
GIUNTI ELASTICI - GIUNTI RIGIDI

Fino a 130.000 Nm di coppia e 205 mm di alesaggio

(SENZA GIOCO)

Il giunto è un dispositivo il cui scopo è quello di collegare due alberi tra loro sullo stesso asse.

La nostra gamma di produzione è costituita da diverse tipologie di giunti adatte per le più svariate applicazioni.

La qualità dei materiali utilizzati, l'accurato design e la precisione con la quale sono realizzati garantiscono elevate prestazioni, sicurezza e affidabilità nel tempo anche in applicazioni molto gravose.

Punti di forza dei nostri modelli:

- Costruiti in acciaio, alluminio o acciaio inox, completamente lavorati.
- 0 Alta affidabilità.
- Diverse possibilità di personalizzazione. 0
- Ampia gamma di scelta.
- Elevata precisione di esecuzione.
- Ottima protezione da agenti esterni. 0
- Competitivi nel rapporto qualità/prezzo.
- Produzione "Made in Italy" con qualità certificata.

Le nostre linee principali:

- "GIUNTI RIGIDI (SENZA GIOCO)": per collegamenti dove sia richiesta elevata precisione ed elevate coppie di trasmissione.
- "GIUNTI ELASTICI": per collegamenti tra alberi disassati con necessità di assorbire vibrazioni. 0

GIUNTO RIGIDO "GRI"

Giunto rigido in acciaio idoneo per collegamenti precisi senza disallineamenti tra gli alberi. Disponibile in una o due sezioni.

Coppia max 860 Nm - Foro max ø50 mm.

GIUNTO A SOFFIETTO "GSF"

Giunto a soffietto in alluminio con alta rigidità torsionale. Assenza di giochi, basse inerzie e alta affidabilità.

Coppia max 300 Nm - Foro max ø45 mm.

GIUNTO A STELLA SENZA GIOCO "GAS/SG"

Coppia max 130.000 Nm - Foro max ø205 mm.

Giunto torsionalmente rigido a lamelle

con trasmissione del moto senza gioco

angolare e massima flessibilità di impiego.

Disponibile con allunga personalizzata.

Ś

Giunto elastico a stella senza gioco. Disponibile con varie tipologie di bloccaggi, elementi elastici di diversa

durezza e allunga personalizzata.

Coppia max 2.080 Nm - Foro max ø80 mm.

GIUNTO A STELLA "GAS"

Giunto elastico a stella con elevato potere di smorzamento delle vibrazioni. Disponibile con diverse tipologie di stelle.

30

Coppia max 9.600 Nm - Foro max ø130 mm.

GIUNTO ELASTICO COMPATTO "GEC"

Giunto elastico compatto e protetto con possibilità di manutenzione senza rimuovere il giunto dal cinematismo.

Coppia max 35.000 Nm - Foro max ø180 mm.

GIUNTO A DENTI "GD"

Giunto a denti studiato per lavorare senza usura grazie al manicotto in poliammide. Idoneo per recuperare elevati disallineamenti assiali.

Coppia max 5.000 Nm - Foro max ø125 mm.

GIUNTO FLESSIBILE "GF"

Giunto flessibile con ingombri ridotti. Indicato per recuperare elevati disallineamenti tra gli alberi. Possibilità di manutenzione senza rimuovere il giunto.

Coppia max 5.100 Nm - Foro max ø85 mm.

GIUNTO A CATENA "GC"

Giunto a catena semplice, economico e di facile montaggio. Adatto per ambienti secchi e polverosi.

Coppia max 8.000 Nm - Foro max ø110 mm.

GIUNTI ELASTICI - GIUNTI RIGIDI (SENZA GIOCO): introduzione

		de.							(21)				
GUIDA ALLA SCELTA			10000	13	WE!		A BR	1	aru.	(c)			
CARATTERISTICHE TECNICHE	GTR pag.7	/DBSE pag.12	GRI pag.17	GSF pag.21	GAS/SG pag.25	GAS pag.30	GAS/SG-AL pag.33	GAS-AL pag.33	/DBSE pag.34	GEC pag.39	GD pag.43	GF pag.47	GC pag.49
In acciaio completamente lavorato													
In alluminio completamente lavorato													
Elastico													
Media rigidità torsionale													
Alta rigidità torsionale													
O Completamente rigido													
Collegamento ad innesto													
O Dimensioni compatte													
Sistema modulare													
Ridotta inerzia													
Staticamente bilanciati													
Isolamento elettrico tra le parti													
O Disponibile con allunghe personalizzate													
 Montaggio con limitatori di coppia (giunti di sicurezza) 													
VANTAGGI E BENEFICI													
Elevate coppie trasmissibili													
Esente da manutenzione													
Soluzione economica													
O Idoneo per frequenti inversioni di marcia													
O Idoneo per alte temperature (>150°C)													
Manutenzione senza rimozione del giunto													
Silenziosità durante la trasmissione													
Assorbimento delle vibrazioni													
O Idoneo per elevate velocità													
Montaggio semplice e rapido													
O Conformità ATEX (a richiesta)													
Alta compensazione dei disallineamenti													
 Media compensazione dei disallineamenti 													
O Bassa compensazione dei disallineamenti													
APPLICAZIONI													
Macchine a CNC e meccanica di precisione													
Servomotori, guide lineari, trasduttori													
Settore alimentare e settore farmaceutico													
Macchine tessili e macchine per la stampa													
O Pompe, compressori, turbine Pelton													
Nastri trasportatori													
Impianti fotovoltaici													
 Dinamo tachimetriche, encoder 													
Macchine confezionatrici													
Estrusori, mescolatori e agitatori													
Macchine agricole, movimentazione terra													
Stampaggi, laminatoi													
Banchi prova													
Motion control													

Bloccaggio con grano su foro in H7.

Soluzione economica e veloce per coppie basse.

Soluzione standard sui mozzi a catalogo per montaggi orizzontali.

Soluzione consigliata nel caso di trasmissioni gravose.

Riduzione dei giochi angolari senza modificare le dimensioni di ingombro.

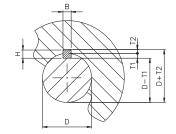
Riduzione dei giochi angolari durante le inversioni di moto, con coppie elevate.


Riduzione dei giochi angolari nel caso di trasmissioni gravose.

Riduzione dei giochi angolari e facilità di montaggio/smontaggio radiale.

Facilità di montaggio e riduzione dei giochi angolari, anche con coppie elevate.

Flessibilità di montaggio per bussole coniche con assenza di giochi angolari.


Per elevate velocità senza modificare le dimensioni di ingombro.

Riduzioni dei giochi angolari con ridotti ingombri radiali.

Soluzione economica e veloce per coppie basse.

ſ						Fori c	on cav	a seco	ondo l	JNI 66	04 (D	IN 688	35-1)					
	D	>10 12	>12 17	<17 22	>22 30	>30 38	>38 44	>44 50	>50 58	>58 65	>65 75	>75 85	>85 95	>95 110	>110 130	>130 150	>150 170	>170 200
ſ	В Н9	4	5	6	8	10	12	14	16	18	20	22	25	28	32	36	40	45
	Н	H 4 5 6 7 8 8 9 10 11 12 14 14 16 1												18	20	22	25	
	T1	2,5	3	3,5	4	5	5	5,5	6	7	7,5	9	9	10	11	12	13	15
ľ		1,8	2,3	2,8	3,3	3,3	3,3	3,8	4,3	4,4	4,9	5,4	5,4	6,4	7,4	8,4	9,4	10,4
	T2		+0,1 0							+0,2 0							+0,3 0	

GIUNTI ELASTICI - GIUNTI RIGIDI (SENZA GIOCO): bloccaggi e materiali

		1	7						4				
			100/00	1	田屋		177	1.7	ů,	(°)			
BLOCCAGGI	GTR pag.7	/DBSE pag.12	GRI pag.17	GSF pag.21	GAS/SG-ST pag.25	GAS-ST pag.30	GAS/SG-AL pag.33	GAS-AL pag.33	/DBSE pag.34	GEC pag.39	GD pag.43	GF pag.47	GC pag.49
Foro grezzo	•	×	×	0	•	•	•	•	×	•	•	•	•
⊙ Tipo A	A	A	A	×	A	A	A	A	A	A	•	A	•
⊙ Tipo A1	•	•	A	×	•	•	•	•	0	•	•	•	•
⊙ Tipo A2	A	•	×	×	A	A	×	×	×	A	•	A	A
O Tipo B	0	A	•	•	0	0	0	0	0	A	A	A	A
⊙ Tipo B1	A	A	A	A	A	A	A	A	A	A	•	A	A
⊙ Tipo B2	A	A	A	×	A	A	×	×	×	A	A	A	A
⊙ Tipo C	A	A	0	×	A	A	•	•	•	A	•	A	•
O Tipo C1	A	A	A	×	A	A	A	A	A	A	•	•	A
⊙ Tipo G	A	A	×	×	A	A	×	×	×	A	A	A	A
O Tipo D	A	A	×	×	•	×	A	A	A	×	×	×	×
⊙ Tipo E	A	A	×	×	A	A	×	×	×	A	A	A	A
⊙ Tipo F	A	A	×	×	A	A	×	×	×	A	×	A	A
MATERIALI													
O Acciaio - ST	•	•	•	×	•	•			A	•	•	•	•
O Alluminio - AL	×	×	×	•				•	•	×	×	×	×

Simbolo	Significato	Note
•	Fornitura standard	
0	Fornitura standard opzionale	Tutte le tipologie di bloccaggi si eseguono esclusivamente su foro finito.
A	Fornitura a richiesta	Per fornitura o fattibilità di altre tipologie di bloccaggi e abbinamenti contattare il nostro ufficio tecnico.
×	Non fornibile	

Acciao INOX - SS

GUIDA ALLA SCELTA

Per un corretto dimensionamento del giunto prescelto, è necessario stabilire il valore di coppia corretto da trasmettere tenendo conto di una maggiorazione proporzionale al tipo di lavoro più o meno gravoso da eseguire (fattore di servizio "f").

Nella tabella sottostante, viene indicato tale valore riferito per alcune tra le principali applicazioni secondo la norma Agma 514.02. La formula generica per calcolare il valore di coppia nominale che dovrà garantire il giunto è la seguente:

 $C_{\text{nom}} \ge \frac{9550 \cdot f \cdot P}{n}$

 \rightarrow

Dove:

C_{nom} = coppia nominale del giunto [Nm]

= fattore di servizio

n = numero di giri [Rpm]

P = potenza applicata [Kw]

			Fatte	ore di servizio	
Settore	Tipo di macchina	Motori a co	ombustione	Motori elettrici	Turbine
		1÷3 cilindri	4÷12 cilindri	Turbine a gas / vapore	idrauliche
	Imbottigliatrici, impastatrici, frantumatoi	3,8	3,0	2,0	2,5
Macchine per industrie alimentari	Centrifughe	3,0	2,5	1,5	2
illuustile allillelitail	Forni, mulini a pale, Essiccatoi	5,5	4,5	3,0	3,5
Macchine per industrie	Agitatori per liquidi viscosi, mescolatori, centrifughe pesanti, tamburi di raffreddamento, filtri rotanti	3,8	3,0	2,0	2,5
chimiche	Agitatori per liquidi, centrifughe leggere	3	2,5	1,5	2,0
	Lavatrici a tamburo	5,5	4,5	3,0	3,5
Macchine per industrie edili	Montacarichi, macchine per movimento terra	5,5	4,5	2,0	2,5
Macchine per industrie di	Pompe di processo	3,8	3,0	2,0	2,5
estrazione	Impianti di perforazione	5,5	4,5	3,0	3,5
Macchine per industrie atte	Calandre	3,8	3,0	2,0	2,5
alla lavorazione della gomma	Estrusori, mescolatori, Frantoi	5,5	4,5	3,0	3,5
	Rinvii	3,5	3,0	1,5	2,0
Macchine per industrie atte alla lavorazione dei metalli	Macchine utensili, cesoie, piegatrici	3,8	3,0	2,0	2,5
alia lavorazione dei metalli	Presse, punzonatrici, raddrizzatrici	5,5	4,5	3,0	3,5
Macchine per industrie tessili	Apparati di stampa, avvolgitori, sfilacciatori, telai	3,5	3,0	2,0	2,5
	Convogliatori, saldatrici	3,8	3,0	2,0	2,5
Macchine per imballaggio	Incartonatrici, rulliere, Formatrici, Pallettizzatori	5,5	4,5	3,0	3,5
V - 17 - 1	Centrifughe	3,8	3,0	2,0	2,5
Ventilatori	A grandi pale	5,5	4,5	3,0	3,5
	Trasportatori a catena, trasportatori a coclea, trasportatori a piastre, montacarichi	3,8	3,0	2,0	2,5
Trasportatori	Elevatori inclinati, impianti di estrazione, trasportatori a nastro	5,5	4,5	3,0	3,5
Macchine per industrie	Calandre	3,8	3,0	2,0	2,5
cartarie	Presse per carta, rulli per carta, cilindri essiccatoi	5,5	4,5	3,0	3,5
Macchine per industrie	Veicoli su rotaie, pompe aspiranti, verricelli di manovra	3,8	3,0	2,0	2,5
minerarie	Veicoli cingolati, ruote a pale, escavatori a tazza	5,5	4,5	3,0	3,5
	Assiali, centrifughi, radiali	3,0	2,5	1,5	2,0
Compressori	Turbocompressori	3,8	3,0	2,0	2,5
·	Alternativi	5,5	4,5	3,0	3,5
Macchine per industrie atte alla lavorazione di materie plastiche	Calandre, frantumatrici, mescolatori	3,8	3,0	2,0	2,5
	Lavorazioni generiche del legno	3,0	2,5	1,5	2,0
Macchine per industrie atte	Piallatrici	3,8	3,0	2,0	2,5
alla lavorazione del legno	Scortecciatrici, seghe	5,5	4,5	3,0	3,5
	Vie a rulli leggeri, piani di raffreddamento	3,8	3,0	2,0	2,5
Macchine per industrie di laminazione	Laminatoi a freddo, saldatrici per tubi, trasporto lingotti, troncatrici, taglio lamiera	5,5	4,5	3,0	3,5
	Centrifughe	3,0	2,5	1,5	2,0
Pompe	Centrifughe per liquidi viscosi	3,8	3,0	2,0	2,5
·	Alternative, di mandata	5,5	4,5	3,0	3,5
_	Girevoli, di sollevamento	3,8	3,0	2,0	2,5
Gru	Di traslazione	3,0	2,5	1,5	2,0

GIUNTO TORSIONALMENTE RIGIDO

Fino a 130.000 Nm di coppia e 205 mm di alesaggio

GTR

GTR - giunto torsionalmente rigido: introduzione

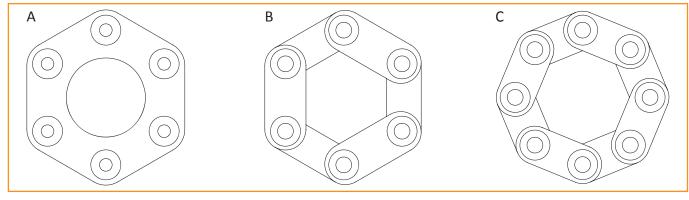
- Realizzato in acciaio completamente lavorato con trattamento standard di fosfatazione.
- Pacco lamellare in acciaio INOX.
- Elevata rigidità torsionale.

