 18	1372 1103 870 686 539 441 343	50 41.5 33.8 27.5 22.3 18.7 15	8525 8808 9091 9374 9658 9941 10224

Input speed should not exceed 1400 rpm. The preferred input speed when starting should of 710 rpm. For input speeds below 355 rpm, the given torques values remain constant, while power ratings reduce constantly with the For input speeds below 355 rpm, see CHAPTER 12 LUBRICATION, OPERATING

POSITIONS.

CARICHI RADIALI SULL'ALBERO VELOCE, TRASMISSIONE A CINGHIA RADIAL LOADS ON THE HIGH-SPEED SHAFT, BELT DRIVEN

In presenza di carichi radiali dovuti alla trasmissione esterna, verificare che questi non superino i valori massimi della seguente tabella.

When a radial loads applies on the high-speed shaft, check with the table below that such a load does not exceed the maximum.

	n _{1N}				Grandez	za / Size			
Fr	giri/min <i>rpm</i>	85	105	125	150	165	180	210	250
	1400	480	770	1120	1530	1890	2580	3560	5170
	1100	550	860	1200	1720	2120	2900	3950	5760
	900	590	940	1280	1860	2320	3170	4300	6320
	710	650	1050	1480	2080	2570	3500	4790	6870
	560	700	1110	1590	2230	2850	3870	5300	7500
V	450	740	1170	1690	2350	2920	4240	5880	8490
	355	840	1310	1890	2640	3350	4740	6450	9220

QUESTI VALORI SONO VALIDI PER UN CARICO CHE AGISCE AD UNA DISTANZA PARI ALLA META DELL'ESTREMITA DELL'ALBERO VELOCE.

THE ABOVE VALUES ARE APPLICABLE FOR A LOAD ACTING ON THE MIDDLE OF THE INPUT SHAFT.

Nel caso più comune di trasmissione con cinghie trapezoidali, la determinazione del carico radiale Fr è ricavabile dalla seguente formula:

In the most typical situation using a V-belt drive, the corresponding radial load Fr can be calculated as follows:

$$Fr = \frac{5000 \cdot M_2}{d \cdot i}$$

 $M_2 = Momento torcente in uscita Nm$ d = Diametro primitivo puleggia mm

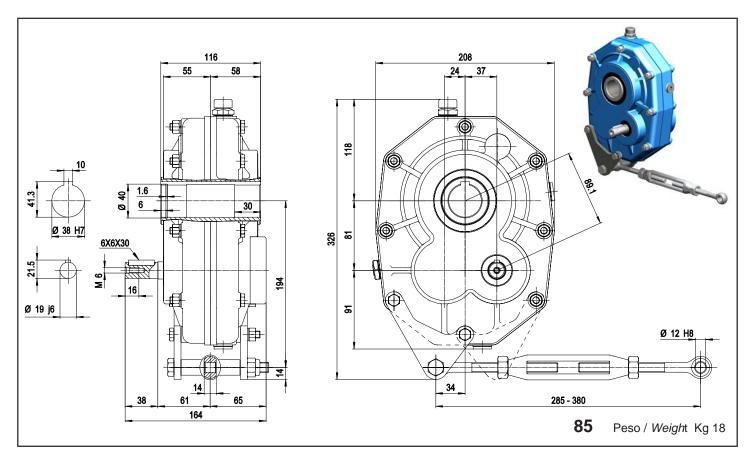
i = Rapporto di riduzione

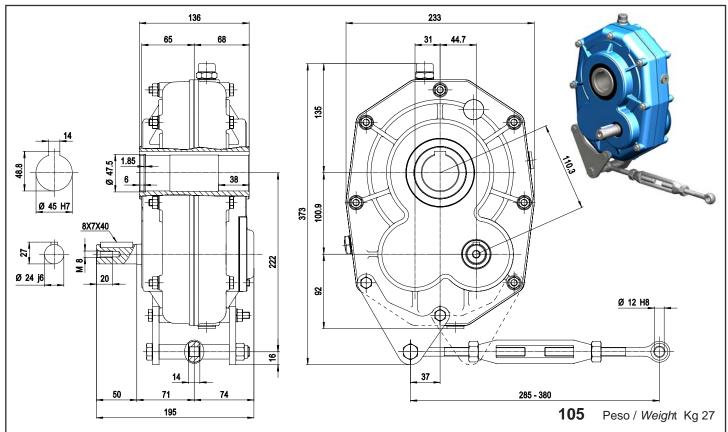
Il valore Fr che ne risulta dovrà essere inferiore al valore del carico indicato nella tabella.

- -Utilizzare pulegge di diametro d il più grande possibile.
- -E' consigliabile montare le pulegge il più vicino possibile alla battuta dell'albero.
- -Non tendere eccessivamente le cinghie per non sovraccaricare i cuscinetti del motore e del riduttore.

$$Fr = \frac{5000 \cdot M_2}{d \cdot i}$$

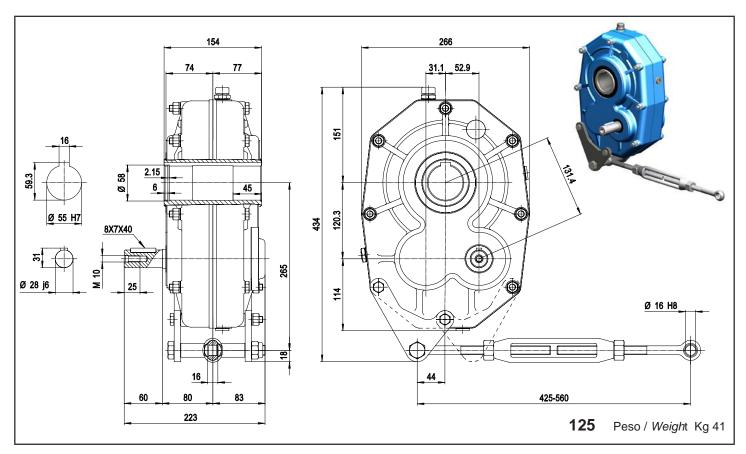
 $M_2 = Output torque Nm$

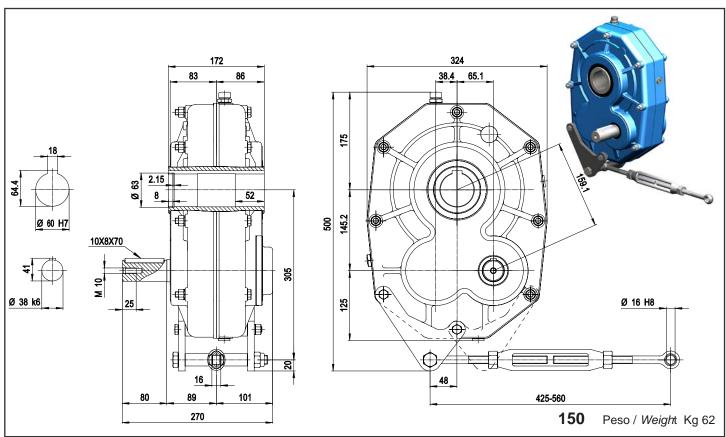

d = Pitch circle diameter (pcd) of the pulley mm


i = Reduction ratio

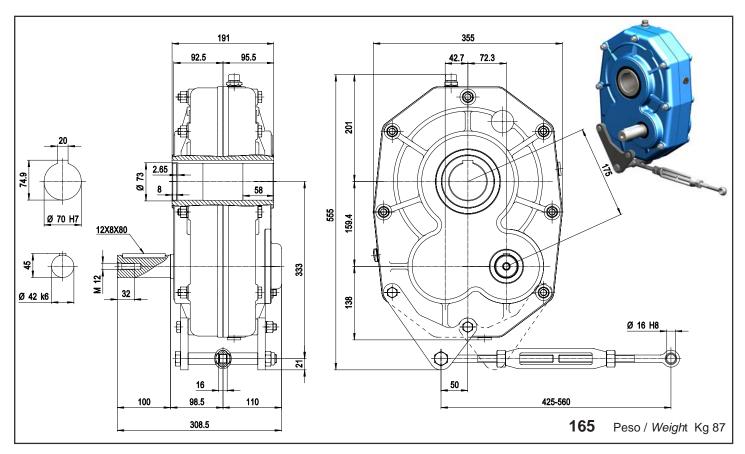
The resulting Fr value must be lower than the one given in the table.

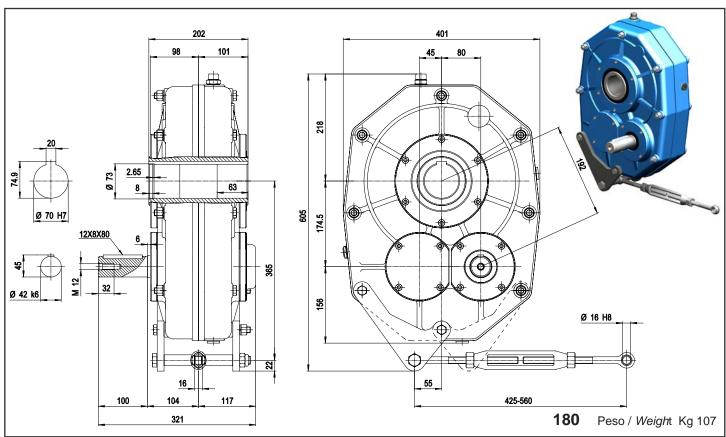
- Use the largest available pulley diameter.
- Fit the pulley as close as possible to the gearbox.
- Avoid excessive tensioning of the V-belt to safeguard bearings in both motor and gearbox.



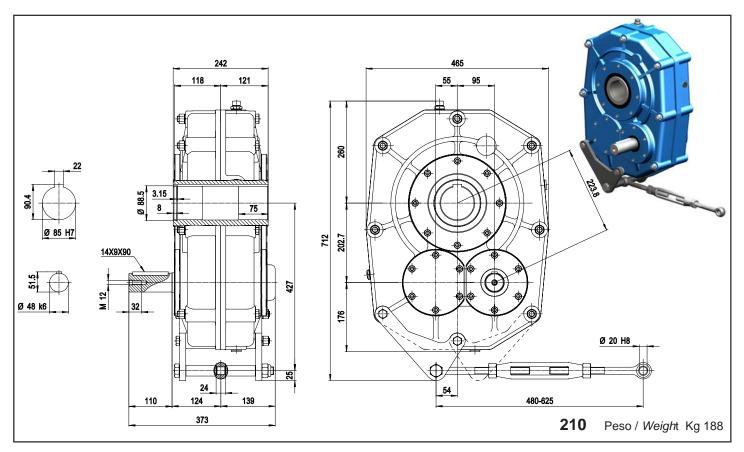


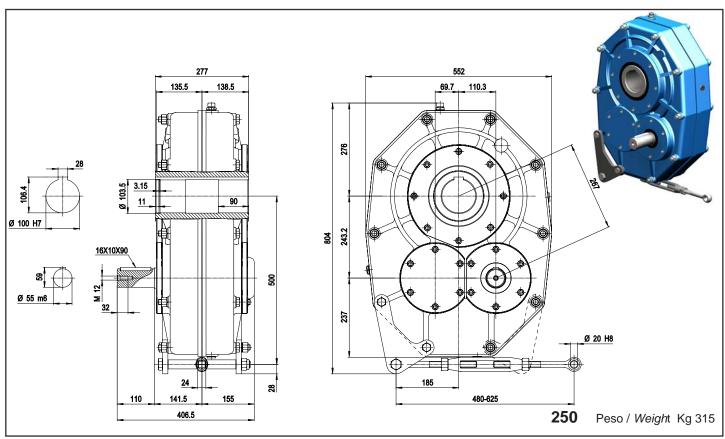
Per ogni grandezza, sono disponibili disegni in formato DXF, PDF, XT, IGS e 3D STEP.


For all sizes, detailed drawings DXF, PDF, XT, IGS and 3D STEP are available on demand.



Per ogni grandezza, sono disponibili disegni in formato DXF, PDF, XT, IGS e 3D STEP.


For all sizes, detailed drawings DXF, PDF, XT, IGS and 3D STEP are available on demand.



Per ogni grandezza, sono disponibili disegni in formato DXF, PDF, XT, IGS e 3D STEP.

For all sizes, detailed drawings DXF, PDF, XT, IGS and 3D STEP are available on demand.

Per ogni grandezza, sono disponibili disegni in formato DXF, PDF, XT, IGS e 3D STEP.

For all sizes, detailed drawings DXF, PDF, XT, IGS and 3D STEP are available on demand.

SCELTA DEL RIDUTTORE CORRECT SELECTION OF SPEED REDUCER

Le prestazioni fornite a catalogo si riferiscono ad un fattore di servizio fs=1.

Per una corretta scelta del riduttore, disporre dei seguenti dati:

-POTENZA IN USCITA richiesta P2 kW, oppure MOMENTO TORCENTE IN USCITA richiesto M2 Nm.

-**VELOCITA' IN USCITA** n2 giri/min e **IN ENTRATA** (approssimata) n1 giri/min.

-Condizioni di funzionamento per poter definire il **FATTORE DI SER-VIZIO** fs.

-Compatibilità nelle **DIMENSIONI**, tra riduttore pendolare e macchina azionata (ingombri, diametro albero cavo, etc.).

Esempio di scelta:

- Potenza richiesta P2=4 kW.
- Velocità in uscita n2=28 giri/min.
- Velocità in entrata n1≈ 560 giri/min.
- Nastro trasportatore con sovraccarichi moderati, 8 ore di funzionamento giornaliere, numero di avviamenti per ora 16.

Dal catalogo risulta:

Rapporto di riduzione i=20

Fattore di servizio fs1=1.25 fs2=1.1 fs=fs1 • fs2=1.38

La scelta del gruppo viene fatta in base alle prestazioni:

P2 • fs=5.52 kW

Il riduttore idoneo per l'applicazione è:

RP2C150-19.5

Che fornisce P2=5.91 kW con n2=28 giri/min e n1=546 giri/min

-Per calcolare la potenza richiesta all'entrata del riduttore utilizzare la formula:

P1 =
$$\frac{P2}{n}$$
 η = rendimento

 η = 0.98 singola riduzione

 η = 0.96 doppia riduzione

The performances indicated in the catalogue all relate to a service factor fs=1.

In order to make the correct gearbox selection, the following informations required:

-Required **OUTPUT POWER** P₂ kW, or desired **OUTPUT TORQUE** M₂ Nm. -Required **OUTPUT SPEED** n₂ rpm and approximate **INPUT SPEED** n₁

-Operation conditions, so as to obtain the correct **SERVICE FACTOR** fs.

-PHYSICAL compatibility between speed reducer and driven machine (mass, hollow shaft diameter, etc.).

Example:

• Required power P₂=4 kW.

• Output speed n₂=28 rpm.

• Input speed n_{1≈} 560 rpm.

• Application: conveyor belt with moderate overloads, running time 8 hours per day, 16 stops and starts per hour.

The catalogue shows for this applications:

Reduction ratio i=20

Service factor $fs_1=1.25$ $fs_2=1.1$ $fs_3=1.38$

The final choice of assembly is made on the basis of performance as follows:

P2 • fs=5.52 kW

The suitable reducer for the application is:

RP2C150-19.5

Which is rated at P2=5.91 kW with n2=28 rpm and n1=546 rpm

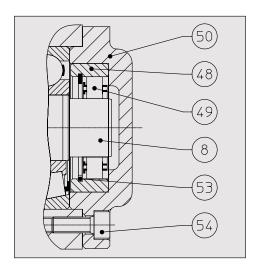
-In order to calculate the required input power:

$$P1 = \frac{P2}{}$$
 $\eta = efficiency$

 η = 0.98 single reduction

 $\eta = 0.96$ double reduction

DISPOSITIVO ANTIRETRO, CAPACITA' DI CARICO BACKSTOP DEVICE, LOAD CAPACITIES


Il dispositivo antiretro AR impedisce la rotazione dell'albero lento nel senso non desiderato.

E' del tipo: ruota libera a corpi di contatto bloccanti, può essere installato rapidamente anche senza dover rimuovere il riduttore dall'albero della macchina comandata.

Viene montato sull'albero veloce dalla parte opposta alla estremità.

The backstop device AR prevents the driven equipment from running backward.

It is of the "freewheeling type" and it is fitted to the input shaft where it can be easily installed, without having to remove the shaft. It is fitted on the high-speed shaft opposite the shaft end.

Quando il riduttore **NON E' FORNITO** del dispositivo antiretro, lo si può applicare procedendo nel seguente modo:

- 1)Togliere il coperchietto 50 svitando le viti 54.
- 2)Richiedere i particolari: 49 ruota libera, 48 anello esterno, 53 anello elastico antiretro.
- 3)Introdurre l'anello esterno a pressione nel coperchietto e, dopo, la ruota libera, quindi montare l'anello elastico.
- 4)Posizionare la guarnizione coperchietto, tra carcassa e coperchietto. 5)Introdurre il coperchietto completo sull'albero, mediante una leggera pressione della mano e ruotando il coperchietto stesso, quindi serrare le viti,sigillando le filettature con guarnizione liquida.

Quando il riduttore **E' FORNITO** del dispositivo antiretro **verificare ruotando a mano l'albero di entrata che il senso di rotazione sia corretto**, in caso contrario ripetere le operazioni sopra, montando la ruota libera nel senso opposto.

<u>Una apposita targhetta rossa evidenzia questo.</u>

When the speed reducer **IS NOT SUPPLIED** with a backstop device, one can be fitted as follows:

- 1) Remove the side cover 50 by removing the screws 54.
- 2)The following parts are required: 49 free wheel, 48 external ring, 53 backstop circlip.
- 3)Insert the inner ring into the bearing cover then the free wheel and the circlip.
- 4)Fit the cover seal.

5)Insert the package assembly onto the shaft by gently rotating the cover itself, then tighten the screws and seal with a liquid gasket.

If the speed reducer **IS SUPPLIED** fitted with a backstop device, **rotate the input shaft by hand to check that the direction of rotation is correct**, if this is not the case repeat the operations described above, fitting the free wheel in the reverse direction.

The direction is indicated by a red label.

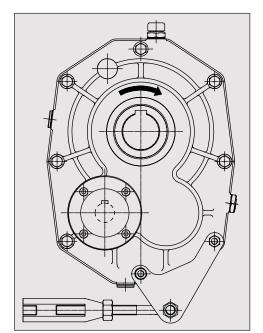
VERIFICARE LA CAPACITA' DI CARICO DEL DISPO-SITIVO ANTIRETRO, momento torcente sull'albero di entrata M1 secondo la tabella. Le condizioni più gravose si verificano per <u>bassi rapporti di trasmissione in=4</u>, bassi valori del fattore di servizio, basse <u>velocità</u>.

Il sovraccarico ammissibile momento torcente massimo, deve essere verificato da parte del cliente e non deve superare il valore:

1.7 • M₁ Nm

Grandezza Size	M1 Nm
85	74
105	74
125	74
150	324
165	324
180	324
210	324
250	640

CHECK THAT THE LOAD CAPACITY OF THE BACK-STOP DEVICE is convenient with the input torque values M_1 given in the table. The most severe conditions apply at low transmission ratios in=4, when a low service factor has been used in the gearbox selection procedure and when the input speed is low.