- Esente da manutenzione ed usura.
- Versione con doppio pacco lamellare: GTR/D
- Elevate coppie trasmissibili.

A RICHIESTA

DIN ISO 1940-1:2003 Q 6.3, prima della lavorazione della chiavetta e del relativo bloccaggio.

- Possibilità di impiego in applicazione con elevate temperature d'esercizio (> 150°C).
- O Possibilità di trattamenti specifici oppure versione completamente in acciaio INOX.
- Esecuzioni personalizzate per esigenze specifiche.
- O Possibilità di collegamento alla gamma dei limitatori di coppia (giunti di sicurezza)

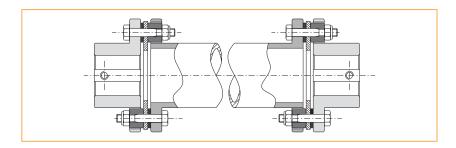

Realizzato per essere assemblato in applicazioni dove sia richiesta elevata affidabilità, precisione ed un ottimo rapporto peso/potenza; indispensabile nella progettazione di applicazioni a basso carico sospeso anche e soprattutto nel caso di elevate velocità e potenze. Questo giunto si compone di tre particolari principali: i due mozzi completamente lavorati, realizzati in acciaio UNI EN10083/98 e il pacco lamellare costruito in acciaio INOX AISI 304 C con viti di collegamento in acciaio classe 10.9. Nella versione "doppia", GTR/D, è presente anche uno spaziatore di lunghezza personalizzabile anch'esso costruito in acciaio UNI EN10083/98 interposto tra i mozzi e i due pacchi lamellari. Tutti i particolari di questo prodotto, eccetto lo spaziatore (GTR/D) o l'allunga (GTR/DBSE), sono realizzati ed equilibrati staticamente in classe

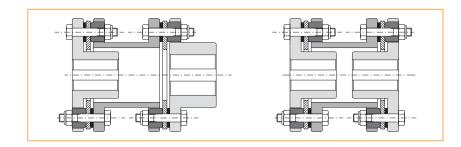
In accordo con l'esigenza specifica della applicazione è possibile effettuare una bilanciatura statica o dinamica diversa su ogni singolo componente separato oppure sul giunto completamente montato.

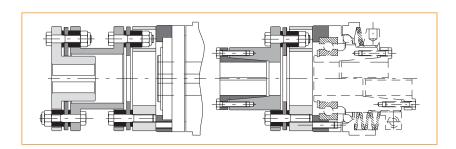
DESCRIZIONE DELLE LAMELLE

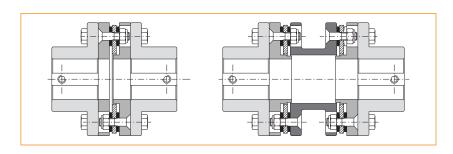
L'elemento fondamentale di questo giunto torsionalmente rigido sono i pacchi lamellari costituiti da una serie di lamelle realizzate in acciaio INOX tipo AISI 304-C collegate tra loro mediante bussole in acciaio. Questo pacco lamellare viene a sua volta collegato in modo alternato alle flange dei mozzi o dell'eventuale spaziatore (GTR/D) o allunga (GTR/DBSE) mediante l'utilizzo di viti in acciaio classe 10.9 e i relativi dadi autobloccanti. In relazione alla conformazione si distinguono pacchi lamellari con :

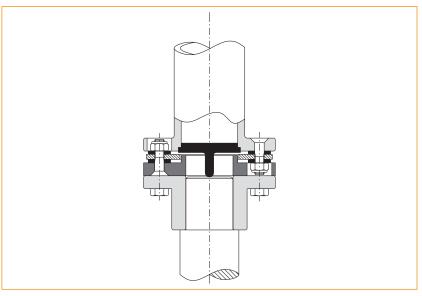
- A) Lamelle ad anello continuo per 6 viti (Grandezze 1-7)
- B) Lamelle a settore per 6 viti (Grandezze 8-11)
- C) Lamelle a settore per 8 viti (Grandezze 12-15)



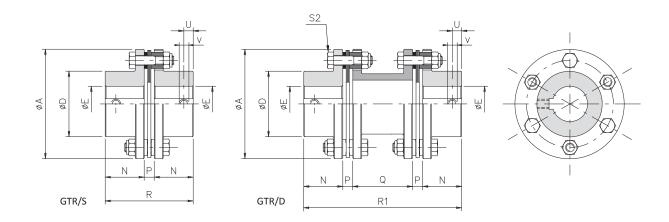



Versione con allunga personalizzata per un D.B.S.E. specifico (pagina 12).

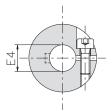

Esecuzioni con mozzi interni al fine di ridurre gli ingombri assiali.


Esecuzione in abbinamento ai limitatori di coppia della linea /SG con semplice e/o doppio pacco lamellare.

Soluzione con adattatori sia in versione semplice che doppia, per una semplice sostituzione dei pacchi lamellari senza spostare i mozzi (conforme con la direttiva API610).



Soluzione per il montaggio in verticale dove lo spaziatore (GTR/D) o l'allunga (GTR/DBSE) deve essere supportato in modo da evitare che il proprio peso gravi sul pacco lamellare.


GTR - giunto torsionalmente rigido: dati tecnici

DIMENSIONI

Grand.	А	D	E H7 max	E4 H7 max	N	Р	Q std *1	R	R1	U	V
0	78	45	32	25	29	7,5	50	65,5	123	10	M5
1	80	45	32	25	36	8	50	80	138	10	M5
2	92	53	38	30	42	8	50	92	150	10	M5
3	112	64	45	35	46	10	59	102	171	15	M8
4	136	76	52	45	56	12	75	124	211	15	M8
5	162	92	65	55	66	13	95	145	253	20	M8
6	182	112	80	70	80	14	102	174	290	20	M8
7	206	128	90	80	92	15	101	199	315	20	M10
8	226	133	95	80	100	22	136	222	380	20	M10
9	252	155	110	-	110	25	130	245	400	25	M12
10	296	170	120	-	120	32	144	272	448	25	M12
11	318	195	138	-	140	32	136	312	480	30	M16
12	352	218	155	-	155	34	172	344	550	40	M20
13	386	252	175	-	175	37	226	387	650	40	M20
14	426	272	190	-	190	37	236	417	690	45	M24
15	456	292	205	-	205	42	246	452	740	45	M24

A richiesta

COPPIE TRASMISSIBILI BLOCCAGGIO A MORSETTO TIPO B (GTR/S; GTR/D; GTR/DBSE)

									Co	ppie	trası	missi	bili [vm] ir	n rela	zion	e al	ø de	l for	o finito	O [mm]							
Grand.	10	11	12	14	15	16	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	55	60	65	70	75	80
0	46	47	48	50	52	53	55	56	58	60	63	64																
1	46	47	48	50	52	53	55	56	58	60	63	64																
2			73	76	77	78	81	83	84	87	89	91	95	97														
3						160	165	167	170	175	179	182	189	194	199	207												
4									194	199	204	207	214	219	224	232	239	244	249	257								
5											317	320	330	337	343	353	363	370	376	386	396	403	419					
6														588	598	612	627	637	646	661	675	685	709	733	757	781		
7																		675	685	699	714	723	748	772	796	820	844	868
8																				1327	1353	1371	1416	1460	1505	1549	1594	1638

CARATTERISTICHE TECNICHE GTR/S

Grand.		Coppia [Nm]		Peso	Inerzia	Velocità max *2	Carico assiale		erraggio [Nm]	D	isallineamer	nti	Rigidità R ₋ s
Glanu.	Nom	Max	Moto alternato	[Kg]	[Kgm²]	[Rpm]	[Kg]	S1	S2	Angolare α[°]	Assiale x [mm]	Radiale k [mm]	[10³ Nm/rad]
0	60	120	20	1,6	0,00058	14500	10	10,5	12	1°	0,7	-	80
1	100	200	33	1,3	0,00067	14200	14	10,5	12	0° 45′	0,8	-	117
2	150	300	50	2,4	0,00193	12500	19	17	13	0° 45′	0,9	-	156
3	300	600	100	3,9	0,00386	10200	26	43	22	0° 45′	1,2	-	415
4	700	1400	233	6,3	0,00869	8500	34	84	39	0° 45′	1,4	-	970
5	1100	2200	366	10,4	0,01009	7000	53	145	85	0° 45′	1,6	-	1846
6	1700	3400	566	15,6	0,03648	6300	70	145	95	0° 45′	2,0	-	2242
7	2600	5200	866	24,8	0,07735	5500	79	360	127	0° 45′	2,2	-	3511
8	4000	8000	1333	33,0	0,13403	5000	104	-	260	0° 45′	2,4	-	8991
9	7000	14000	2333	42,0	0,25445	4500	115	-	480	0° 45′	2,5	-	11941
10	10000	20000	3333	67,0	0,45019	3800	138	-	760	0° 45′	2,6	-	15720
11	12000	24000	4000	94,0	0,71654	3600	279	-	780	0° 45′	2,9	-	15521
12	25000	50000	8333	130,0	1,22340	3200	484	-	800	0° 30′	2,9	-	37700
13	35000	70000	11666	160,0	1,94410	3000	638	-	1100	0° 30′	3,1	-	51500
14	50000	100000	16666	210,0	3,10950	2700	683	-	1500	0° 30′	3,4	-	64300
15	65000	130000	21666	270,0	4,37920	2500	744	-	2600	0° 30′	3,8	-	69800

CARATTERISTICHE TECNICHE GTR/D

Grand.		Coppia [Nm]		Peso	Inerzia	Velocità max *2	Carico assiale	coppia s viti	erraggio [Nm]	D	isallineamer	nti	Rigidità R ₋ d
Granu.	Nom	Max	Moto alternato	[Kg]	[Kgm²]	[Rpm]	[Kg]	S1	S2	Angolare α[°]	Assiale x [mm]	Radiale K [mm]	[10³ Nm/rad]
0	60	120	20	1,7	0,00083	14500	10	10,5	12	1° 30′	1,4	0,70	42
1	100	200	33	1,8	0,00092	14200	14	10,5	12	1° 30′	1,6	0,80	51
2	150	300	50	3,5	0,00286	12500	19	17	13	1° 30′	1,8	0,80	71
3	300	600	100	5,8	0,00740	10200	26	43	22	1° 30′	2,4	0,95	184
4	700	1400	233	9,4	0,01660	8500	34	84	39	1° 30′	2,8	1,20	422
5	1100	2200	366	15,2	0,02850	7000	53	145	85	1° 30′	3,2	1,45	803
6	1700	3400	566	23,0	0,06358	6300	70	145	95	1° 30′	4,0	1,55	1019
7	2600	5200	866	34,0	0,12816	5500	79	360	127	1° 30′	4,4	1,55	1596
8	4000	8000	1333	47,0	0,22927	5000	104	-	260	1° 30′	4,8	2,15	3996
9	7000	14000	2333	61,0	0,44598	4500	115	-	480	1° 30′	5,0	2,15	5192
10	10000	20000	3333	96,0	0,79995	3800	138	-	760	1° 30′	5,2	2,40	6690
11	12000	24000	4000	132,0	1,22823	3600	279	-	780	1° 30′	5,8	2,40	6748
12	25000	50000	8333	173,0	1,97120	3200	484	-	800	1°	5,8	1,30	15900
13	35000	70000	11666	208,0	3,06240	3000	638	-	1100	1°	6,2	1,70	21800
14	50000	100000	16666	280,0	4,89420	2700	683	-	1500	1°	6,8	1,80	27000
15	65000	130000	21666	350,0	6,93250	2500	744	-	2600	1°	7,7	1,90	32000

A richiesta

NOTE

- Qstd (*1) Dimensioni diverse disponibili su richiesta.
- Velocità max (*²) Per velocità superiori contattare il nostro ufficio tecnico.

- I pesi si riferiscono al giunto foro grezzo.
- Le inerzie si riferiscono al giunto foro massimo.
- Scelta e disponibilità dei diversi tipi di bloccaggi vedi pagine 4 e 5.

GTR/DBSE - giunto torsionalmente rigido con allunga: introduzione

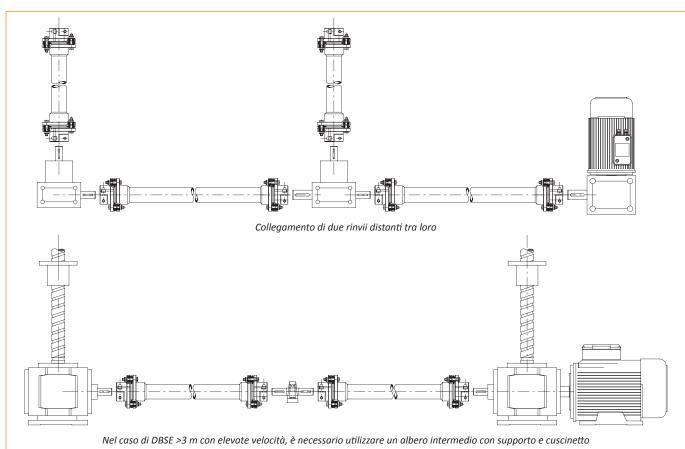
- Realizzato in acciaio completamente lavorato.
- Trattamento anticorrosivo di zincatura.
- Pacco lamellare in acciaio INOX.
- Esente da manutenzione e usura.
- Versione con allunga personalizzata per un D.B.S.E. specifico.
- Allunga saldata per un'elevata rigidità torsionale.

A RICHIESTA

- O Possibilità di impiego in applicazioni con elevate temperature d'esercizio (>150°C).
- O Possibilità di bilanciatura dinamica fino a Q=2,5.
- Esecuzioni personalizzate per specifiche esigenze.
- O Possibilità di diverse tipologie di bloccaggi sui mozzi (pagine 4 e 5).

Questo giunto senza gioco con allunga, denominato GTR/DBSE (Distance Between Shaft End), è costituito da un'allunga centrale di lunghezza personalizzata in funzione dell'applicazione e da un doppio pacco lamellare, per poter collegare in modo semplice e veloce due componenti distanti fra loro.

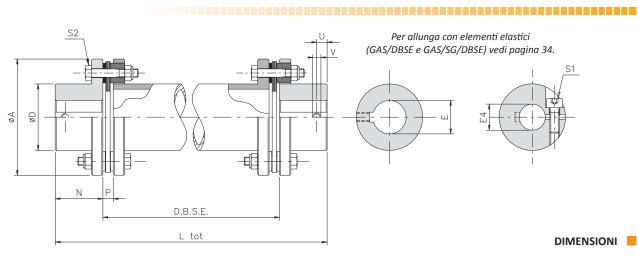
Questa tipologia di giunto a lamelle viene realizzato completamente in acciaio lavorato e i pacchi lamellari sono prodotti in acciaio INOX AISI 304, in modo da ottenere un giunto flessibile privo di usura e manutenzione. A garanzia di una durata nel tempo anche a condizioni avverse viene eseguito un trattamento anticorrosivo di zincatura. Tutti i particolari del giunto eccetto l'allunga personalizzata, sono realizzati ed equilibrati staticamente in classe DIN-ISO 1940:1:2003 Q 6.3 prima della lavorazione della chiavetta e del relativo bloccaggio.


In accordo con l'esigenza specifica della applicazione è possibile effettuare una bilanciatura statica o dinamica diversa su ogni singolo componente separato oppure sul giunto completamente montato.

DESCRIZIONE DELLE LAMELLE

L'elemento fondamentale di questo giunto torsionalmente rigido sono i pacchi lamellari costituiti da una serie di lamelle realizzate in acciaio INOX collegate tra loro mediante bussole in acciaio. Questo pacco lamellare viene a sua volta collegato in modo alternato alle flange dei mozzi o dell'eventuale spaziatore (GTR/D) o allunga (GTR/DBSE) mediante l'utilizzo di viti in acciaio classe 10.9 e i relativi dadi autobloccanti. In relazione alla conformazione si distinguono pacchi lamellari con :

- A) Lamelle ad anello continuo per 6 viti (Grandezze 1-7)
- B) Lamelle a settore per 6 viti (Grandezze 8-11)
- C) Lamelle a settore per 8 viti (Grandezze 12-15)


ESEMPI DI APPLICAZIONE

GTR/DBSE - giunto torsionalmente rigido con allunga: dati tecnici

	Grand.	А	D	E H7 max	E4 H7 max	N	Р	U	V	L _{tot}
	0	78	45	32	25	29	7,5	10	M5	
	1	80	45	32	25	36	8	10	M5	
	2	92	53	38	30	42	8	10	M5	
	3	112	64	45	35	46	10	15	M8	
Г	4	136	76	52	45	56	12	15	M8	
	5	162	92	65	55	66	13	20	M8	2 N
\ [6	182	112	80	70	80	14	20	M8	+
. [7	206	128	90	80	92	15	20	M10	= D.B.S.E.
\ [8	226	133	95	80	100	22	20	M10	D.B.
\ [9	252	155	110	-	110	25	25	M12	tot
. [10	296	170	120	-	120	32	25	M12	ا پ
. [11	318	195	138	-	140	32	30	M16	
\ [12	352	218	155	-	155	34	40	M20	
. [13	386	252	175	-	175	37	40	M20	
	14	426	272	190	-	190	37	45	M24	
· [15	456	292	205	-	205	42	45	M24	

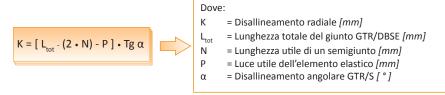
CARATTERISTICHE TECNICHE

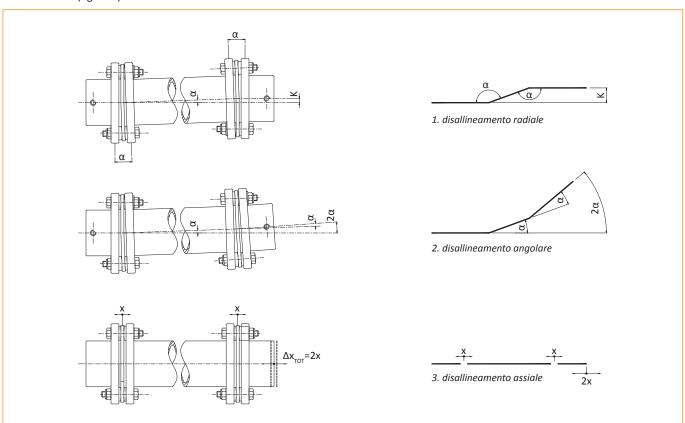
			Coppia [Nm]			Allı	unga	Peso	Velocità	Carico		rraggio viti ^[m]	Disa	allineame	nti
	Grand.	Nom	Max	Moto alternato	Peso [Kg/m]	Inerzia [Kgm²/m]	Rigidità relativa R _r rel [10º Nm/rad•m]	tot [Kg/m]	max *2 [Rpm]	assiale [Kg]	S 1	S2	Angolare α[°]	Assiale x[mm]	Radiale
ı	0	60	120	20	5,0	0,00197	12		14500	10	10,5	12	1° 30′	1,40	
	1	100	200	33	5,0	0,00197	12	- 2P)	14200	14	10,5	12	1° 30′	1,60	
	2	150	300	50	5,5	0,00281	21	(DBSE	12500	19	17	13	1° 30′	1,90	
	3	300	600	100	5,5	0,00281	29	(DB	10200	26	43	22	1° 30′	2,50	
	4	700	1400	233	8,0	0,00582	60	о О	8500	34	84	39	1° 30′	2,90	
	5	1100	2200	366	13,5	0,01550	148	allunga	7000	53	145	85	1° 30′	3,30	• tg α
▲	6	1700	3400	566	16,0	0,02718	269	o al	6300	70	145	95	1° 30′	4,00	; t
▲	7	2600	5200	866	16,5	0,03096	321	peso	5500	79	360	127	1° 30′	4,50	- P)
▲	8	4000	8000	1333	21,5	0,04907	640	-/-	5000	104	-	260	1° 30′	4,90	(DBSE
▲	9	7000	14000	2333	30,0	0,10648	1100	[GTR/D]	4500	115	-	480	1° 30′	5,10	(D
▲	10	10000	20000	3333	38,0	0,15508	1610	[6]	3800	138	-	760	1° 30′	5,30	¥ □
▲	11	12000	24000	4000	44,0	0,23972	-	peso	3600	279	-	780	1° 30′	5,90	
▲	12	25000	50000	8333	62,0	0,41522	-	H H	3200	484	-	800	1°	5,90	
▲	13	35000	70000	11666	67,0	0,53907	-	tot	3000	638	-	1100	1°	6,30	
▲	14	50000	100000	16666	-	-	-	Peso	2700	683	-	1500	1°	6,80	
▲	15	65000	130000	21666	-	-	-		2500	744	-	2600	1°	7,70	

A richiesta

NOTE

 \bullet Velocità max (*²) - Per velocità superiori contattare il nostro ufficio tecnico.

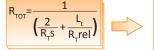

• Scelta e disponibilità dei diversi tipi di bloccaggi vedi pagine 4 e 5.



GTR/DBSE - giunto torsionalmente rigido con allunga: approfondimento

Il modello con allunga "GTR/DBSE", oltre ad essere indispensabile per collegare elementi di trasmissioni distanti tra loro, è in grado (a differenza del classico modello GTR/S) di recuperare, in base alle esigenze, fino al doppio del disallineamento angolare (figura 2) ed assiale (figura 3) oppure un disallineamento radiale elevato (figura 1) secondo la formula:

E' possibile inoltre determinare anche l'errore di posizionamento attraverso l'angolo di torsione secondo la formula:


Dove:

B = angolo di torsione [°]

 C_{mot} = coppia massima lato motore [Nm]

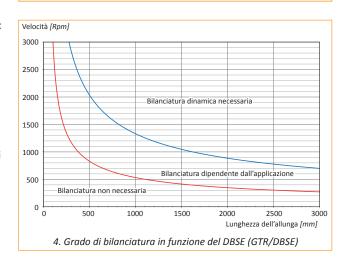
R_{TOT} = rigidità torsionale totale del giunto [Nm/rad]

Nel caso del GTR/DBSE la rigidità torsionale totale del giunto è espressa dalla formula:

Dove:

R_{TOT} = rigidità torsionale del giunto GTR/DBSE [Nm/rad]

R_Ts = rigidità torsionale del giunto GTR/S [Nm/rad]


 R_T rel = rigidità relativa dell'allunga [Nm/rad]

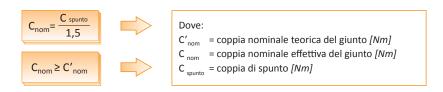
L = lunghezza dell'allunga (=DBSE-2P) [m]

La velocità massima raggiungibile dal giunto è influenzata da vari fattori:

- Velocità periferica del giunto;
- Peso del giunto;
- Lunghezza dell'allunga;
- Rigidità del giunto;
- Qualità della bilanciatura.

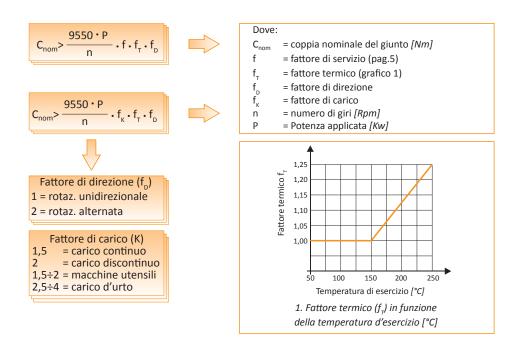
In generale, per la maggior parte delle applicazioni che richiedono il modello GTR/DBSE, una bilanciatura dinamica NON è necessaria; in altri casi valutarne l'esigenza secondo il grafico 4 in funzione della velocità e della lunghezza personalizzata dell'allunga.

GTR e GTR/DBSE - giunto torsionalmente rigido: approfondimento

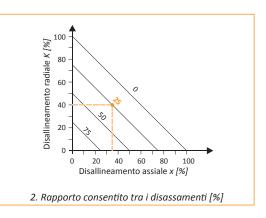


DIMENSIONAMENTO

Come preselezione della grandezza del giunto si utilizza la formula generica descritta a pagina 6. Il giunto GTR sopporta una coppia di C.C. (Corto Circuito) di 2,5 volte la coppia nominale. Se la C.C. è maggiore di 2,5 volte la coppia nominale, è bene scegliere il giunto usando la seguente formula:


 $C'_{nom} = \frac{C.C.}{2,5}$ $C'_{nom} = \frac{C.C.}{2,5}$ $C'_{nom} = coppia nominale teorica del giunto [Nm]$ $C_{nom} = coppia nominale effettiva del giunto [Nm]$ C.C. = coppia di corto circuito [Nm]

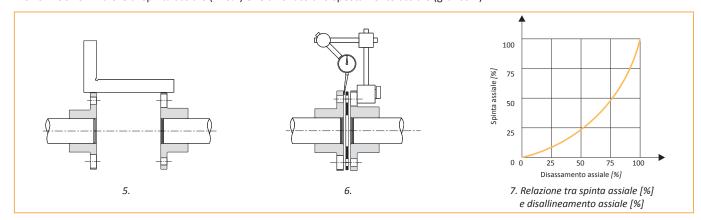
La coppia nominale indicata a catalogo del giunto GTR è riferita a coppie di spunto inferiori a 2 volte la coppia nominale, con fattore di servizio f=1.5. Se invece la coppia di spunto del motore supera di 2 volte quella nominale, è possibile utilizzare la seguente formula :


Una volta calcolata la coppia nominale teorica (C'nom), cioè quella che effetivamente dovrebbe avere il giunto per essere dimensionato correttamente, occorre confrontare le caratteristiche tecniche effettive dei GTR (pag.8-9) e scegliere la grandezza in grado di trasmettere una coppia nominale effettiva (Cnom) maggiore o uguale a quella trovata mediante le formule descritte precedentemente.

Stabilita in questo modo la grandezza del giunto da utilizzare, è possibile eseguire altre verifiche considerando ulteriori parametri:

funzione della coppia da trasmettere, è necessario ora prendere in considerazione la flessibilità necessaria confrontando i disallineamenti ammessi dal tipo di giunto scelto con quelli reali, previsti dagli alberi da collegare. È bene tener presente che i disassamenti assiale e radiale devono essere considerati abbinati tra loro, in quanto inversamente proporzionali (uno si riduce quando l'altro aumenta). Se si presentano contemporaneamente tutti i tipi di disallineamento, è necessario che la somma in percentuale rispetto al valore massimo non superi il 100% (grafico 2).