The allowable overload maximum torque have to be checked by the customer and must not exceed the following value:

1.7 • M₁ Nm

Quando un riduttore è fornito del dispositivo antiretro, è indispensabile conoscere il senso di rotazione dell'albero di uscita al fine di montare correttamente questo accessorio.

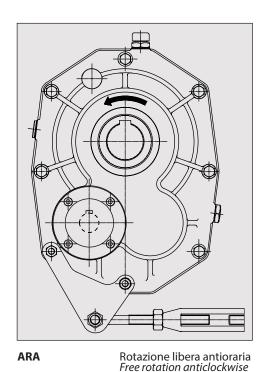
Il senso di rotazione si osserva guardando il riduttore dal lato opposto all'albero di entrata.

Per la designazione, usare questi schemi.

ARO

Rotazione libera oraria Free rotation clockwise

Designazione, esempio:


RP2C150-19. 5 ARO CON TENDITORE CON STAFFE

Per esigenze di magazzino, incertezze nell'utilizzo o altre cause, si può ordinare un riduttore con il montaggio dei soli particolari 48 anello esterno e 53 anello elastico antiretro. La ruota libera 49 può essere installata in un secondo momento.

Designazione, esempio:

RP2C150-19.5 **P PREDISPOSTO PER DISPOSITIVO ANTIRETRO** CON TENDITORE CON STAFFE

If the speed reducer is supplied fitted whit a backstop device, **care must be taken of the rotation direction of the output shaft in order** for the accessory to be mounted properly. The direction of rotation can be ascertained by observing the reducer from the opposite side to the input shaft. For designation, using the following diagram.

Designation, example:

RP2C150-19. 5 ARO WITH TORQUE ARM WITH BRACKETS

For any stock need, uncertainty of use or other causes, you can order a reducer with mounting only parts 48 external ring and 53 backstop circlip. The free wheel 49 can be placed later.

Designation, example:

RP2C150-19.5 **P SUITABLE FOR BACKSTOP DEVICE** WITH TORQUE ARM WITH BRACKETS

RAPPORTI DI RIDUZIONE SPECIALI

Qualora per esigenze particolari, non sia possibile utilizzare i rapporti di riduzione nominali, elencati nel CAPITOLO 2 CARATTERISTICHE CO-STRUTTIVE, è possibile a richiesta costruire rapporti di riduzione nominali in:

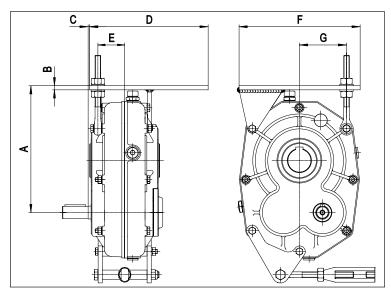
6.3-12.5-28

Tali rapporti nominali non sono possibili su tutte le grandezze, inoltre, possono variare da grandezza a grandezza.

SUPPORTO MOTORE

Il supporto motore permette di ottenere un insieme motore elettrico-riduttore estremamente compatto. Tutti i riduttori possono essere forniti del supporto motore, ad ogni grandezza corrisponde un supporto motore. La tensione della cinghia viene regolata semplicemente registrando il braccio di reazione del supporto motore. Si raccomandano le seguenti grandezze motore massime.

SPECIAL REDUCTION RATIOS


Should it be impossible for specific reasons to use the reduction ratios listed in CHAPTER 2 TECHNICAL INFORMATION, on request the following reduction ratios in:

6.3-12.5-28

The actual ratios may differ enough from the nominal ones, depending on sizes.

MOTOR MOUNT

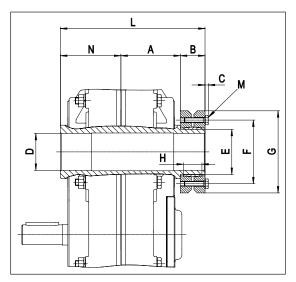
The motor mount offers a compact solution for electric motor-gear reducer assembly. All reducers can be supplied with a motor mount to suit the most popular combination. The belt tension is adjusted simply by calibrating the motor mount torque arm. The recommended maximum motor sizes are the following.

Grandezza	Grandezza motore massima B3		Dimensioni supporto motore Motor mount dimensions								
Size	Maximum motor size	Α	В	С	D	E	F	G	Motor mount weight		
85	90 L	208	8	3	200	43	210	81.4	3.4		
105	112 M	246	8	3	230	52	235	91.9	4.2		
125	132 M - L	287	10	3	290	61	270	105.1	7.6		
150	160 M	338	12	3	350	66	325	131.8	13.3		
165	180 M	380	14	3	395	76	340	142.2	17.7		
180	180 M	412	14	3	395	80.5	405	161.9	20.6		
210	200 L	488	16	3	475	103.5	470	189.9	32		
250	225 M	545	16	3	505	116	555	228.6	41.7		

Descrizione aggiuntiva alla designazione, esempio:

Further description of designation, example:

RP2C150-19.5 ARO CON TENDITORE CON STAFFE ${f CON}$ SUPPORTO ${f MOTORE}$


RP2CC150-19.5 ARO WITH TORQUE ARM WITH BRACKETS **AND MOTOR MOUNT**

UNITA' DI BLOCCAGGIO

E' un dispositivo che permette il montaggio e il fissaggio dell'albero della macchina azionata al riduttore, con l'eliminazione della linguetta e della rondella di installazione. Il serraggio delle viti genera delle forze che permettono la trasmissione di forti momenti torcenti. A richiesta questa esecuzione può essere fornita sia all'entrata che all'uscita, del dispositivo di tenuta supplementare, per una più efficace protezione contro le impurità.

E' necessario un albero cavo speciale delle dimensioni indicate nella tabella.

SHRINK DISC

The shrink disc is a keyless device for mounting and fixing the machine shaft to the reducer, assuring a perfect control of the transmitting torque.

See the main dimensions of the special hollow shaft of the table below.

							М						Unità	di bloccaggio / Shrinl	c disc	
Grandezza Size	D	L	N	Α	В	С	Viti Screws	E	F	G	Н		Coppia serraggio viti Screws tightening torque	Momento trasmissibile Transmissible torque	Forza assiale Axial force	Peso Weight Kg
85	Ø 40H7	153	64	62	27	4	M 6	Ø 50h8	70	Ø 90	22	d 50	12	1.160	58.000	0,8
105	Ø 45H7	176	74	72	30	4	M 6	Ø 55h8	75	Ø100	23	d 55	12	1.520	67.600	1,1
125	Ø 55H7	199	86	83	30	4	M 6	Ø 68h8	86	Ø115	23	d 68	12	2.500	91.000	1,4
150	Ø 60H7	217	95	92	30	4	M 6	Ø 68h8	86	Ø115	23	d 68	12	3.150	105.000	1,4
165	Ø 70H7	238	104,5	101,5	32	5,5	M 8	Ø 80h8	100	Ø145	25	d 80	30	4.600	131.500	1,9
180	Ø 70H7	250	111	107	32	5,5	M 8	Ø 80h8	100	Ø145	25	d 80	30	4.600	131.500	1,9
210	Ø 85H7	311	132,5	128,5	50	7	M10	Ø110h8	136	Ø185	39	d110	59	10.800	254.100	5,9
250	Ø100H7	357	151	146	60	8	M12	Ø140h8	175	Ø230	46	d140	100	17.600	352.000	10

MONTAGGIO

Pulire accuratamente le superfici di contatto dell'albero cavo, dell'unità di bloccaggio e dell'albero da serrare. Applicare sugli stessi una leggera pellicola di lubrificante antiossidazione da contatto.

ATTENZIONE: non usare bisolfuro di molibdeno o altri grassi, causa la notevole riduzione del coefficiente di attrito. Accertarsi che i dischi siano allineati in piani paralleli. Serrare le viti in modo graduale ed uniforme, secondo uno schema a croce, sino a raggiungere la coppia di serraggio indicata in tabella. Per raggiungere questo valore, sono necessari più serraggi delle viti.

SMONTAGGIO

Allentare tutte le viti di serraggio con sequenza continua e graduale. Non estrarre completamente le viti dalle filettature. Normalmente con queste operazioni l'unità di bloccaggio è sbloccata.

Togliere eventuali ossidazioni formatesi sull'albero cavo e sull'albero da serrare.

Descrizione aggiuntiva alla designazione, esempio:

RP2C150-19.5 ARO **SD PREDISPOSTO PER UNITA' DI BLOCCAGGIO** CON TENDITORE CON STAFFE

INSTALLATION

Carefully clean the contact surfaces of the hollow shaft, the locking assembly and the input shaft. These should also be given a light coating of anti-rust contact lubricant.

WARNING: do not use molybdenum bisulphide or other greases, these cause a considerable reduction in the friction coefficient.

Ensure that the disks are aligned on parallel planes. Tighten the screws gradually and evenly in a cross pattern until the screw couple is reached as indicated in the table. To reach this figure the screws have to be tightened a number of times.

DEMOUNTING

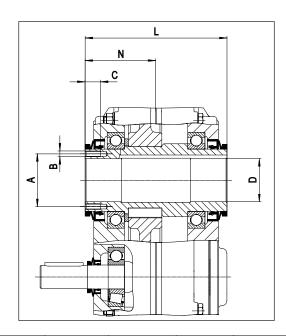
Loosen all the fixing screws in a constant and gradual sequence. Do not remove them completely from the threads.