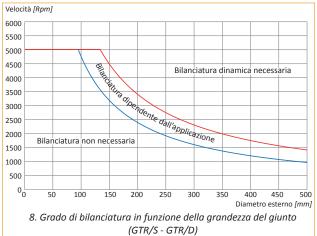
Completata e verificata la scelta del giunto in

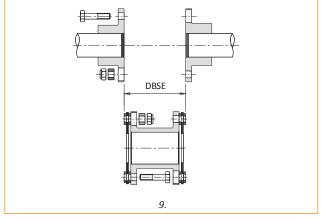


GTR e GTR/DBSE - giunto torsionalmente rigido: approfondimento

Le potenze nominali indicate a catalogo si riferiscono ad un utilizzo normale senza urti e con alberi ben allineati alla temperatura ambiente -20 °C +250 °C. Il valore di spinta assiale (±20%) è relazionato allo spostamento assiale (grafico 7).

La velocità massima raggiungibile dal giunto è influenzata da vari fattori:

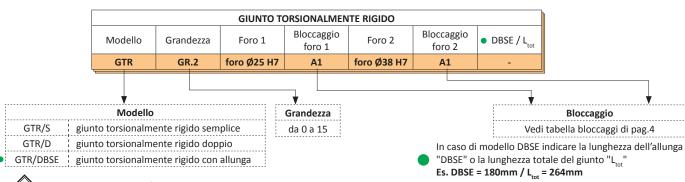

- Velocità periferica del giunto;
- Peso del giunto;
- Lunghezza dell'allunga (pagina 12-14);
- Rigidità del giunto;
- Qualità della bilanciatura.


In generale, per la maggior parte delle applicazioni, una bilanciatura dinamica NON è necessaria; In altri casi con l'utilizzo del modello GTR/DBSE valutarne l'esigenza secondo il grafico 8.

MONTAGGIO

- 1) effettuare un allineamento radiale e assiale il più preciso possibile, per avere il massimo assorbimento di eventuali disallineamenti e la massima durata del giunto (figura 5 e 6).
- 2) accertarsi che gli alberi siano montati in modo che la propria estremità risulti complanare alla superficie del semigiunto (la lunghezza dell'eventuale spaziatore comprensiva dei due pacchi lamellari dovrà essere pari alla distanza tra i due alberi) (figura 9).
- 3) Avvitare le viti di serraggio con chiave dinamometrica una dopo l'altra, rispettando una sequenza di tipo a croce, progressivamente fino ad ottenere la coppia di serraggio indicata a catalogo. (Serrare con cura la vite/bullone a contatto con la flangia del mozzo).
- 4) come ultima cosa è necessario accertarsi che il pacco lamellare sia rimasto ortogonale all'asse di trasmissione, se così non fosse stringere ulteriormente oppure allentare leggermente alcune viti al fine di renderlo tale.

Nei giunti con spaziatore (GTR/D) e con allunga (GTR/DBSE), la parte centrale del giunto, può essere considerata come un peso sospeso tra due molle (pacchi lamellari) e come tale avrà una frequenza naturale che, se eccitata, produrrà delle oscillazioni dello spaziatore o dell'allunga fino a provocare la rottura delle lamelle. Per diminuire la frequenza assiale



naturale si consiglia di aumentare la distanza delle flange dei mozzi rispetto alla quota nominale "DBSE" (fig. 9) da 1,5-2 mm, mettendo così preventivamente in trazione i pacchi lamellari e diminuire la possibilità di oscillazione dello spaziatore o dell'allunga.

Nota: Per montaggi in verticale vedere esecuzione proposta a pagina 9.

ESEMPIO DI ORDINAZIONE

17

GIUNTO RIGIDO

Fino a 860 Nm di coppia e 50 mm di alesaggio

GRI - giunto rigido: introduzione

- Realizzato in acciaio completamente lavorato con trattamento standard di fosfatazione.
- Estrema rigidità di collegamento.
- Elevata coppia trasmissibile.
- Esente da manutenzione e usura.
- Dimensioni compatte.

Bloccaggio a morsetto (tipo B), foro finito con tolleranza ISO H8 e ridotta rugosità.

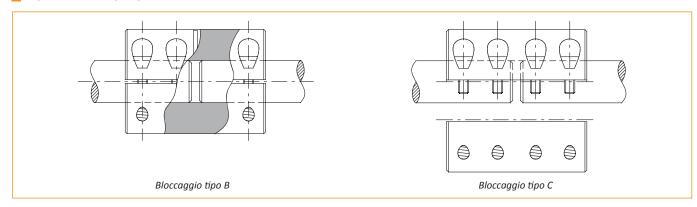
A RICHIESTA

- Fori diversi personalizzati.
- Bloccaggio a morsetto con cava (tipo B1).
- O Bloccaggio a morsetto in due parti con cava (tipo C1) o senza cava (tipo C).
- O Possibilità di trattamenti superficiali anticorrosivi per specifiche esigenze.

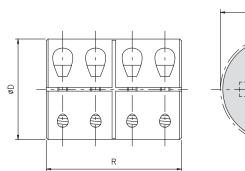
I giunti rigidi GRI sono progettati e realizzati per collegare due alberi di ugual diametro, senza però consentire alcun disassamento relativo. Il giunto è realizzato in un particolare unico nella versione con bloccaggio a morsetto ad 1 taglio, oppure a richiesta può essere eseguito con il bloccaggio a morsetto a 2 tagli, ottenendo un giunto in 2 particolari separabili e contrapposti permettendo un facile montaggio e smontaggio.

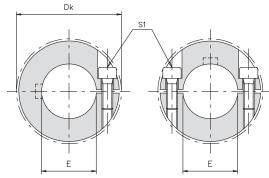
DIMENSIONAMENTO

La coppia nominale del giunto deve essere maggiore della coppia massima del lato motore, secondo la formula generica di pagina 6. I valori di coppia indicati sono calcolati ipotizzando un coefficiente d'attrito albero-giunto di $0.15~\mu m$.


MONTAGGIO

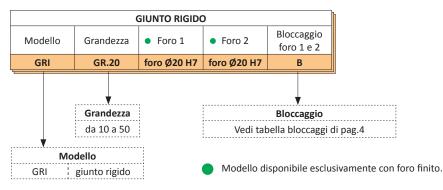
Si consiglia la lavorazione degli alberi di collegamento con:


- Finitura superficiale con Ra=1,6 μm.
- Tolleranza nominale h6.
- Accertarsi che gli alberi siano perfettamente allineati e privi di qualunque tipologia di disassamento.


Serrare le viti di bloccaggio in acciaio classe 8.8 con chiave dinamometrica rispettando la coppia di serraggio indicata a catalogo.

ESEMPI DI APPLICAZIONE

......


DIMENSIONI

Grandezza	D	Dk	E H8	R
10	32	33	10	45
15	40	-	15	50
20	45	47	20	65
25	50	52	25	70
30	55	57	30	75
35	65	70	35	85
40	70	74	40	90
45	80	83	45	100
50	90	95	50	110

CARATTERISTICHE TECNICHE

Grandezza	Coppia	max [Nm]	Peso	Inerzia	Velocità max		Viti S1	
Granuezza	Bloccaggio tipo B	▲ Bloccaggio tipo C	[Kg]	[Kgm²]	[Rpm]	Bloccaggio tipo B	Bloccaggio tipo C	Coppia serraggio [Nm]
10	44	38	0,25	0,000028	5500	n°4 x M4	n°8 x M4	5,2
15	99	94	0,42	0,000080	4200	n°4 x M5	n°8 x M5	10,5
20	141	141	0,65	0,000172	3800	n°4 x M6	n°8 x M6	17,0
25	171	177	0,87	0,000305	3500	n°4 x M6	n°8 x M6	17,0
30	195	212	1,11	0,000503	3200	n°4 x M6	n°8 x M6	17,0
35	353	380	1,75	0,001098	2700	n°4 x M8	n°8 x M8	43,0
40	386	434	2,13	0,001615	2500	n°4 x M8	n°8 x M8	43,0
45	436	488	2,96	0,002896	2200	n°4 x M8	n°8 x M8	43,0
50	790	860	4,31	0,005284	1900	n°4 x M10	n°8 x M10	84,0

ESEMPIO DI ORDINAZIONE

A richiesta

NOTE

• Scelta e disponibilità dei diversi tipi di bloccaggi vedi pagine 4 e 5.

21

GIUNTO A SOFFIETTO

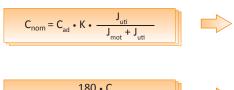
Fino a 300 Nm di coppia e 45 mm di alesaggio

GSF

- Realizzato in alluminio completamente lavorato e soffietto in acciaio INOX.
- O Compatibile con elevate temperature d'esercizio (> 300°C).
- Elevata rigidità torsionale e basso momento di inerzia.
- Esente da manutenzione e usura.
- Senza gioco per alta precisione ed elevate velocità.
- O Bloccaggio a morsetto (tipo B) e foro finito con tolleranza ISO H8 e ridotta rugosità.

A RICHIESTA

- O Bloccaggio a morsetto con cava (tipo B1).
- O Bloccaggio a morsetto in due parti con cava (tipo C1) o senza cava (tipo C).
- O Possibilità di collegamento alla gamma dei limitatori di coppia (giunti di sicurezza).
- Esecuzioni personalizzate per esigenze specifiche.


I giunti a soffietto GSF sono progettati e realizzati per tutte quelle applicazioni in cui sono richieste eccellenti caratteristiche dinamiche, indispensabili per elevate velocità, rapide inversioni di marcia e allo stesso tempo elevata rigidità torsionale con basso momento d'inerzia, senza pregiudicarne l'elevata affidabilità.

Il giunto è realizzato in tre particolari distinti e modulari tra loro, al fine di ottenere un elevata flessibilità di montaggio e disponibilità. I due mozzi sono collegati al soffietto sfruttando un sistema meccanico facile, semplice e sicuro, mediante grani radiali opportunamente dimensionati e senza l'ausilio di collanti. In questo modo il giunto può lavorare e sopportare temperature elevate, superiori ai 300 °C.

Il giunto permette la compensazione di tutti i disallineamenti possibili tra i due alberi da collegare secondo i valori indicati in tabella, garantendo un infinito numero di cicli di lavoro.

DIMENSIONAMENTO

La coppia nominale del giunto deve essere maggiore della coppia massima del lato motore secondo la formula generica di pag.4. Come ulteriori controlli è bene verificare: il momento d'inerzia in accelerazione/decelerazione, l'errore di posizionamento nel caso di applicazioni in cui è richiesta elevata precisione, la frequenza naturale dell'applicazione (sistema semplificato a due masse) secondo le formule:

$$\beta = \frac{180 \cdot C_{mot}}{\pi \cdot R_{T}}$$

$$F_{e} = \frac{1}{\pi} \sqrt{R_{\tau} \cdot \frac{J_{uti} + J_{mot}}{J_{uti} \cdot J_{mot}}} > 2 \cdot f_{mot}$$

Dove:

C_{nom} = coppia nominale del giunto [Nm]

C_{ad} = valore massimo tra coppia di accelerazione lato motore e coppia di accelerazione lato utilizzatore [Nm]

C_{mot} = coppia massima lato motore [Nm]

e = frequenza del sistema a due masse [Hz]

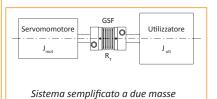
mot = frequenza lato motore [Hz]

not = momento d'inerzia lato motore [Kqm²]

J_{uti} = momento d'inerzia lato utilizzatore [Kgm²]

= fattore di carico

 R_t = rigidità torsionale del giunto [Nm/rad]


B = angolo di rotazione [°]

Fattore di carico (K)

1,5 = carico continuo 2 = carico discontinuo

2÷3 = macchine utensili

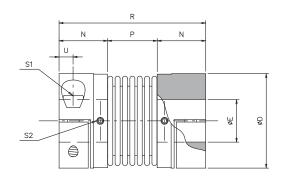
2,5÷4 = carico d'urto

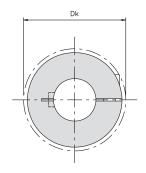
MONTAGGIO

Si consiglia la lavorazione degli alberi di collegamento con:

- Finitura superficiale con Ra=1.6 μm.
- Precisione di coassialità 0.01 mm.
- Tolleranza nominale h6.

Assemblare dapprima il giunto, inserendo il soffietto nei relativi mozzi e avvitare i grani "S2" uno dopo l'altro, rispettando una sequenza di tipo a croce, progressivamente, fino ad ottenere la coppia di serraggio indicata a catalogo.

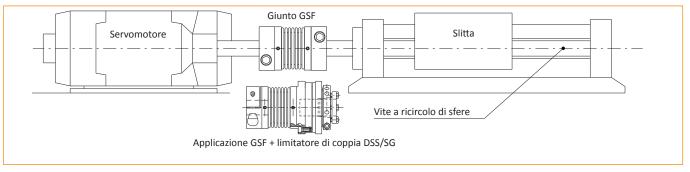

Inserire un mozzo sul primo albero per tutta la lunghezza N e serrare la vite del bloccaggio a morsetto con chiave dinamometrica, rispettando la coppia di serraggio indicata a catalogo. Far scorrere il secondo albero sul mozzo opposto per tutta la lunghezza N e serrare la vite del bloccaggio a morsetto "S1" con chiave dinamometrica, rispettando la coppia di serraggio indicata a catalogo.


Se si presentano contemporaneamente tutti i tipi di disallineamento, è necessario che la somma in percentuale rispetto al valore massimo non superi il 100%.

Se viene danneggiato il soffietto metallico si rende inutilizzabile il giunto stesso, quindi si raccomanda di porre la massima attenzione nel montaggio e smontaggio dei singoli componenti.