Normally this procedure releases the locking assembly. Remove incidental rust on the hollow shaft and the input shaft.

Further description of designation, example:

RP2C150-19.5 ARO **SD SUITABLE FOR SHRINK DISC** WITH TORQUE ARM WITH BRACKETS

TENUTA SUPPLEMENTARE


Quando il riduttore è installato in ambienti con impurità (polveri, prodotti aggressivi, spruzzi), queste nel funzionamento possono penetrare tra l'anello di tenuta e la sede rotante causando, nel tempo, la fuoriuscita di olio. E' possibile fornire il riduttore di una tenuta supplementare, composta da un anello di tenuta frontale ruotante con l'albero in contatto con una superficie fissa.

E' necessario un albero cavo speciale delle dimensioni indicate nella tabella.

SPECIAL SEALS

For critical and aggressive environment (dust, chemical sprays) and wherever a regular maintenance of sealing rings is impossible, oil leakage could occur. An additional seal can be supplied with the reducer, namely rotary front seal rings rotating with the shaft and in contact with a fixed surface

A special hollow shaft is necessary for this seal, see the table for size indications.

Grandezza	D	L	N	A	В	С	Anello di tenuta dischetto di con Frontseal V-ring	
Size							Entrata Input N° 1	Uscita Output N° 2
85	Ø 40 H 7	128	64				20	55
105	Ø 45 H 7	148	74	55	M 6	16	25	65
125	Ø 55 H 7	172	86	65	M 6	16	30	75
150	Ø 60 H 7	190	95	72.5	M 8	20	40	85
165	Ø 70 H 7	209	104.5	85	M 10	25	45	100
180	Ø 70 H 7	222	111	85	M 10	25	45	100
210	Ø 85 H 7	265	132.5	102.5	M 12	32	50	120
250	Ø 100 H 7	302	151	125	M 12	32	60	150

MONTAGGIO

Pulire, sgrassare la superficie frontale degli anelli di tenuta del riduttore e i dischi di contatto.

Applicare su questa superficie un prodotto a base siliconica tipo: RHÔNE-POULENC CAF1 RHODORSIL o similari. Posare la parte del dischetto più rugosa sull'anello e tenere premuto per qualche secondo, l'incollaggio completo avviene dopo qualche ora.

Dopo avere ingrassato abbondantemente la superficie del dischetto ma non l'albero, applicare l'anello di tenuta frontale, allargandolo e infilandolo sull'albero.

SMONTAGGIO

Sfilare l'anello di tenuta frontale, poi, servendosi di una lama togliere il dischetto di contatto. Pulire la superficie dell'anello di tenuta utilizzando carta abrasiva. Sostituire il dischetto, l'anello frontale e ripetere le operazioni come sopra.

Descrizione aggiuntiva alla designazione, esempio:

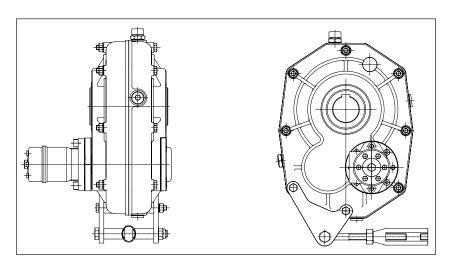
RP2C150-19.5 ARO **VS TENUTA SUPPLEMENTARE** CON TENDITORE CON STAFFE

FITTING

Clean and degrease the front surface of the speed reducer's sealing rings and contact disks. Cover the surface with a silicon based product, like RHÔNE-POULENC CAF1 RHODORSIL, or similar. Now place the roughest part of the disk on the ring and press down for a few seconds, the glue is fully effective after a few hours.

After abundantly greasing the surface of the disk, <u>but not the shaft</u>, with water-repellent grease, fit the frontal sealing ring by opening it and sliding it onto the shaft.

DEMOUNTING


Slide off the frontal sealing ring and then use a knife to remove the contact disk. Clean the surface of the sealing ring using emery paper. Replace the disk, the frontal ring and repeat the operations described above.

Further description of designation, example:

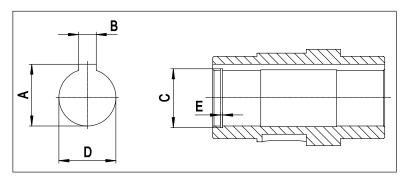
RP2C150-19.5 ARO ${\it VS}$ ADDITIONAL SEAL WITH TORQUE ARM WITH BRACKETS

MOTORE IDRAULICO

HYDRAULIC MOTOR

Tutti i riduttori possono essere predisposti per l'accoppiamento con motore idraulico tipo DANFOSS, OMP, OMR ed altri. Questa soluzione conferisce al gruppo un insieme economico, compatto e silenzioso. All reducers can be delivered to fit a hydraulic motor, type DANFOSS, OMP, OMR and others. The resulting assembly is economical, compact and quiet.

ALBERO CAVO, DIAMETRO MASSIMO, DIAMETRI SPECIALI DIVERSI DA CATALOGO


Quando è possibile, installare il riduttore su un albero di diametro equivalente a quello dell'albero cavo di catalogo.

In caso di impossibilità, si possono costruire alberi cavi di diametro diverso.

La tabella indica diversi casi, compreso il diametro massimo che si può costruire.

HOLLOW SHAFT, MAXIMUM DIAMETERS, SPECIAL DIAMETERS NOT IN CATALOGUE

Where possible install the reducer on a shaft having the same diameter as the ones of hollow shaft. If not possible, hollows shaft with special diameters can be supplied. In the table below we show the range of hollow shaft values available, where:

							Grandezza / Size						
D	В	Α	E		C	85	105	125	150	165	180	210	250
Ø 30H7	8	33,3	1,3	Ø	31,4	SPEC	SPEC						
Ø 35H7	10	38,3	1,6	Ø	37	SPEC	SPEC						
Ø 38H7	10	41,3	1,6	Ø	40	CAT	SPEC						
Ø 40H7	12	43,3	1,85	Ø	42,5	MAX	SPEC	SPEC					
Ø 45H7	14	48,3	1,85	Ø	47,5		CAT MAX	SPEC					
Ø 50H7	14	53,3	2,15	Ø	53			SPEC	SPEC				
Ø 55H7	16	59,3	2,15	Ø	58			CAT MAX	SPEC				
Ø 60H7	18	64,4	2,15	Ø	63				CAT	SPEC	SPEC		
Ø 65H7	18	69,4	2,65	Ø	68				MAX	SPEC	SPEC		
Ø 70H7	20	74,9	2,65	Ø	73					CAT	CAT	SPEC	
Ø 75H7	20	79,9	2,65	Ø	78					MAX	MAX	_	
Ø 80H7	22	85,4	2,65	Ø	83,5							SPEC	
Ø 85H7	22	90,4	3,15	Ø	88,5							CAT	SPEC
Ø 90H7	25	95,4	3,15	Ø	93,5							MAX	1
Ø100H7	28	106,4	3,15	Ø	103,5								CAT
Ø110H7	28	116,4	4,15	Ø	114								MAX

CAT = Catalogo SPEC = Speciale MAX = Massimo □ = Predisposto per bussole di riduzione con

CAT = Standard dimension SPEC = Special dimension MAX = Maximum allowable

 \square = Predisposed for reduction bush with key

Descrizione aggiuntiva alla designazione, esempio:

RP2C150-19.5 ARO **D 50 ALBERO CAVO D 50** CON TENDITORE CON STAFFE

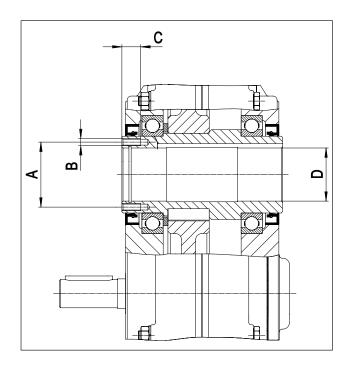
Oltre ai valori di tabella, si possono costruire alberi cavi con misure in pollici, purchè non superino il diametro massimo possibile.

Further description of designation, example:

RP2C150-19.5 ARO **D 50 HOLLOW SHAFT D 50** WITH TORQUE ARM WITH BRACKETS

Hollow shafts can also be made to imperial or American specifications, as long as they do not exceed the maximum bore size.

ALBERO CAVO CON FORI FILETTATI


La installazione del riduttore sull'albero della macchina da azionare si può anche ottenere costruendo una particolare rondella, fissata per mezzo di 4 viti all'albero cavo e dotata di un foro filettato al centro di diametro superiore al diametro del foro filettato dell'albero della macchina. Questa soluzione permette il montaggio, il fissaggio e lo smontaggio del riduttore.

A richiesta si possono fornire i riduttori con 4 fori filettati sull'albero cavo, aventi le dimensioni descritte nella tabella.(In alcuni casi, a parità di grandezza, per gli alberi cavi di foro massimo, i fori filettati possono essere di diametro inferiore ad un interasse di diametro superiore). A richiesta è anche possibile la fornitura della speciale rondella necessaria allo scopo.

HOLLOW SHAFTS WITH TAPPED HOLES

The reducer can be easily mounted to, locked to and dismantled from the input shaft of the driven machine by using a special mounting plate with 4 screws on the same pcd of the threaded holes on hollow shaft and having a central drilled and tapped hole, the diameter of which is greater than that of the threaded hole of the driven machine shaft.

Reducers should be then equipped with these 4 threaded holes on the hollow shaft as specified in the table. (In some cases, when the unit is supplied with the maximum bore, the threaded holes can be smaller than expected for the hollow shaft, due to a limit thickness of the same). The special washer for this applications can be supplied on request.