DIMENSIONI

Grandezza	D	Dk	El	1 7	N	D	D	11
Granuezza	В	DK	min	max	IN	P	I N	U
1	34	36	5	16	17	16,5	50,5	5
2	40	44	8	20	20,5	21	62	6
3	55	58	10	30	22,5	27	72	7
4	65	73	14	38	26	32	84	8
5	83	89	14	45	31	41	103	10


CARATTERISTICHE TECNICHE

	Coppi	ia [Nm]	Peso	Inerzia	Velocità	Viti	Grani	Coppia	serraggio	Disa	allineame	nti	F	Rigidità	
Grandezza	nom	max	[Kg]	[Kgm²]	max [Rpm]	S1	S2	Viti (S1) [Nm]	Grani (S2) [Nm]	Angolare α [°]	Assiale X [mm]	Radiale K[mm]	torsionale R ₇ [10³ Nm/Rad]	assiale R _A [N/mm]	radiale R _R [N/mm]
1	5	10	0,07	0,000014	14000	M4	M3	2,9	0,8	1° 30′	± 0,5	0,20	3,050	30	92
2	15	30	0,14	0,000032	12000	M5	M3	6	0,8	1° 30′	± 0,6	0,20	7,000	45	129
3	35	70	0,29	0,000136	8500	M6	M4	10	2	2°	± 0,8	0,25	16,300	69	160
4	65	130	0,45	0,000302	7000	M8	M4	25	2	2°	± 0,8	0,25	33,000	74	227
5	150	300	0,93	0,001049	5500	M10	M4	49	2	2°	± 1,0	0,30	64,100	87	480

COPPIE TRASMISSIBILI BLOCCAGGIO A MORSETTO TIPO B

							Coppi	e trası	nissib	ili [Nm]	in rela	zione	al ø d	el forc	finito	[mm]								
Grandezza	5	6	7	8	9	10	11	12	14	15	16	18	19	20	24	25	28	30	32	35	38	40	42	45
1	5	6	7	8	9	10	11	12	14	15	16													
2				13	14	16	18	19	22	24	25	29	30	32										
3							25	27	32	34	36	41	43	45	54	57	63	68						
4										62	67	75	79	83	100	104	116	124	133	145	158			
5												119	125	132	158	165	183	198	211	231	248	263	277	295

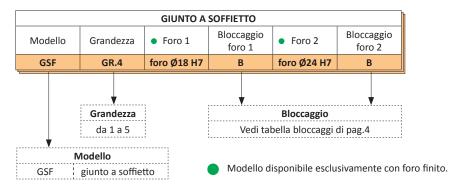
ESEMPI DI APPLICAZIONE

• Prodotto disponibile esclusivamente con foro finito.

A richiesta

• I pesi si riferiscono al giunto foro minimo; le inerzie si riferiscono al giunto foro massimo.

• Scelta e disponibilità dei diversi tipi di bloccaggi vedi pagine 4 e 5.



NOTE

GSF - giunto a soffietto: approfondimento

ESEMPIO DI ORDINAZIONE

GIUNTO A STELLA SENZA GIOCO e STANDARD

Fino a 9.600 Nm di coppia e 130 mm di alesaggio

GAS/SG GAS

GAS/SG-ST - giunto a stella senza gioco «in acciaio»: introduzione

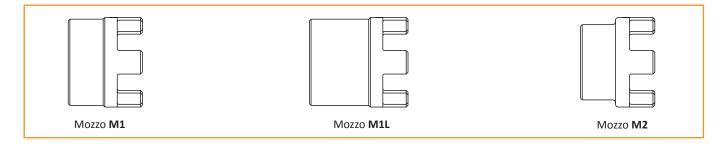
- Realizzato in acciaio completamente lavorato con trattamento standard di fosfatazione.
- Elastomero disponibile in diverse durezze (pagina 27)
- Elevata rigidità torsionale.
- Isolamento elettrico tra le parti.
- Staticamente bilanciato.
- Versione con calettatori integrati (GAS/SG/CCE pagina 29).

A RICHIESTA

- O Disponibile conforme alla direttiva ATEX.
- O Possibilità di trattamenti specifici o versione completamente in acciaio INOX.
- Esecuzioni personalizzate per esigenze specifiche.
- Possibilità di collegamento alla gamma dei limitatori di coppia (giunti di sicurezza).

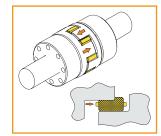
Il giunto GAS/SG è un giunto elastico ad innesto con dimensioni compatte, costituito da due mozzi realizzati in acciaio UNI EN10083/98 completamente lavorati con bassa rugosità ed un elastomero preciso montato ad innesto.

Il profilo dei denti dei mozzi è realizzato in modo tale da consentire all'elemento elastico di lavorare solo a compressione e non a taglio, conferendo al giunto elevata durata anche in presenza di inversioni di moto e variazioni di carico nella trasmissione.


La presenza dell'elastomero assicura:

- la possibilità di assorbire urti e vibrazioni
- compensare gli inevitabili disassamenti tra gli alberi da collegare
- silenziosità nella trasmissione del moto

La serie base del GAS/SG è costituita da diversi particolari assemblabili tra loro al fine di ottenere la giusta configurazione per l'applicazione:


Mozzo 1 (M1): mozzo base per qualunque tipo di collegamento
 Mozzo 1 Lungo (M1L): mozzo prolungato per collegamento di alberi lunghi

Mozzo 2 (M2): mozzo con diametro esterno ribassato per assemblaggio in spazi ridotti

DESCRIZIONE DELL'ELEMENTO ELASTICO

Il particolare fondamentale di questo giunto è l'elemento elastico o elastomero realizzato in materiale poliuretanico, disponibile in diversi gradi di durezza per esigenze ed applicazioni differenti. La mescola con cui sono realizzati risulta particolarmente resistente all'invecchiamento, all'abrasione, alla fatica, all'idrolisi e alle radiazioni UV. Inoltre presenta un'ottima resistenza ai principali agenti chimici, quali ozono, olii, grassi e idrocarburi. L'elemento elastico viene precompresso durante il montaggio tra i denti dei relativi mozzi, al fine di poter trasmettere il moto in assenza di gioco, ovvero torsionalmente rigido all'interno del carico di precompressione. La superficie precompressa dell'elastomero è sufficientemente ampia per indurre una bassa pressione di contatto sui denti dell'elemento elastico stesso riducendo, così le deformazioni permanenti a favore di un'elevata durata nel tempo.

CONFORMITÀ ATEX

Il giunto GAS/SG può essere fornito conforme alla DIRETTIVA 94/9/CE (ATEX) relativa agli apparecchi e sistemi di protezione destinati ad essere utilizzati in atmosfera potenzialmente esplosiva.

La versione del giunto non comporta nessuna variazione delle dimensioni rispetto alla versione standard. Sui mozzi viene eseguita una marcatura in relazione alle performance del giunto stesso. Occorre prevedere controlli programmati come descritto dal manuale di uso e manutenzione fornito insieme ad ogni giunto ATEX.

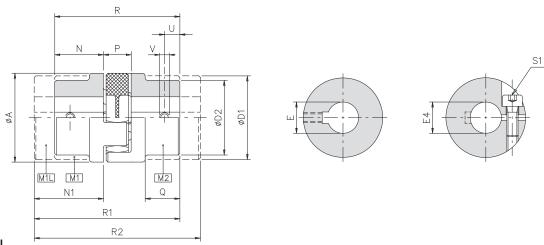
Gli elementi elastici attualmente impiegati sono:

- stella Rossa in poliuretano, 98 Shore-A: II 2 G D c T6 -20≤Ta≤+60°C X U
- stella Gialla in poliuretano, 92 Shore-A: II 2 G D c T5 -20≤Ta≤+80°C X U

GAS/SG-ST - giunto a stella senza gioco «in acciaio»: introduzione

ELEMENTO ELASTICO SG: CARATTERISTICHE FISICHE

Durezza	Materiale	Stelle	Temp	erature ammissibili [°c]	Impieghi
Durezza	iviateriale	Stelle	di esercizio	max (per brevi periodi)	IIIIbieBiii
92 Sh-A	Poliuretano		-40 ÷ +90	-50 ÷ +120	- piccola e media potenza - sistemi di controllo e di misura - motori elettrici in genere
98 Sh-A	Poliuretano		-30 ÷ +90	-40 ÷ +120	- elevate coppie di trasmissione - attuatori e martinetti - servomotori e rinvii angolari
64 Sh-D	Poliuretano	***	-20 ÷ +110	-30 ÷ +120	- elevata rigidità torsionale - macchine utensili - motori a combustione interna


ELEMENTO ELASTICO SG: CARATTERISTICHE TECNICHE

		Сор	pia		Disallineamenti			Rigidità	
Grandezza	Durezza	nom [Nm]	max [Nm]	angolare α[°]	assiale x [mm]	radiale K[mm]	torsionale statica R _r stat [Nm/Rad]	torsionale dinamica R ₇ din [Nm/rad]	radiale R _f [N/mm]
•	92 Sh-A	1,2	2,4	1		0,1	14,5	43	218
04 (7)	98 Sh-A	2	4	0,9	0,6	0,06	23	69,5	420
	64 Sh-D	2,4	4,8	0,8		0,04	34,7	102,5	630
•	92 Sh-A	3	6	1		0,13	31,5	95	270
03 (9)	98 Sh-A	5	10	0,9	0,8	0,08	51,5	155	520
	64 Sh-D	6	12	0,8		0,05	74,5	225	740
	92 Sh-A	7,5	15	1°		0,14	115	340	330
01 (14)	98 Sh-A	12,5	25	0° 54′	1	0,09	170	510	605
	64 Sh-D	16	32	0° 48′		0,06	235	700	855
	92 Sh-A	10	20	1°		0,10	815	1900	1250
00 (19)	98 Sh-A	17	34	0° 54′	1,2	0,06	980	2340	2000
	64 Sh-D	21	42	0° 48′		0,04	1450	4450	2950
	92 Sh-A	35	70	1°		0,14	2300	5120	1900
0 (24)	98 Sh-A	60	120	0° 54′	1,4	0,10	3650	8100	2900
	64 Sh-D	75	150	0° 48′		0,07	4500	11500	4180
	92 Sh-A	95	190	1°		0,15	3810	7280	2100
1 (28)	98 Sh-A	160	320	0° 54′	1,5	0,11	4180	10700	3650
	64 Sh-D	200	400	0° 48′]	0,08	7350	18500	4880
	92 Sh-A	190	380	1°		0,16	5580	11950	2850
2 (38)	98 Sh-A	325	650	0° 54′	1,8	0,12	8150	21850	5000
	64 Sh-D	405	810	0° 48′		0,09	9920	33600	6200
	92 Sh-A	265	530	1°		0,18	9800	20400	4050
3 (42)	98 Sh-A	450	900	0° 54′	2	0,15	15000	34000	5900
	64 Sh-D	560	1120	0° 48′		0,10	16000	71300	7570
	92 Sh-A	310	620	1°		0,22	11500	22000	4400
4 (48)	98 Sh-A	525	1050	0° 54′	2,1	0,16	16000	49000	6800
	64 Sh-D	655	1310	0° 48′		0,11	31000	100000	8900
	92 Sh-A	410	820	1°		0,24	12000	22500	3100
5 (55)	98 Sh-A	685	1370	0° 54′	2,2	0,17	24200	62500	7150
	64 Sh-D	825	1650	0° 48′		0,12	42000	111000	9850
6 (65)	92 Sh-A	900	1800	1°	2,6	0,25	38000	97000	6400
0 (03)	98 Sh-A	1040	2080	0° 54′	2,0	0,18	39000	98500	6650

Solo per versione GAS/SG-AL (pagina 33)

GAS/SG-ST - giunto a stella senza gioco «in acciaio»: dati tecnici

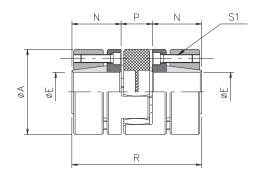
DIMENSIONI

Crandona	_	D1	D2	EH7	max	E4 H7 max	N.	NIA	D		<u> </u>	D1	R2		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Grandezza	A	D1	D2	M1	M2	M1	N	N1	P	Q	R	R1	KZ	U	V
01 (14)	30	30	-	16	-	15	11	19	13	-	35	42.5	50	5	M4
00 (19)	40	40	32	25	20	20	25	37	16	16,5	66	78	90	10	M5
0 (24)	55	53	40	35	26	30	30	50	18	20	78	98	118	10	M5
1 (28)	65	63	48	40	32	35	35	60	20	24	90	115	140	15	M8
2 (38)	80	78	66	48	44	45	45	70	24	33	114	139	164	15	M8
3 (42)	95	93	75	55	50	50	50	75	26	38	126	151	176	20	M8
4 (48)	105	103	85	62	56	60	56	80	28	45	140	164	188	20	M8
5 (55)	120	118	98	74	65	65	65	90	30	49	160	185	210	20	M10
6 (65)	135	133	115	80	80	70	75	100	35	61	185	210	235	20	M10

CARATTERISTICHE TECNICHE

Canadana	Coppia		Pes	O [Kg]			Inerzia	a [Kgm²]		Velocità max	E	Bloccaggio a morsetto
Grandezza	[Nm]	M1	M1L	M2	Stella	M1	M1L	M2	Stella	[Rpm]	Vite S1	Coppia di serraggio S1 [Nm]
01 (14)		0,06	0,1	-	0,005	0,00001	0,00001	-	0,0000005	25000	M4	4,4
00 (19)	27	0,2	0,3	0,2	0,009	0,00005	0,00007	0,00003	0,0000015	19000	M5	8,7
0 (24)	pagina	0,4	0,8	0,3	0,020	0,00020	0,00029	0,00014	0,0000080	13500	M6	15
1 (28)		0,7	1,3	0,5	0,030	0,00042	0,00066	0,00027	0,0000180	11800	M8	36
2 (38)	a di	1,3	2,2	1,1	0,060	0,00131	0,00189	0,00091	0,0000500	9500	M8	36
3 (42)	tabella	1,9	3,2	1,8	0,098	0,00292	0,00411	0,00178	0,0001000	8000	M10	70
4 (48)		2,8	4,4	2,4	0,105	0,00483	0,00653	0,00297	0,0002000	7100	M12	121
5 (55)	Vedi	4,0	6,1	3,8	0,150	0,00825	0,01125	0,00505	0,0003000	6300	M12	121
6 (65)		5,9	8,6	4,6	0,200	0,01682	0,02175	0,01037	0,0005000	5600	M12	121

COPPIE TRASMISSIBILI BLOCCAGGIO A MORSETTO TIPO B


									С	oppie	trasn	nissibi	li [Nm]	in re	lazio	ne a	l ø de	el foro	finito	[mm]								
Grand.	6	8	10	11	12	14	15	16	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	55	60	65	70
01 (14)	21	22	23	24	25	26	27																					
00 (19)			46	47	48	50	52	53	55	56	58																	
0 (24)					76	78	80	81	84	85	87	89	92	93	97	100												
1 (28)									165	167	170	175	179	182	189	194	199	207										
2 (38)											199	204	209	212	219	224	229	237	244	249	254	262						
3 (42)														320	330	337	343	353	363	370	376	386	396	403				
4 (48)																		1408	1445	1469	1494	1530	1567	1592	1653	1714		
5 (55)																					1640	1677	1714	1738	1800	1861	1922	
6 (65)																						1824	1861	1885	1947	2008	2069	2130

NOTE

- I pesi si riferiscono al giunto foro grezzo.
- \bullet Le inerzie si riferiscono al giunto foro massimo.
- Scelta e disponibilità dei diversi tipi di bloccaggi vedi pagine 4 e 5.

DIMENSIONI

Cuandana		EH	1 7	N	P	
Grandezza	А	min	max	N	P	R
01 (14)	30	6	16	11	13	35
00 (19)	40	10	20	25	16	66
0 (24)	55	15	28	30	18	78
1 (28)	65	19	38	35	20	90
2 (38)	80	20	48	45	24	114
3 (42)	95	28	55	50	26	126
4 (48)	105	35	62	56	28	140
5 (55)	120	35	70	65	30	160
6 (65)	135	40	75	75	35	185

CARATTERISTICHE TECNICHE

Crandazza	Coppia	Peso	O [Kg]	Inerzi	a [Kgm²]	Velocità max	Bloccage	gio a morsetto
Grandezza	[Nm]	M1	Stella	M1	Stella	[Rpm]	Vite S1 UNI 5931	Coppia di serraggio S1 [Nm]
01 (14)		0,06	0,005	0,00001	0,0000005	25000	N°4 x M2,5	0,75
00 (19)	27	0,20	0,009	0,00005	0,0000030	19000	N°6 x M4	3
0 (24)	pagina	0,40	0,020	0,00020	0,0000100	13500	N°4 x M5	6
1 (28)	bag	0,70	0,030	0,00042	0,0000200	11800	N°8 x M5	6
2 (38)	a di	1,30	0,060	0,00131	0,0000500	9500	N°8 x M6	10
3 (42)	tabella	1,90	0,098	0,00292	0,0001000	8000	N°4 x M8	35
4 (48)	Ji ta	2,80	0,105	0,00483	0,0002000	7100	N°4 x M8	35
5 (55)	Vedi	4,00	0,150	0,00825	0,0003000	6300	N°4 x M10	69
6 (65)		5,90	0,200	0,01682	0,0005000	5600	N°4 x M12	120

COPPIE TRASMISSIBILI BLOCCAGGIO CON CALETTATORE ESTERNO TIPO D

										Co	ppi	e tra	smis	sibi	li [Nm	j in r	elazio	ne al	ø del f	oro fir	ito [mr	n]						
Grand.	6	10	11	14	15	16	17	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	55	60	65	70	75
01 (14)	7	12	13	17	18	20																						
00 (19)		48	53	67	72	77	81	86	91	96																		
0 (24)					77	82	88	93	98	103	113	124	129	144														
1 (28)								186	196	206	227	247	258	289	309	330	361	392										
2 (38)										291	320	349	364	408	437	466	510	553	582	612	655	699						
3 (42)													485	545	584	623	681	740	779	818	876	934	973	1071				
4 (48)															584	623	681	740	779	818	876	934	973	1071	1168			
5 (55)																	1091	1184	1247	1309	1402	1496	1558	1714	1870	2026	2182	
6 (65)																			1852	1944	2083	2222	2315	2546	2778	3009	3241	3472

NOTE |

- \bullet I pesi si riferiscono al giunto foro grezzo.
- Le inerzie si riferiscono al giunto foro massimo.
- Scelta e disponibilità dei diversi tipi di bloccaggi vedi pagine 4 e 5.

GAS-ST - giunto a stella standard «in acciaio»: introduzione

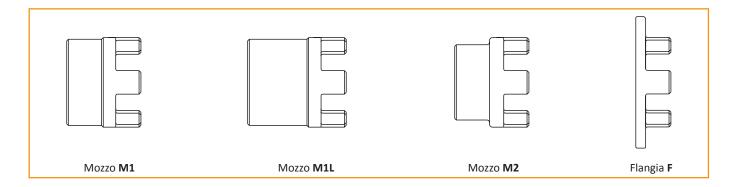
- Realizzato in acciaio completamente lavorato con trattamento standard di fosfatazione.
- Elastomero disponibile in diverse durezze (pagina 31).
- Alta compensazione dei disallineamenti.
- Smorzamento delle vibrazioni.
- Staticamente bilanciato.
- Modularità dei componenti con diverse versioni possibili.

A RICHIESTA

- Disponibile conforme alla direttiva ATEX.
- O Possibilità di trattamenti specifici o versione completamente in acciaio INOX.
- O Esecuzioni personalizzate per esigenze specifiche.
- O Possibilità di collegamento alla gamma dei limitatori di coppia (giunti di sicurezza).

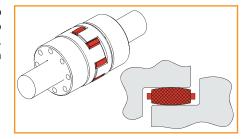
Il giunto GAS è un giunto elastico con dimensioni compatte, costituito da due mozzi realizzati in acciaio UNI EN 10083/98 completamente lavorati a bassa rugosità ed un elastomero montato ad innesto.

Il profilo dei denti dei mozzi e dell'elastomero dentato sono realizzati in modo tale da consentire all'elemento elastico di lavorare solo a compressione e non a taglio, ottenendo una distribuzione uniforme della pressione e conferendo al giunto elevata durata anche in presenza di inversioni di moto e variazioni di carico nella trasmissione.


La serie base del GAS è costituita da diversi particolari assemblabili tra loro al fine di ottenere la giusta configurazione per l'applicazione:

• Mozzo 1 (M1) : mozzo base per qualunque tipo di collegamento.

• Mozzo 1 Lungo (M1L) : mozzo prolungato per collegamento di alberi lunghi.


• Mozzo 2 (M2) : mozzo con diametro esterno ribassato per assemblaggio in spazi ridotti.

• Flangia (F) : flangia per collegamento albero-flangia.

DESCRIZIONE DELL'ELEMENTO ELASTICO

Il particolare fondamentale di questo giunto è l'elemento elastico o elastomero, realizzato in diversi gradi di durezze per esigenze ed applicazionidifferenti. La mescola con cui sono realizzati gli elementi elastici risultano particolarmente resistenti all'invecchiamento, all'abrasione, alla fatica, all'idrolisi e alle radiazioni UV. Inoltre presenta un'ottima resistenza ai principali agenti chimici quali ozono, olii, grassi e idrocarburi.

CONFORMITA' ATEX

Il giunto GAS può essere fornito conforme alla DIRETTIVA 94/9/CE (ATEX) relativa agli apparecchi e sistemi di protezione destinati ad essere utilizzati in atmosfera potenzialmente esplosiva.

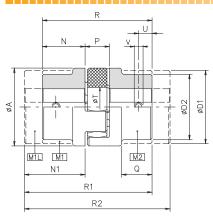
La versione del giunto non comporta nessuna variazione delle dimensioni rispetto alla versione standard. Sui mozzi viene eseguita una marcatura in relazione alle performance del giunto stesso. Occorre prevedere controlli programmati come descritto dal manuale di uso e manutenzione fornito insieme ad ogni giunto ATEX.

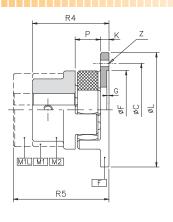
L'elemento elastico attualmente impiegato è:

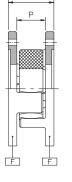
stella Gialla in poliuretano, 92 Shore-A: II 2 G D c T5 -20≤Ta≤+80°C X U

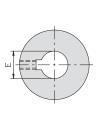
GAS-ST - giunto a stella standard «in acciaio»: introduzione

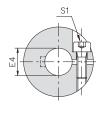
ELEMENTO ELASTICO: CARATTERISTICHE FISICHE


Durezza	Materiale	Stella	Temper	ature ammissibili [°c]	Impieghi
Durezza	Materiale	Stella	di esercizio	max (per brevi periodi)	impiegni
92 Sh-A	Poliuretano	****	-40 ÷ +90	-50 ÷ +120	- piccola e media potenza - sistemi con frequenti avvii
95 Sh-A 98 Sh-A	Termoplastico	*	-40 ÷ + 125	-50 ÷ +150	- elevate coppie di trasmissione - elevata escursione termica
64 Sh-D	Poliuretano	*	-20 ÷ +110	-30 ÷ +120	- elevata rigidità torsionale - motori a combustione interna


ELEMENTO ELASTICO: CARATTERISTICHE TECNICHE


			Co	ppia	D	isallineamer	nti		Rigidità R _T	[10³ Nm/rad]	
Grandezza	Durezza	nom	max	moto alternato	Angolare	Assiale	Radiale	25%	50%	75%	100%
		[Nm]	[Nm]	[Nm]	α [°]	X [mm]	K [mm]	coppia nom	coppia nom	coppia nom	coppia nom
	92 Sh-A	10	20	2,6				0,62	0,73	0,93	1,18
00 (19)	98 Sh-A	17	34	4,4	1° 18′	1,0	0,20	0,92	1,14	1,33	1,49
	64 Sh-D	21	42	5,5				1,97	3,33	4,40	5,37
	92 Sh-A	35	70	9				2,44	2,71	3,66	4,43
0 (24)	98 Sh-A	60	120	16	1° 18′	1,0	0,22	3,64	4,74	5,47	5,92
	64 Sh-D	75	150	19,5				5,50	9,35	12,40	15,10
	92 Sh-A	95	190	25				4,10	5,73	6,62	7,65
1 (28)	98 Sh-A	160	320	42	1° 18′	1,2	0,25	6,08	7,82	8,88	10,68
	64 Sh-D	200	400	52				10,10	17,00	22,55	27,50
	92 Sh-A	190	380	49				8,69	10,75	12,55	14,57
2 (38)	98 Sh-A	325	650	85	1° 18′	1,4	0,28	10,95	14,13	18,25	21,90
	64 Sh-D	405	810	105				25,75	43,50	57,50	70,10
	92 Sh-A	265	530	69				11,52	14,66	17,27	21,50
3 (42)	98 Sh-A	450	900	117	1° 18′	1,6	0,32	16,34	21,41	25,17	30,29
	64 Sh-D	560	1120	145				29,30	49,50	65,45	79,85
	92 Sh-A	310	620	81				11,85	18,72	21,34	24,52
4 (48)	98 Sh-A	525	1050	137	1° 18′	1,7	0,36	17,97	24,39	27,68	34,14
	64 Sh-D	655	1310	170				35,10	59,20	78,30	95,50
	92 Sh-A	410	820	105				16,63	26,27	29,94	34,42
5 (55)	98 Sh-A	685	1370	178	1° 18′	1,8	0,38	24,88	33,77	38,33	47,27
	64 Sh-D	825	1650	215				39,65	66,90	88,55	107,90
	92 Sh-A	625	1250	163				27,14	38,00	40,71	50,67
6 (65)	98 Sh-A	940	1880	245	1° 18′	2,0	0,42	36,00	48,01	55,55	66,47
	64 Sh-D	1175	2350	305				55,54	93,65	124,00	150,10
	92 Sh-A	975	1950	254				54,17	70,10	89,38	103,63
7 (75)	98 Sh-A	1465	2930	381	1° 18′	2,5	0,48	72,52	92,30	112,81	123,07
	64 Sh-D	2410	4820	625				91,21	153,87	203,51	249,12
	92 Sh-A	2400	4800	624				88,99	113,90	164,29	177,98
8 (90)	98 Sh-A	3600	7200	936	1° 18′	2,8	0,50	127,47	172,99	201,82	230,65
	64 Sh-D	4500	9000	1170				246,85	415,53	550,13	672,87
9 (100)	95 Sh-A	3300	6600	858	1° 18′	3,0	0,52	95,09	157,88	210,55	255,82
10 (110)	95 Sh-A	4800	9600	1248	1° 18′	3,2	0,55	115,44	195,24	256,41	315,42




GAS-ST - giunto a stella standard «in acciaio»: dati tecnici

DIMENSIONI

Crandazza	A	С	D1	D2	E H7	max	E4 H7 max	F	G	,	К	N	N1	Р	Ω	R	R1	R2	R4	R5	R6	т	U	V	Z
Grandezza	A		וטו	DZ	M1	M2	M1	H7	G	L	K	IN	INI	Р	ų	K	KI	KZ	K4	кэ	KO	'	U	V	۷
00 (19)	40	50	40	32	25	20	20	40	1,5	58	8	25	37	16	16,5	66	78	90	49	61	32	18	10	M5	n.5 x ø4,5
0 (24)	55	65	53	40	35	26	30	55	1,5	74	8	30	50	18	20	78	98	118	56	76	34	27	10	M5	n.5 x ø4,5
1 (28)	65	80	63	48	40	32	35	65	1,5	92	10	35	60	20	24	90	115	140	65	90	40	30	15	M8	n.6 x ø6,6
2 (38)	80	95	78	66	48	44	45	80	1,5	107	10	45	70	24	33	114	139	164	79	104	44	38	15	M8	n.6 x ø6,6
3 (42)	95	115	93	75	55	50	50	95	2	132	12	50	75	26	38	126	151	176	88	113	50	46	20	M8	n.6 x ø9
4 (48)	105	125	103	85	62	56	60	105	2	142	12	56	80	28	45	140	164	188	96	120	52	51	20	M8	n.8 x ø9
5 (55)	120	145	118	98	74	65	65	120	2	164	16	65	90	30	49	160	185	210	111	136	62	60	20	M10	n.8 x ø11
6 (65)	135	160	133	115	80	80	70	135	2	179	16	75	100	35	61	185	210	235	126	151	67	68	20	M10	n.10 x ø11
7 (75)	160	185	158	135	95	95	-	160	2,5	215	19	85	110	40	69	210	235	260	144	169	78	80	25	M10	n.10 x ø14
8 (90)	200	225	180	160	110	110	-	200	3	246	20	100	125	45	81	245	270	295	165	190	85	100	30	M12	n.12 x ø14
9 (100)	225	250	-	180	-	120	-	225	4	285	25	110	-	50	89	270	-	-	185	-	100	113	30	M12	n.12 x ø14
10 (110)	255	290	-	200	-	130	-	255	4	330	26	120	-	55	96	295	-	-	201	-	157	127	35	M16	n.12 x ø18