Grandezza Size		D	Α	В	С
85	Ø Ø Ø Ø	25 H 7 30 H 7 35 H 7 38 H 7 40 H 7	46,5 46,5 46,5 46,5	M 6 M 6 M 6 M 6	16 16 16 16
105	Ø Ø Ø Ø	35 H 7 38 H 7 40 H 7 45 H 7	55 55 55 55	M 6 M 6 M 6 M 6	16 16 16 16
125	Ø Ø Ø	40 H 7 45 H 7 50 H 7 55 H 7	65 65 65 65	M 6 M 6 M 6 M 6	16 16 16 16
150	Ø Ø Ø Ø	50 H 7 55 H 7 60 H 7 65 H 7	72,5 72,5 72,5 75	M 8 M 8 M 8 M 6	20 20 20 16
165	Ø Ø Ø	60 H 7 65 H 7 70 H 7 75 H 7	85 85 85 87,5	M 10 M 10 M 10 M 8	25 25 25 20
180	Ø Ø Ø	60 H 7 65 H 7 70 H 7 75 H 7	85 85 85 87,5	M 10 M 10 M 10 M 8	25 25 25 20
210	Ø Ø Ø Ø	70 H 7 75 H 7 80 H 7 85 H 7 90 H 7	102,5 102,5 102,5 102,5 105	M 12 M 12 M 12 M 12 M 8	32 32 32 32 32 20
250	Ø Ø Ø Ø	85 H 7 90 H 7 100 H 7 110 H 7	125 125 125 130	M 12 M 12 M 12 M 10	32 32 32 32 25

Descrizione aggiuntiva alla designazione, esempio:

RP2C150-19.5 ARO **ACF ALBERO CAVO CON FORI** CON TENDITORE CON STAFFE

Further description of designation, example:

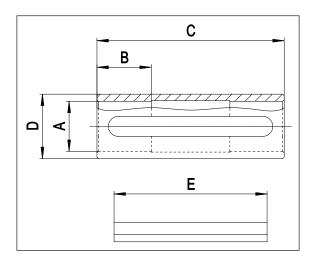
RP2C150-19.5 ARO **ACF HOLLOW SHAFT TAPPED HOLES** WITH TORQUE ARM WITH BRACKETS

BUSSOLA DI RIDUZIONE CON LINGUETTA

Questo accessorio permette al cliente di ottenere un riduttore con albero cavo in uscita di diametro inferiore disponendo a magazzino di un riduttore con albero cavo normale, speciale o massimo, secondo i casi. Si evita così l'ordinazione di un nuovo gruppo speciale, richiedendo semplicemente una bussola di riduzione con relativa linguetta.

IMPORTANTE: le bussole di riduzione con linguetta sono applicabili quando il riduttore ha in origine i diametri albero cavo evidenziati nella tabella albero cavo.

E' consigliato il bloccaggio assiale della bussola per mezzo di distanziali, rondelle di installazione, etc.


Come si può vedere dalla tabella sotto, per tutte le grandezze, la lunghezza delle bussole è inferiore di 5 mm alla lunghezza dell'albero cavo.

REDUCTION BUSHING WITH KEY

This accessory enables both stockist and endusers to stock only reducers with the maximum bore hollow output shafts. When smaller diameters bores are required, use the bushing to obtain the correct fit. The advantage: less investment in stock and greater flexibility to meet market demand.

ATTENTION: reduction bushings with key are applicable when the reducer is originally supplied with hollow shafts having diameters as reported in the hollow shaft table.

The bushing should be axially locked using spacers, installation washers, etc. As can be seen in the table below, in all cases the bushing is 5 mm shorter than the hollow shaft length.

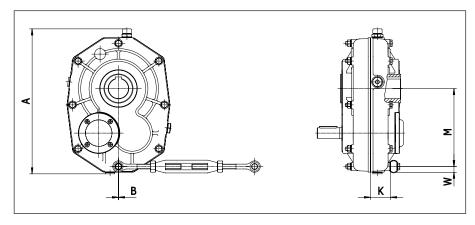
Grandezza / Size	D		P	A		C	В	E
85	Ø 35 H 7	Ø 25 H 7	Ø 30 H 7			111	30	91
105	Ø 45 H 7	Ø 35 H 7	Ø 40 H 7			131	38	107
125	Ø 55 H 7	Ø 40 H 7	Ø 45 H 7	Ø 50 H 7		149	45	123
150	Ø 65 H 7	Ø 40 H 7	Ø 50 H 7	Ø 55 H 7	Ø 60 H 7	167	52	139
165	Ø 75 H 7	Ø 55 H 7	Ø 60 H 7	Ø 65 H 7	Ø 70 H 7	186	58	156
180	Ø 75 H 7	Ø 60 H 7	Ø 65 H 7	Ø 70 H 7		197	63	167
210	Ø 90 H 7	Ø 70 H 7	Ø 75 H 7	Ø 80 H 7		237	75	202
250	Ø 110 H 7	Ø 80 H 7	Ø 90 H 7	Ø 100 H 7		272	90	234
1	1	I						

Designazione, esempio:

BUSSOLA DI RIDUZIONE CON LINGUETTA 65-50 RP 150

Designation, example:

REDUCTION BUSHING WITH KEY 65-50 RP 150



FISSAGGIO DEL RIDUTTORE DIVERSO DA CATALOGO

SPECIAL SUPPLY NOT IN CATALOGUE

TENDITORE

TORQUE ARM WITHOUT BRACKETS

Grandezza <i>Size</i>	А	В	М	W	K
85	290	0	154,3	13	36
105	328	0	177	13	45
125	385	0	216,1	16	53
150	445	0	251,1	16	58
165	498	0	273,1	16	68
180	549	0	303	16	73
210	639	0	351,8	21	92
250	756	94,2	449	21	104

Descrizione aggiuntiva alla designazione, esempio:

RP2C150-19.5 ARO **CON TENDITORE**

Further description of designation, example:

RP2C150-19.5 ARO WITH TORQUE ARM

SENZA TENDITORE

Descrizione aggiuntiva alla designazione, esempio:

RP2C150-19.5 ARO

WITHOUT TORQUE ARM

Further description of designation, example:

RP2C150-19.5 ARO

TENDITORE CON PIASTRA

TORQUE ARM WITH PLATE

Grandezza Size	A	G	М	Q	W	K
85	297	85	165	14	8	35
105	350	102	200	16	8	44
125	388	115	220	18	10	51
150	454	120	260	20	12	56
165	534	135	315	21	15	66
180	558	155	320	22	15	70
210	657	175	375	25	15	89
250	752	190	450	28	15	101

Descrizione aggiuntiva alla designazione, esempio:

Further description of designation, example:

RP2C150-19.5 ARO CON TENDITORE CON PIASTRA

RP2C150-19.5 ARO WITH TORQUE ARM WITH PLATE

RIDUTTORE CON ALBERO DI ENTRATA BISPORGENTE

SPEED REDUCER WITH DOUBLE EXTENDED INPUT SHAFT

In questa esecuzione speciale non è possibile installare il dispositivo antiretro.

The backstop device cannot be installed in this execution.

Descrizione aggiuntiva alla designazione, esempio:

 $Further\ description\ of\ designation,\ example:$

RP2C150-19.5 **B BISPORGENTE** CON TENDITORE CON STAFFE

RP2C150-19.5 **B DOUBLE EXTENDED INPUT SHAFT** WITH TORQUE ARM WITH BRACKETS

RIDUTTORE CON ALBERO DI ENTRATA SPORGENTE DAL LATO OPPOSTO A QUELLO DI CATALOGO

SPEED REDUCER WITH INPUT SHAFT ON THE OPPOSITE SIDE

In questa esecuzione speciale, nelle grandezze: 85-105-125-150-165 non è possibile installare il dispositivo antiretro.

In this special execution, with sizes: 85-105-125-150-165 the backstop device cannot be fitted.

Descrizione aggiuntiva alla designazione, esempio:

Further description of designation, example:

RP2C150-19.5 O OPPOSTO CON TENDITORE CON STAFFE

RP2C150-19.5 O OPPOSITE WITH TORQUE ARM WITH BRACKETS

TRATTAMENTO ANTIGRIPPANTE E ANTIUSURA ALBERO CAVO

Descrizione aggiuntiva alla designazione, esempio:

Further description of designation, example:

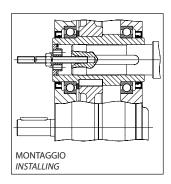
RP2C150-19.5 ARO **ACFF ALBERO CAVO CON TRATTAMENTO FF**CON TENDITORE CON STAFFE

RP2C150-19.5 ARO **ACFF HOLLOW SHAFT WITH TREATMENT FF** WITH TORQUE ARM WITH BRACKETS

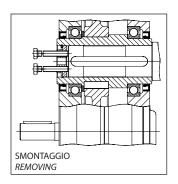
ANTI-FRETTING CORROSION TREATMENT OF HOLLOW SHAFT

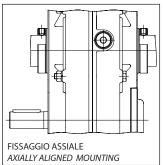
I riduttori pendolari vengono montatati direttamente sull'albero della macchina da azionare. Dimensioni dell'albero macchina consigliate.

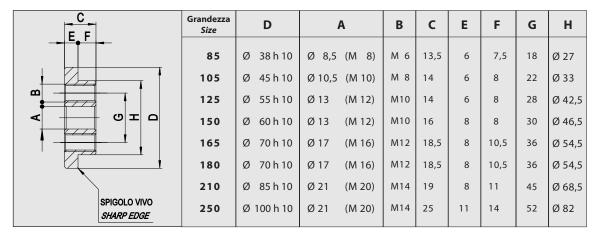
Shaft mounted speed reducers are mounted directly onto the shaft of the driven machine. Recommended machine shaft dimensions.


C	Grandezza Size	Α	В	С	D	E	F	G	Н	I	L
-	85	Ø 38 h 6, j 6, k 6	M 8	101	15	56	30	Ø 45	20	90	5,5
- D - E - F -	105	Ø 45 h 6, j 6, k 6	M 10	120	22	60	38	Ø 55	25	110	5
	125	Ø 55 h 6, j 6, k 6	M 12	137	28	64	45	Ø 65	32	125	6
O B	150	Ø 60 h 6, j 6, k 6	M 12	153	33	68	52	Ø 70	32	140	6,5
	165	Ø 70 h 6, j 6, k 6	M 16	169	36	75	58	Ø 80	40	150	9,5
H -	180	Ø 70 h 6, j 6, k 6	M 16	180	41	76	63	Ø 80	40	160	10
l L	210	Ø 85 h 6, j 6, k 6	M 20	219	52	92	75	Ø 100	50	200	9,5
	250	Ø 100 h 6, j 6, k 6	M 20	248	61	97	90	Ø 115	50	220	14


Tolleranze diametro albero macchina h6, j6, k6 secondo le esigenze.


Il montaggio, il fissaggio e lo smontaggio dei riduttori avviene mediante l'uso dei tiranti, estrattori, servendosi del foro filettato in testa all'albero macchina, e della costruzione di una rondella di installazione, le cui dimensioni sono indicate in tabella.


Machine shaft tolerance h6, j6, k6 depending on requirements.


Installation, fixing and removal of speed reducers is carried out with tension rods and extractors using the tapped hole at the top of the machine shaft, and by use of an installation washer.

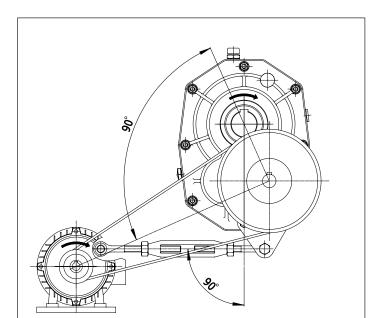
Per il foro degli organi calettati sull'albero veloce raccomandiamo la tolleranza H7.

Prima di procedere al montaggio, pulire bene e lubrificare le superfici di contatto per evitare l'ossidazione.

Evitare di forzare con colpi o urti violenti per non danneggiare cuscinetti, anelli di tenuta o altre parti meccaniche adiacenti.

Montare il riduttore in modo che non subisca vibrazioni.

Bore tolerances H7.

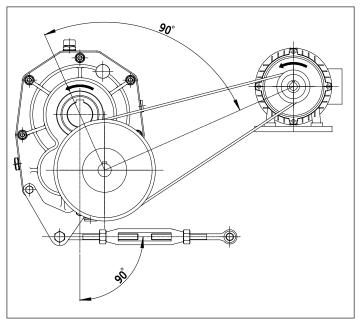

Before mounting, carefully clean and lubricate contact surfaces to prevent rusting. Avoid forcing the shaft by hitting or jerking to avoid damaging bearings, seal rings and other nearby mechanical parts.

Mount the speed reducer so that it is not subject to vibrations.

Il braccio di reazione deve essere posizionato in modo da lavorare a trazione, rispettando gli angoli delle figure sotto.

In caso di rotazione nei due sensi o di applicazioni particolarmente gravose, si consiglia di utilizzare due bracci di reazione opposti.

Prevedere limitatori di momento torcente o dispositivi di sicurezza, qualora si prevedano funzionamenti con sovraccarichi.


Prevedere dispositivi appositi di prevenzione e sicurezza qualora un'accidentale perdita di lubrificante possa causare danni importanti. Per riduttori con dispositivo antiretro, controllare manualmente prima dell'avviamento, che il senso di rotazione sia corrispondente a quello desiderato.

Prevedere protezioni, sicurezze, contro la rottura accidentale del dispositivo antiretro. Quando è possibile, proteggere il riduttore con opportuni accorgimenti dalle intemperie e dall'irraggiamento solare. Se i riduttori devono essere immagazzinati prima del loro utilizzo, accertarsi che ciò avvenga in ambienti secchi e puliti. Con periodicità semestrale è bene far compiere agli ingranaggi qualche giro, onde prevenire danneggiamenti di cuscinetti e anelli di tenuta, controllare inoltre e ripristinare il grasso nelle tenute e il protettivo sulle parti lavorate.

Per ambienti aggressivi, umidi, o con forti escursioni termiche, queste verifiche dovranno essere più frequenti.

La collocazione del riduttore deve consentire un adeguato spazio per i successivi controlli e manutenzioni, e garantire sufficiente passaggio d'aria di refrigerazione per lo smaltimento del calore. Nel sollevamento del riduttore occorre prestare attenzione a non provocare danni.

The reaction arm must be positioned so that it works in traction, respecting the angles shown in the diagram below. In case of rotation in both directions, or cases of particularly heavy applications, it is advisable to use two opposite arms of reaction.

Torque limiters or safety devices should be fitted if operation with overloads is foreseen.

Provide adequate devices for prevention and safety whenever an oil leak could cause significant damage. With speed reducers with backstops, check manually before starting up that the direction of rotation is the one required. Provide safety devices and guards against the accidental breakage of the backstop device.

When possible the speed reducer should be protected from weather and direct sunlight.

If the speed reducers have to be stored before being used, ensure that this is in a dry and clean environment.

Every six months the gears should be turned a few times so as to prevent damage to bearings and sealing rings. Also check and replace the grease on the sealing rings and the protective layer on the machined parts. In environments that are corrosive, humid, or with extreme temperature variations, these checks should be carried out more often.

The location of the speed reducer must allow enough space for checks and maintenance and guarantee adequate ventilation for heat dispersion.

When lifting the speed reducer it is important to take care to avoid damaging it

I riduttori pendolari della serie RP sono lubrificati ad olio e vengono forniti **SENZA OLIO**. La lubrificazione avviene per bagno d'olio e sbattimento. Introdurre olio minerale avente la gradazione di viscosità ISO VG indicata in tabella.

RP series shaft mounted speed reducers are lubricated with oil but are supplied **WITHOUT OIL**. Lubrication is by means of oil bath and oil splash. Use ISO VG grade mineral oil according to the table below.

Temperatura ambiente Ambient temperature °C		Viscosità olio Viscosity grade ISO VG
Funzionamento al di sotto di Service below	- 10	100
Funzionamento tra Service betwen	-10 +10	150
Funzionamento tra Service betwen	+10 +30	220
Funzionamento al di sopra di Service above	+ 30	320

ELENCO DEGLI OLI DI ALCUNE CASE PRODUTTRICI LIST OF OIL PRODUCERS AND OILS

AGIP Blasia
ARAL Degol BG
BP Energol GR-XP
CASTROL Alpha SP
ESSO Spartan EP
MOBIL Mobilgear Serie 6
SHELL Omala Oil
TEXACO Meropa
TOTAL Carter EP

Introdurre olio nel riduttore, fino all'altezza del tappo di livello, evitando un eccesso. La quantità di lubrificante necessaria per un buon funzionamento dipende dalla sua **posizione di lavoro**.

Fill the speed reducer to the level cap, avoid overfilling. The quantity of oil required for good operation depends upon the **operating position**.

ASSI ORIZZONTALI ASSI VERTICALI HORIZONTAL SHAFTS **VERTICAL SHAFTS** Esecuzioni normali / Normal layout Esecuzioni speciali / Special layout 0S OD OB OA VB O TAPPO DI CARICO TAPPO DI LIVELLO TAPPO DI SCARICO FILL PLUG LEVEL PLUG DRAIN PLUG

Salvo diversa indicazione i riduttori vengono forniti nella configurazione **OB**. Le altre posizioni sono ottenibili dal cliente invertendo i tappi. Le posizioni **VA** e **VB** sono speciali e devono essere specificate all'ordine.

Unless otherwise stated the speed reducers are supplied in **OB** layout. The other positions can be set-up by the client by inverting the caps. Positions **VA** and **VB** are special and should be specified together with the order.

Descrizione aggiuntiva alla designazione, esempio:

Further description of designation, example:

RP2C150-19.5 ARO VA ASSI VERTICALI CON TENDITORE CON STAFFE

RP2C150-19.5 ARO **VA VERTICAL SHAFTS** WITH TORQUE ARM WITH BRACKETS

Quando la velocità in entrata è inferiore a 355 giri/min e/o quando i riduttori sono montati nelle posizioni V(assi verticali), al fine di garantire la lubrificazione di quelle parti in movimento difficilmente raggiungibili dal lubrificante, i cuscinetti superiori sono lubrificati con grasso a vita.

When input speed is less than 355 rpm and/or when the reducers are mounted in V positions (vertical axes), where some moving parts are difficult to reach, upper bearings are permanently greased.

QUANTITA' DI OLIO I PER RIDUTTORI A DOPPIA RIDUZIONE SERIE RP2C

QUANTITY OF OIL IN LITERS PER DOUBLE REDUCTION SPEED REDUCER RP2C SERIES

Grandezza	1	Posizioni	di lavoro	/ Mountin	g positio	n
Size	os	OD	ОВ	OA	VA	VB
85	0.8	0.7	0.7	1.1	0.4	1.2
105	1.1	0.9	0.8	1.4	0.6	1.5
125	1.7	1.6	1.4	2.7	1.5	2.2
150	2.7	2.5	2.4	4.6	2.6	3.8
165	4.2	3.8	3.2	6.5	3.1	5.6
180	4.9	4.7	4.3	8	2.6	8.1
210	9.6	9	6.9	15.8	5	14.8
250	14.1	11.7	9.7	19	11.3	18

Le quantità di olio per posizioni di lavoro intermedie a quelle di tabella si ottengono per interpolazione dei valori. **Per riduttori a singola riduzione serie RP1C(iN=4) aumentare i valori della tabella del 10%.**

SOSTITUIRE L'OLIO DOPO UN PERIODO DI RODAGGIO PARI A 500 ORE LAVORATIVE. CONTROLLARE IL LIVELLO OGNI 1000 ORE ED EFFETTUARE IL CAMBIO OGNI 4000 ORE.