■ CARATTERISTICHE TECNICHE

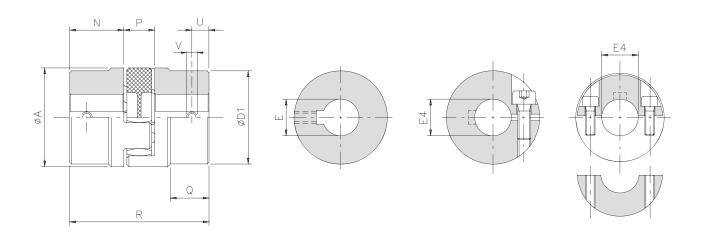
	Sua u al a a	Coppia		F	Peso [ĸ	g]			lı	nerzia [Kgm²]		Velocità max		Bloccaggio a morsetto
1	Grandezza	[Nm]	M1	M1L	M2	F	Stella	M1	M1L	M2	F	Stella	[Rpm]	Vite S1	Coppia di serraggio S1 [Nm]
	00 (19)		0,2	0,3	0,2	0,1	0,009	0,00005	0,00007	0,00003	0,00007	0,000003	19000	M5	10,5
Г	0 (24)		0,4	0,8	0,3	0,3	0,020	0,00020	0,00029	0,00010	0,00014	0,000010	13500	M6	17,5
	1 (28)	31	0,7	1,3	0,5	0,6	0,030	0,00042	0,00066	0,00022	0,00044	0,000020	11800	M8	28
	2 (38)		1,3	2,2	1,1	0,9	0,060	0,00131	0,00189	0,00089	0,00121	0,000050	9500	M8	28
	3 (42)	pagina	1,9	3,2	1,8	1,6	0,098	0,00292	0,00411	0,00232	0,00246	0,000100	8000	M10	84
	4 (48)	ë	2,8	4,4	2,4	1,8	0,105	0,00483	0,00653	0,00383	0,00302	0,000200	7100	M12	145
	5 (55)	tabella	4,0	6,1	3,8	3,0	0,150	0,00825	0,01125	0,00740	0,00740	0,000300	6300	M12	145
	6 (65)	tab	5,9	8,6	4,6	3,7	0,200	0,01682	0,02175	0,01087	0,01087	0,000500	5600	M12	145
	7 (75)	Vedi	9,1	13	7,2	5,2	0,380	0,03933	0,04915	0,02393	0,02333	0,002000	4750	1	-
	8 (90)		17,0	22	12,5	8,3	0,650	0,10936	0,09293	0,08484	0,06036	0,004000	3750	1	=
•	9 (100)		-	-	25	10,5	0,850	-	-	0,11450		0,006000	3350	-	-
٩Г	10 (110)		-	-	35	18,0	1,250	-	-	0,20120		0,011000	3000	-	-

COPPIE TRASMISSIBILI BLOCCAGGIO A MORSETTO TIPO B


									`onn	io tr	acmi	ccih	ili m	_{n/} in	rela:	ione :	al ø de	foro f	inito (nm1						
									opp	ic tr	331111	3310	iii [/v/	<i>'''j</i> ''''	Ciaz	.10110 0	ii y uc	10101	iiiito į	11111						
Grand.	10	11	12	14	15	16	18	19	20	22	24	25	28	30	32	35	38	40	42	45	48	50	55	60	65	70
00	46	47	48	50	52	53	55	56	58																	
0			76	78	80	81	84	85	87	89	92	93	97	100												
1							165	167	170	175	179	182	189	194	199	207										
2									199	204	209	212	219	224	229	237	244	249	254	262						
3												320	330	337	343	353	363	370	376	386	396	403				
4																1408	1445	1469	1494	1530	1567	1592	1653	1714		
5																			1640	1677	1714	1738	1800	1861	1922	
6																				1824	1861	1885	1947	2008	2069	2130

■ NOTE A richiesta

- I pesi si riferiscono al giunto foro grezzo.
- Le inerzie si riferiscono al giunto foro massimo.
- Scelta e disponibilità dei diversi tipi di bloccaggi vedi pagine 4 e 5.



- Realizzato in alluminio completamente lavorato.
- Elastomero disponibile in diverse durezze (vedi pagine 24 e 31).
- O Peso e momento d'inerzia ridotti.
- Isolamento elettrico tra le parti.
- Staticamente bilanciato.
- Modularità dei componenti con diversi sistemi di bloccaggio sui mozzi.

A RICHIESTA

- O Bloccaggio a morsetto a una parte con sede chiavetta (tipo B1).
- O Bloccaggio a morsetto a due parti con sede chiavetta (tipo C1).
- O Disponibile conforme alla direttiva ATEX.
- O Personalizzazioni per esigenze specifiche.

DIMENSIONI

				EH7 max	E4 H7 max							Pes	O [Kg]	Inerzia į	10 ⁻³ Kgm²]	Velocità	Bloccag	ggio a morsetto
Grandezze	Coppia [Nm]	Α	D1	M1	M1	N	Р	Q	R	U	V	M1	Stella	M1	Stella	max [Rpm]	Vite	Coppia di serraggio [Nm]
04 (7)	7	14	-	7	6	7	8	-	22	3,5	M3	0,003	0,0007	0,000085	0,000015	34000	M2,5	0,8
03 (9)	pag.27 ag.31	20	-	9	9	10	10	-	30	4	M4	0,009	0,002	0,000500	0,000080	22000	M3	1,4
01 (14)	<u>≔</u> ∞	30	-	16	15	11,5	12	-	35	5	M4	0,02	0,005	0,002800	0,000500	19000	M4	3,1
00 (19)	AL vec	40	-	25	20	25	16	-	66	10	M5	0,07	0,009	0,020500	0,001500	14000	M5	6,2
0 (24)	SG-A S-AL	55	53	35	30	30	18	20	78	10	M5	0,13	0,020	0,050000	0,008000	10500	M6	10,5
1 (28)	AS/ GA	65	63	40	35	35	20	24	90	15	M8	0,26	0,030	0,200000	0,018000	9000	M8	25
2 (38)	9	80	78	48	45	45	24	33	114	15	M8	0,46	0,060	0,400000	0,050000	7000	M8	25

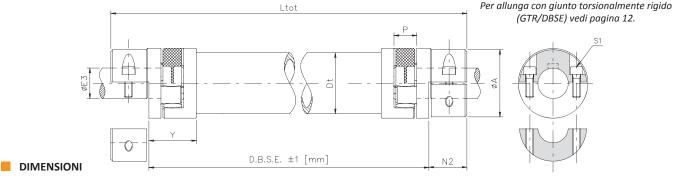
COPPIE TRASMISSIBILI BLOCCAGGIO A MORSETTO TIPO B

						(Сорр	ie tra	smiss	sibili [_{Nm]} in	rela	zione	al ø d	del fo	ro fin	ito [m	m]							
Grandezze	3	4	6	8	9	10	11	12	14	15	16	18	19	20	22	24	25	28	30	32	35	38	40	42	45
04 (7)	1,4	1,6	1,8																						
03 (9)		3,1	3,5	3,8	4																				
01 (14)			9	10	10	10,5	11	11,5	12	12,5															
00 (19)						21	21	22	23	24	24	25	26	26											
0 (24)								35	36	37	37	38	39	40	41	42	43	45	46						
1 (28)												80	81	82	84	87	88	92	94	97	100				
2 (38)														97	99	101	103	106	109	111	115	118	121	123	127

NOTE

- \bullet I pesi si riferiscono al giunto foro grezzo.
- Le inerzie si riferiscono al giunto foro massimo.
- Scelta e disponibilità dei diversi tipi di bloccaggi vedi pagine 4 e 5.

GAS/SG/DBSE-AL - giunto a stella senza gioco con allunga «in alluminio»: dati tecnici

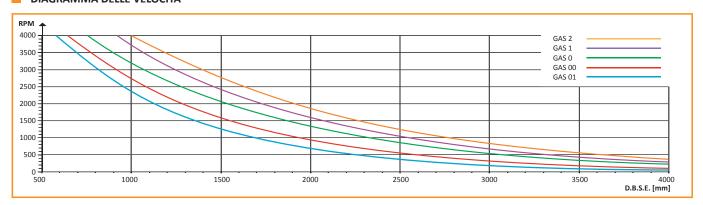


- Realizzato in alluminio completamente lavorato.
- Elastomero disponibile in diverse durezze (vedi pagine 25 e 29).
- Montaggio semplificato grazie al bloccaggio a morsetto in 2 parti (tipo C).
- Montaggio radiale senza allontanare le parti.
- Isolamento elettrico tra le parti.
- Allunga personalizzata per un DBSE specifico.

A RICHIESTA

.....

- Bloccaggio a morsetto a 2 parti con sede chiavetta (tipo C1).
- O Possibilità di realizzare diversi sistemi di fissaggio.
- O Disponibile conforme alla direttiva ATEX.
- Possibilità di bilanciature dinamiche fino a Q=2,5.

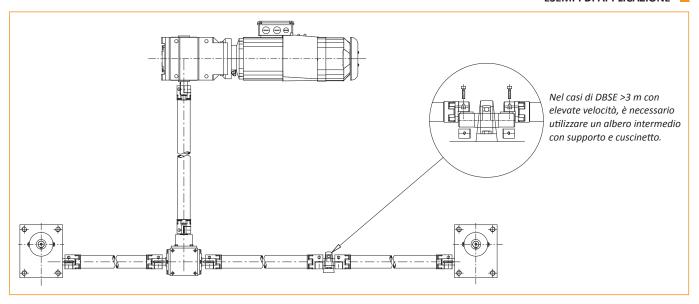


			E3						Allunga	<u> </u>	Peso		DBSE		E4 H7 max
Grandezza	Coppia [Nm]	Α	H7 max	N2	Р	Υ	Dt	Peso [Kg/m]	Inerzia [10³ Kg/m]	Rigidità R _T rel [10³ Nm/rad•m]	tot [Kg]	L _{tot} [mm]	min [mm]	Vite S1	Coppia di serraggio [Nm]
01 (14)		30	15	14	12	20,5	30	1,06	0,162	1552	/ + 2Y)	2	58	M4	3,1
00 (19)	.27	40	20	19	16	30,5	35	1,27	0,273	2650	ot = //SG-AL] (DBSE - :	+ 2 N2	95	M5	6,2
0 (24)	li pag.27	55	30	22	18	37,5	50	1,91	0,917	8800	1 5 t	DBSE .	113	M6	10,5
1 (28)	Vedi	65	35	25	20	41	60	3,34	2,184	21150	Peso peso [G/ o allunga	tot = [131	M8	25
2 (38)		80	45	34	24	46	70	5,09	4,341	42400	2 • peso		161	M8	25

COPPIE TRASMISSIBILI BLOCCAGGIO A MORSETTO TIPO C

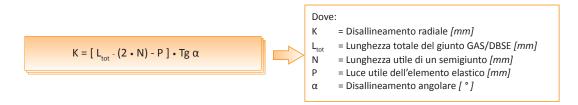
						Coppi	e tras	missib	oili [Nm]	in rel	azione	e al ø o	del for	o finit	O [mm]							
Grandezza																						
01 (14)	6	9	11	12	13	15	16															
00 (19)			17	19	21	24	26	28	31	33	35											
0 (24)					24	28	30	32	36	38	40	44	47	49	55	59						
1 (28)									69	73	77	85	92	96	108	115	123	135				
2 (38)											77	85	92	96	108	115	123	135	146	154	162	173

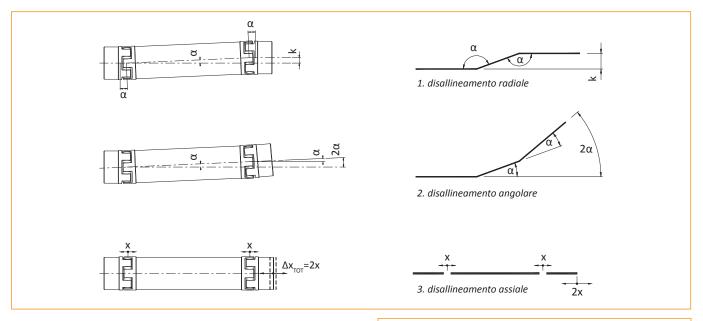
DIAGRAMMA DELLE VELOCITÀ



NOTE

- I pesi si riferiscono al giunto foro grezzo.
- Le inerzie si riferiscono al giunto foro massimo.
- Scelta e disponibilità dei diversi tipi di bloccaggi vedi pagine 4 e 5.