Per funzionamento con temperatura dell'olio superiore a 80°C e/o con sovraccarichi, l'olio dovrà essere sostituito più frequentemente.

The quantity of oil for positions between those given in the table are obtained by interpolating the values. For single reduction speed reducers RP1C series (iN=4) increase the values of the table by 10%.

REPLACE THE OIL AFTER A RUNNING IN PERIOD OF 500 OPERATING HOURS. CHECK THE OIL LEVEL EVERY 1000 HOURS AND CHANGE OIL EVERY 4000 HOURS.

If operating with oil temperature over 80°C and/or with overloads, oil should be changed more frequently.

NORME DI SICUREZZA SAFETY REGULATIONS

Da parte dell'utilizzatore, non dovranno essere apportate modifiche al riduttore che ne diminuiscano l'affidabilità, variando le condizioni applicative e funzionali.

I RIDUTTORI NON DEVONO ESSERE POSTI IN SERVIZIO PRIMA CHE LA MACCHINA IN CUI SARANNO INCORPORATI SIA STATA DICHIA-RATA CONFORME ALLE DISPOSIZIONI DELLA DIRETTIVA MACCHI-NE 2006/42/CE E SUCCESSIVI AGGIORNAMENTI.

Il costruttore della macchina deve inglobare le informazioni contenute nel presente manuale con quelle relative alla propria macchina.

Maneggiare il riduttore con cura facendo attenzione agli eventuali spigoli, sporgenze, che questo presenta.

Occorre prevedere una protezione delle parti rotanti (esempio: trasmissione con cinghie trapezoidali), onde prevenire contatti accidentali.

Occorre prevedere protezioni, sicurezze, contro la rottura accidentale del dispositivo antiretro, che provoca la pericolosa discesa dei materiali trasportati.

In presenza di variazioni anomale di temperatura, rumore o perdite di olio, il riduttore deve essere fermato ed ispezionato per prevenire danneggiamenti più gravi.

Prima di effettuare interventi, occorre che il riduttore sia fermo e che siano presi tutti i provvedimenti necessari affinché non si abbiano accidentali avviamenti. Tutte le normative vigenti in termini di inquinamento ambientale, prevenzione e sicurezza devono essere rispettate.

Users must not modify the speed reducers. This would reduce the reliability and change the operational and functional characteristics.

THE SPEED REDUCTION UNITS MUST NOT BE INSTALLED BEFORE THE MACHINE WITH WHICH THEY ARE INCORPORATED HAS BEEN DECLARED IN CONFORMITY WITH THE PROVISIONS OF THE MACHINE DIRECTIVE 2006/42/CE AND SUBSEQUENT UPDATES.

The machine manufacturer must integrate the information contained in this manual with that of the completed machine.

Handle the speed reducer with care avoiding any corners or projections that this presents.

The rotating parts have to be protected (example: transmission with trapezoidal belts), so as to avoid accidental contact. Guards and safety devices should be provided to protect against the accidental breakage of the backstop device which would cause the dangerous descent of the transported materials.

In case of abnormal changes in temperature, noise, or leakage of oil, the speed reducer must be stopped and inspected in order to guard against more serious damage. Before carrying out work on the speed reducer it must be immobile and all necessary precautions must be taken to prevent it starting up accidentally.

All the current legislation regarding environmental pollution, accident prevention, and safety must be respected.

STATO DI FORNITURA CONDITION WHEN SUPPLIED

I riduttori sono verniciati esternamente con smalto nitro blu RAL 5010. L'estremità d'albero in entrata e l'albero cavo in uscita, sono protetti da una pellicola antiossidazione e da uno strato di grasso idrorepellente. Gli anelli di tenuta in corrispondenza delle sedi rotanti sono protetti con grasso idrorepellente.

La parte interna del riduttore è protetta da un leggerissimo strato protettivo antiruggine.

I riduttori pendolari sono lubrificati ad olio e vengono forniti **SENZA OLIO**, salvo diversa indicazione, <u>una targhetta gialla ne evidenzia lo stato</u>.

Quando è presente **il dispositivo antiretro**, verificare ruotando a mano l'albero di entrata che il senso di rotazione sia corretto, <u>una targhetta rossa evidenzia questo</u>.

Il tenditore, fornito assieme al riduttore, oltre ad ancorare il riduttore, serve per mantenere una corretta tensione delle cinghie.

The speed reducers are painted externally with dark blue RAL 5010 nitrate paint. The input shaft end and the hollow output shaft are protected with a layer of water-repellent grease.

The sealing rings at the rotary seats are also protected with water-repellent grease.

The inside of the speed reducer has a very fine layer of rust protection. The shaft mounted speed reducers are lubricated with oil but are supplied **WITHOUT OIL**, unless otherwise stated, <u>a yellow label indicates their condition</u>.

When a **backstop device** is present, rotate the input shaft by hand to check that the direction of rotation is correct. <u>This is indicated by a red</u> label.

The tightening pulley supplied with the speed reducer, as well as fixing the speed reducer in place, also maintains the correct tension of the belts.

TARGHETTA DI IDENTIFICAZIONE IDENTIFICATION PLATE

La targhetta contiene le principali informazioni tecniche e costruttive del riduttore, deve perciò essere mantenuta integra e ben visibile, esempio:

The information plate gives the basic technical and production data for the speed reducer. It must be kept intact and easily visible. Example:

RP = Riduttore Pendolare

2C = Doppia riduzione 1C = Singola riduzione

150 = Grandezza

19.5 = Rapporto di riduzione

ARO = Eventuale dispositivo antiretro D50 = Eventuale esecuzione speciale

12.7 = Potenza in kW a 1400 giri

10-05 = Mese e anno di fabbricazione

2.4 = Quantità di olio in I nella configurazione normale OB

RP = Shaft mounted speed reducer

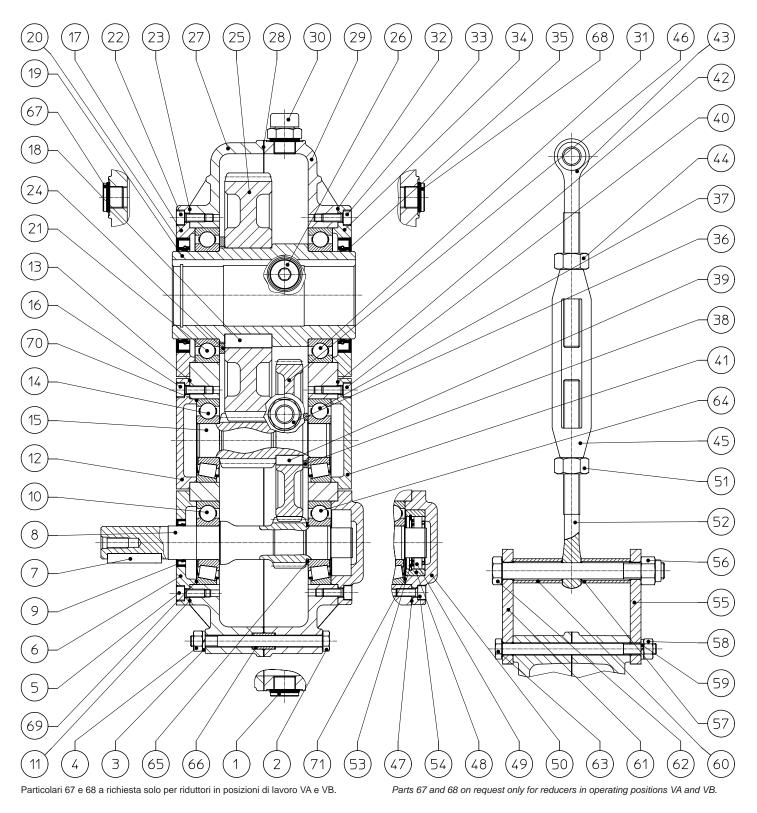
2C = Double reduction 1C = Single reduction

150 = Size

19.5 = Reduction ratio

 $ARO = Any \ backstop \ device$

D50 = Any special execution


12.7 = Power in kW at 1400 rpm

10-05 = Month and year of manufacture

2.4 = Volume of oil in liters in the normal layout OB

PARTICOLARI DI RICAMBIO SPARE PARTS

Per riduttori in esecuzione tipo si hanno le seguenti UGUAGLIANZE DI POSIZIONE. For typical layout speed reducers following POSITION EQUIVALENCIES apply.

11 = 13 = 42 = 47 12 = 41 55 = 61 57 = 60 69 = 70 Nei riduttori con rapporto di riduzione nominale iN = 4 mancano le seguenti posizioni. For speed reducers with a nominal reduction ratio iN = 4 the following positions do not exist.

14 15 37 38 39 41 46 70

Grandezze 85 - 105 - 125 - 150 - 165 mancano i seguenti particolari. Sizes 85 - 105 - 125 - 150 - 165 do not have the following parts.

5 6 11 12 13 16 17 22 23 32 33 34 40 41 42 69 70

Posizione	Denomin	azione particolare							
Position	Particular denomination								
1	Tappo di scarico olio con guarnizione	Oil drain plug with seal							
2	Vite testa esagonale carcassa	Casing hexagonal-head screw							
3	Rondella elastica carcassa	Casing flexible washer							
4	Dado alto carcassa	Casing upper nut							
5	Vite brugola coperchietto di entrata	Input side cover socked head screw							
6 7	Coperchietto di entrata	Input side cover							
8	Linguetta di entrata	Input key							
9	Pignone di entrata Anello di tenuta di entrata	Input pinion Input oil seal							
10	Cuscinetto di entrata coperchio	Cover input bearing							
11	Guarnizione coperchietto di entrata	Input side cover gasket							
12	Coperchietto 2° asse coperchio	Cover 2nd shaft side cover							
13	Guarnizione coperchietto 2° asse coperchio	Cover 2nd shaft side cover gasket							
14	Cuscinetto 2° asse coperchio	Cover 2nd shaft bearing							
15	Pignone di uscita	Output pinion							
16	Vite brugola coperchietto 2° asse coperchio	Cover 2nd shaft side cover socket head screw							
17	Coperchietto di uscita coperchio	Cover output side cover							
18	Linguetta albero cavo	Hollow shaft key							
19	Albero cavo	Hollow shaft							
20	Anello di tenuta di uscita coperchio	Cover output oil seal							
21	Cuscinetto di uscita coperchio	Cover output bearing							
22	Vite brugola coperchietto di uscita coperchio	Cover output side cover socket head screw							
23	Guarnizione coperchietto di uscita coperchio	Cover output side cover gasket							
24	Distanziale albero cavo	Hollow shaft spacer							
25	Ruota di uscita	Output wheel							
26	Tappo di chiusura olio con guarnizione	Oil closure plug with seal							
27	Coperchio	Cover							
28	Guarnizione carcassa	Casing gasket							
29	Cassa	Case							
30 31	Tappo di carico olio con sfiato e guarnizione Cuscinetto di uscita cassa	Oil fill plug with breather and seal Case output bearing							
32	Guarnizione coperchietto di uscita cassa								
33	Vite brugola coperchietto di uscita cassa	Case output side cover gasket Case output side cover socket head screw							
34	Coperchietto di uscita cassa	Case output side cover socket field screw							
35	Anello di tenuta di uscita cassa	Case output side cover							
36	Tappo di livello olio con guarnizione	Oil level plug with seal							
37	Cuscinetto 2° asse cassa	Case 2nd shaft bearing							
38	Distanziale pignone di uscita	Output pinion spacer							
39	Linguetta pignone di uscita	Output pinion key							
40	Vite brugola coperchietto 2° asse cassa	Case 2nd shaft side cover socket head screw							
41	Coperchietto 2° asse cassa	Case 2nd shaft side cover							
42	Guarnizione coperchietto 2° asse cassa	Case 2nd shaft side cover gasket							
43	Estremità sinistra tenditore	Torque arm left end							
44	Dado alto sinistro tenditore	Torque arm left upper nut							
45	Manicotto tenditore	Torque arm sleeve							
46	Ruota di entrata	Input wheel							
47	Guarnizione coperchietto antiretro	Backstop side cover gasket							
48	Anello esterno	External ring							
49	Ruota libera	Freewheel							
50 51	Coperchietto antiretro	Backstop side cover							
51 52	Dado alto destro tenditore	Torque arm right upper nut							
52 53	Estremità destra tenditore	Torque arm right end							
53 54	Anello elastico antiretro Vite brugola coperchietto antiretro	Backstop circlip Backstop side cover socket head screw							
5 4 55	Staffa tenditore cassa	Case torque arm bracket							
55 56	Dado normale autofrenante tenditore	Torque arm normal self- locking nut							
50 57	Distanziale di centraggio tenditore cassa	Case torque arm centering spacer							
58	Dado alto staffe	Brackets upper nut							
59	Rondella elastica staffe	Brackets deport nat Brackets flexible washer							
60	Distanziale di centraggio tenditore coperchio	Cover torque arm centering spacer							
61	Staffa tenditore coperchio	Cover torque arm bracket							
62	Vite testa esagonale tenditore con staffe	Torque arm with brackets hexagonal-head screw							
63	Vite testa esagonale staffe	Brackets hexagonal-head screw							
64	Cuscinetto di entrata cassa	Case input bearing							
65	Anello elastico pignone di entrata	Input pinion circlip							
66	Spina di centraggio	Centering pin							
67	Tappo olio con guarnizione posizione di lavoro V coperchio	Oil plug with seal for V cover operating position							
68	Tappo olio con guarnizione posizione di lavoro V cassa	Oil plug with seal for V case operating position							
69	Anelli di spessoramento coperchietto di entrata	Input side cover shimming rings							
	A 11: 1:	Cover 2nd shaft side cover shimming rings							
70	Anelli di spessoramento coperchietto 2° asse coperchio Anelli di spessoramento coperchietto antiretro	Backstop side cover shimming rings							

PARTICOLARI DI RICAMBIO COMMERCIALI

COMMERCIAL SPARE PARTS

Posizione Position	Grandezza / Size							
	85	105	125	150	165	180	210	250
1	M 16 X 1.5	M 16 X 1.5	M 16 X 1.5	M 16 X 1.5	M 20 X 1.5	M 20 X 1.5	M 20 X 1.5	M 20 X 1.5
2	M 8 X 80	M 8 X 100	M 10 X 120	M 10 X 130	M 12 X 150	M 12 X 160	M 14 X 200	M 16 X 230
3	Ø 8.4	Ø 8.4	Ø 10.5	Ø 10.5	Ø 13	Ø 13	Ø 15	Ø 17
4	M 8	M 8	M 10	M 10	M 12	M 12	M 14	M 16
5	_	_	_	_	_	M 8 X 20	M 10 X 25	M 12 X 30
7	6 X 6 X 30	8 X 7 X 40	8 X 7 X 40	10 X 8 X 70	12 X 8 X 80	12 X 8 X 80	14 X 9 X 90	16 X 10 X 90
9	20 X 35 X 7	25 X 35 X 7	30 X 42 X 7	40 X 52 X 7	45 X 62 X 8	45 X 65 X 10	50 X 70 X 10	60 X 90 X 10
10	6304 (20X52X15)	6305 (25X62X17)	6306 (30X72X19)	6308 (40X90X23)	6309 (45X100X25)	30309 (45X100X27.25)	30310 (50X110X29.25)	30312 (60X130X33.5)
18	10 X 8 X 25	16 X 10 X 35	18 X 11 X 35	16 X 10 X 40	20 X 12 X 50	20 X 12 X 50	24 X 14 X 60	28 X 16 X 70
20	55 X 72 X 10	65 X 85 X 10	75 X 95 X 10	85 X 105 X 12	100 X 120 X 12	100 X 120 X 12	120 X 150 X 12	150 X 180 X 15
21	6011 (55X90X18)	6013 (65X100X18)	6015 (75X115X20)	6017 (85X130X22)	6020 (100X150X24)	6020 (100X150X24)	6024 (120X180X28)	6030 (150X225X35)
30	M 16 X 1.5	M 16 X 1.5	M 16 X 1.5	M 16 X 1.5	M 20 X 1.5	M 20 X 1.5	M 20 X 1.5	M 20 X 1.5
36	M 16 X 1.5	M 16 X 1.5	M 16 X 1.5	M 16 X 1.5	M 20 X 1.5	M 20 X 1.5	M 20 X 1.5	M 20 X 1.5
39	8 X 7 X 15	8 X 7 X 20	10 X 8 X 25	14 X 9 X 30	14 X 9 X 35	14 X 9 X 35	18 X 11 X 45	20 X 12 X 50
49	BWX133590A	BWX133590A	BWX133590A	BWX133392	BWX133392	BWX133392	BWX133392	BWX1310172
53	I 39	139	I 39	I 55	I 55	I 55	I 55	172
54	M 6 X 25	M 6 X 16	M 8 X 20	M 8 X 20	M 8 X 20	M 8 X 20	M 10 X 25	M 12 X 30
56	M 12	M 12	M 16	M 16	M 16	M 16	M 20	M 20
62	M 12 X 110	M 12 X 120	M 16 X 140	M 16 X 160	M 16 X 180	M 16 X 190	M 20 X 240	M 20 X 260
63	M 8 X 110	M 8 X 120	M 10 X 140	M 10 X 150	M 12 X 180	M 12 X 190	M 14 X 230	M 16 X 260
64	6205 (25X52X15)	6305 (25X62X17)	6306 (30X72X19)	6308 (40X90X23)	6309 (45X100X25)	30309 (45X100X27.25)	30310 (50X110X29.25)	30312 (60X130X33.5)
65	E 25	_	_	E 40	E 45	_	_	_
69	_	_	_	_	_	80 X 100 X	90 X 110 X	105 X 130 X
71	42 X 52 X	50 X 62 X	56 X 72 X	70 X 90 X	80 X 100 X	_	_	_

Per ordinare un **ricambio non commerciale**, occorre specificare oltre alla posizione e relativa denominazione particolare, la grandezza del riduttore e il rapporto di riduzione indicati in targhetta, esempio:

To order a **non commercial spare part**, it is necessary to specify together with the position and relative part name, the size of the speed reducer and the reduction ratio given on the identification plate, example:

Posizione 8 Pignone di entrata

Relativo al riduttore:

RP2C150 - 19.5 ARO CON TENDITORE CON STAFFE

Position 8 input pinion

For reducer:

RP2C150 - 19.5 ARO WITH TORQUE ARM WITH BRACKETS