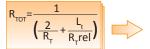

ESEMPI DI APPLICAZIONE

GAS/SG/DBSE-AL - giunto a stella senza gioco con allunga «in alluminio»: approfondimento

Il modello con allunga centrale "GAS/SG/DBSE-AL", oltre ad essere indispensabile per collegare elementi di trasmissioni distanti tra loro, è in grado (a differenza del classico modello GAS-SG) di recuperare, in base alle esigenze, fino al doppio del disallineamento angolare (figura 2) ed assiale (figura 3) oppure un disallineamento radiale elevato (figura 1) secondo la formula:

E' possibile inoltre determinare anche l'errore di posizionamento attraverso l'angolo di torsione secondo la formula:

 $\beta = \frac{1}{\pi \cdot R_{\text{TOT}}}$


Dove:

= angolo di torsione [°]

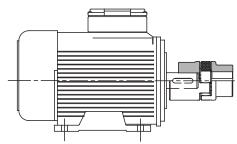
C_{mot} = coppia massima lato motore [Nm]

Tot = rigidità torsionale totale del giunto [Nm/rad]

Nel caso del GAS/SG/DBSE-AL la rigidità torsionale totale del giunto è espressa dalla formula:

Dove:

 R_{TOT} = rigidità torsionale totale [Nm/rad]


R_T = rigidità torsionale della stella [Nm/rad]

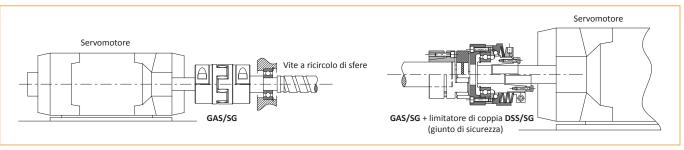
 R_{τ} rel = rigidità torsionale dell'allunga [Nm/rad]

= lunghezza dell'allunga (=DBSE-2Y) [m]

GAS/SG e GAS - giunto a stella senza gioco e standard: selezione per motori

Motor	e elettrico			750 Rp	m			•	1000 R	om	'			1500 R	om				3000 Rp	om	
Grand.		Р	С		GAS		Р	С		GAS		Р	С		GAS		Р	С		GAS	
IEC	Albero	[Kw]	[Nm]	92 Sh-A	98 Sh-A	64 Sh-D	[Kw]	[Nm]	92 Sh-A	98 Sh-A	64 Sh-D	[Kw]	[Nm]	92 Sh-A	98 Sh-A	64 Sh-D	[Kw]	[Nm]	92 Sh-A	98 Sh-A	64 Sh-D
56	Ø9x20	-	-	-	-	-	0,037 0,045	0,43 0,52	03	03	03	0,06	0,43	03	03	03	0,09	0,32	03	03	03
63	Ø11x23	-	-	-	-	-	0,06	0,7	01	01	01	0,12 0,18	0,88 1,30	01	01	01	0,18 0,25	0,62 0,86	01	01	01
71	Ø14x30	0,09 0,12	1,4 1,8	01	01	01	0,18 0,25	2,0 2,8	01	01	01	0,25 0,37	1,80 2,50	01	01	01	0,37 0,55	1,30 1,90	01	01	01
80	Ø19x40	0,18	2,5 3,5	00	00	00	0,37	3,9 5,8	00	00	00	0,55	3,70 5,10	00	00	00	0,75 1,10	2,50 3,70	00	00	00
90 S	Ø24x50	0,37	5,3	00	00	00	0,75	8,0	0	00	00	1,10	7,50	0	00	00	1,50	5,00	00	00	00
90 L	Ø24x50	0,55	7,9	0	00	00	1,10	12	0	0	0	1,50	10	00	00	00	2,20	7,40	0	00	00
100 L	Ø28x60	0,75 1,10	11 16	0	0	0	1,50	15	0	0	0	2,20 3,00	15 20	0	0	0	3,00	9,80	0	0	0
112 M	Ø28x60	1,50	21	0	0	0	2,20	22	0	0	0	4,00	27	1	0	0	4,00	13	0	0	0
132 S	Ø38x80	2,20	30	1	1	1	3,00	30	1	1	1	5,50	36	1	1	1	5,50 7,50	18 25	1	1	1
132 M	Ø38x80	3,00	40	1	1	1	4,00 5,50	40 55	1	1	1	7,50	49	1	1	1	-	-	-	-	-
160 M	Ø42x110	4,00 5,50	54 74	2	2	2	7,50	75	2	2	2	11,00		2	2	2	11,00 15,00	35 19	2	2	2
160 L	Ø42x110	7,50	100	2	2	2	11,00	109	2	2	2	15,00		2	2	2	18,50	60	2	2	2
180 M	Ø48x110	-	-	-	-	-	-	-	-	-	-	18,50		2	2	2	22	71	2	2	2
180 L	Ø48x110	11,00	145	3	2	2	15,00	148	3	2	2	22	148	3	2	2	-	- 07	-	-	-
200 L	Ø55x110	15,00	198	4	3	3	18,50 22,00	181 215	4	3	3	30	196	4	3	3	30 37	97 120	3	3	3
225 S	Ø55x110 Ø60x140	18,50	244	4	3	3	-	-	-	-	-	37	240	4	3	3	-	-	-	-	-
				4	3	3			4	3	3			4	3	3			3	3	3
225 M	Ø55x110 Ø60x140	22	290	4	4	4	30	293	4	4	4	45	292	4	4	4	45	145	3	4	4
	Ø60x140			6	5	4			6	5	4			6	4	4			4	4	4
250 M	Ø65x140	30	392	6	5	5	37	361	6	5	5	55	356	6	5	5	55	177	5	5	5
280 S	Ø65x140 Ø75x140	37	483	6	6	5	45	438	6	5	5	75	484	6	5	5	75	241	5	5	5
280 M	Ø65x140 Ø75x140	45	587	6	6	6	55	535	6 6	6	5 6	90	581	6	6	6	90	289	5 5	5 6	5 6
315 S	Ø65x140 Ø80x170	55	712	8	7	6	75	727	8	7	6	110	707	8	7	6	110	353	6 6	5 6	5 6
315 M	Ø65x140 Ø80x170	75	971	8	7	7	90	873	8	7	7	132	849	8	7	7	132	423	7	6	5
	Ø65x140	90	1170	8	8	7	110	1070	8	8	7	160	1030				160	513	7	6	5
315 L	Ø80x170		1420	8	8	8	132	1280	8	8	7	200	1290	8	8	7	200	641	7	6	6
	Ø85x170		1710	10	8	8	160	1550	8	8	7	-	-	-	-	-	-	-	-	-	-
0.17	Ø65x140		2070	10	8	8	200	1930	10	8	8	250	1600			7	250	802	8	7	7
315	Ø85x170	200	2580	-	10	8	250	2410	10	8	8	315	2020	8	8	8	315	1010	8	8	7
	Ø75. 440	-	-	-	-	-	-	-	-	-	-	355	2280	9	8	8	355	1140	8	8	7
355	Ø75x140 Ø95x170	250	3220	-	10	10	315	3040	-	10	8	400	2570	-	10	8	400	1280	8	8	7
	,JJX170	315	4060	-	-	-	400	3850	-	-	-	500	3210	-	10	10	500	1600	8	8	7
400	Ø80x170	355	4570	-	-	-	450	4330	-	-	-	560	3580	-	-	-	560	1790	8	8	8
400	Ø110x210	400	5150	-	-	-	500	4810	-	-	-	630	4030	-	-	-	630	2020	0	0	0

Solo per versione GAS/SG-AL (pagina 33)


• Per la scelta del giunto si è considerato un fattore di sicurezza di 1,5 sulla coppia nominale e una temperatura ambiente di 27°C

GAS/SG e GAS - giunto a stella senza gioco e standard: approfondimento

ESEMPI DI APPLICAZIONE

DIMENSIONAMENTO

Come preselezione della grandezza del giunto si può utilizzare la formula generica descritta a pagina 6. Stabilita in questo modo la grandezza del giunto da utilizzare, è possibile eseguire altre verifiche considerando ulteriori parametri:

Coefficiente di materiale (M)

0,25 = alluminio

0,35 = acciaio

Fattore di risonanza (f.)

= frequenza < 10

 $\sqrt{f/10} = \text{frequenza} > 10$

Fattore d'urto (K)

= urto leggero

1,4 = urto medio

1,8 = urto forte

Fattore termico (f_T)

= -30 ÷ +30 °C

 $1,2 = +40 \,^{\circ}\text{C}$

1,4 = +60 °C

1,8 = +80 °C

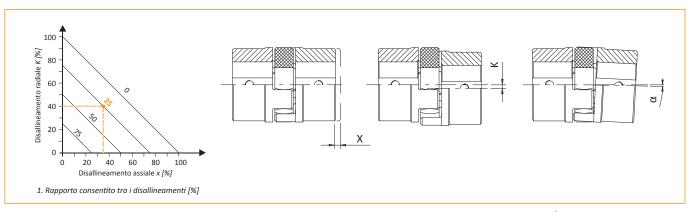
Fattore di rigidità (f_s)

2÷5 = sistemi di posizionamento

3÷8 = macchine utensili

>10 = indicatori di giri

Fattore di frequenza all'avvio (f,)

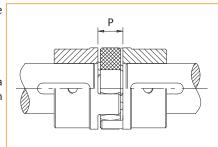

= 0 ÷ 100 avii per ora $1,2 = > 100 \div 200$ avii per ora

 $1,4 = > 200 \div 400$ avii per ora

 $1,6 = > 400 \div 800$ avii per ora

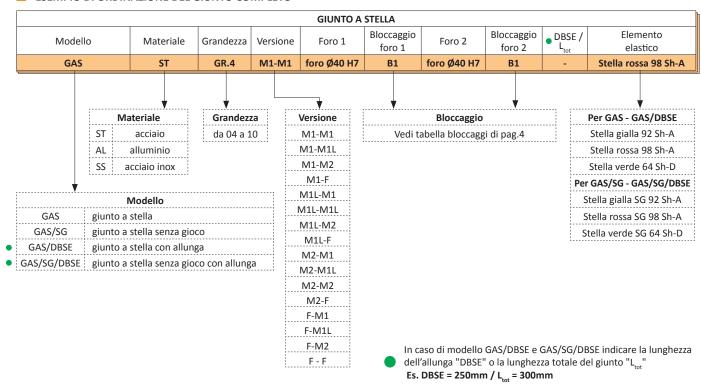
 $1.8 = 800 \div 1600$ avii per ora

Completata e verificata la scelta del giunto in funzione della coppia da trasmettere, è necessario ora prendere in considerazione la flessibilità necessaria, confrontando i disallineamenti ammessi dal tipo di giunto scelto con quelli reali previsti dagli alberi da collegare. Se si presentano contemporaneamente tutti i tipi di disallineamento, è necessario che la somma in percentuale rispetto al valore massimo non superi il 100%, secondo il grafico 1.

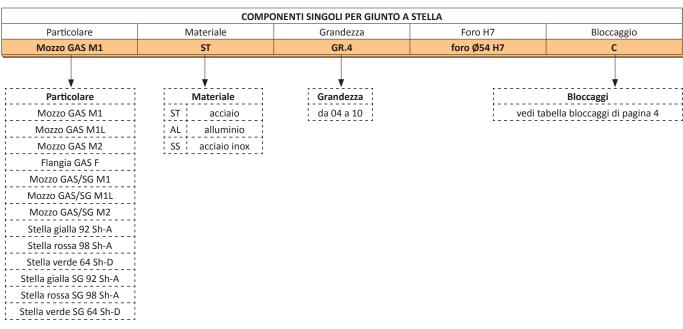

GAS/SG e GAS - giunto a stella senza gioco e standard: approfondimento

MONTAGGIO

Non sono richieste particolari procedure per il montaggio di questo giunto. Esso può essere montato sia in verticale e sia in orizzontale.



- 1) effettuare un allineamento radiale e assiale il più preciso possibile, per avere il massimo assorbimento di eventuali disallineamenti e la massima durata del giunto.
- 2) Montare i due semigiunti sui due alberi. Accertarsi che l'estremità dei due alberi non ecceda la superficie del relativo semigiunto (quota "N") e fissare quest'ultimo sull'albero stesso con il relativo sistema di fissaggio previsto.
- 3) Assemblare l'elemento elastico su un semigiunto ed avvicinare l'altro innestando i relativi denti nell'elemento elastico facendo particolarmente attenzione a rispettare la distanza dei due semigiunti stessi indicata a catalogo, quota "P".



Nel caso di fissaggio con calettatori, serrare le relative viti progressivamente fino al raggiungimento della coppia di serraggio indicata a catalogo, rispettando una sequenza di tipo a croce.

ESEMPIO DI ORDINAZIONE DEL GIUNTO COMPLETO

ESEMPIO DI ORDINAZIONE DEI SINGOLI PARTICOLARI

GIUNTO ELASTICO COMPATTO

Fino a 35.000 Nm di coppia e 180 mm di alesaggio

GEC

GEC - giunto elastico compatto: introduzione

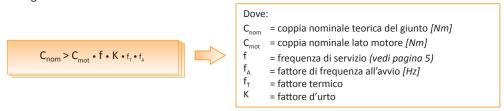
- Realizzato in acciaio completamente lavorato con trattamento standard di fosfatazione.
- Manutenzione senza rimuovere il giunto.
- O Idoneo per elevate temperature di lavoro.
- O Staticamente bilanciato, idoneo per assorbire le vibrazioni.
- Massimo grado di protezione.
- Ottimo rapporto Coppia/dimensioni.

A RICHIESTA

- O Possibilità di realizzare diversi sistemi di fissaggio.
- O Possibilità di trattamenti specifici oppure versione completamente in alluminio.
- O Esecuzioni personalizzate per esigenze specifiche tra cui mozzo-flangia.
- O Possibilità di collegamento alla gamma dei limitatori di coppia (giunti di sicurezza).

Il giunto GEC è realizzato da due mozzi in acciaio UNI EN10083/98 completamente lavorati. Questi due mozzi sono collegati tra loro mediante perni radiali, realizzati in acciaio ad alta resistenza con l'interposizione di elementi elastici.

Questi perni, con i relativi elementi elastici, sono a loro volta protetti da una fascia esterna, conferendo al giunto un elevato grado di protezione. Questa caratteristica costruttiva permette all'utilizzatore di poter eseguire manutenzione, sostituendo gli elementi elastici, senza rimuovere o spostare i due mozzi/alberi della trasmissione con conseguente risparmio di tempo e ottimizzazione della produttività dell'impianto. Particolarmente adatto per il collegamento di turbine Pelton, per l'accoppiamento tra motori e compressori a vite e in generale per trasmissioni in genere dove viene richiesta sicurezza senza pregiudicare la qualità e l'efficacia della trasmissione stessa.


■ DESCRIZIONE DELL'ELEMENTO ELASTICO

Le caratteristiche principali che contraddistinguono questo elemento elastico sono le seguenti:

- Buona resistenza a tutti i lubrificanti e fluidi idraulici convenzionali.
- Ottime proprietà meccaniche.
- Idoneo a lavorare in modo continuo ad una temperatura compresa tra -15°C e 150°C e per brevi periodi fino a 170°C.

DIMENSIONAMENTO

Come preselezione della grandezza del giunto si può utilizzare la formula generica descritta a pagina 6. In alternativa è possibile determinare la coppia nominale del giunto utilizzando diversi fattori di correzione.

Fattore d'urto (K)
1,2 = urto leggero
1,5 = urto medio
1,8 = urto forte

Fattore termico (f_T)

1 = -36 ÷ +60 °C

1,2 = 80 °C

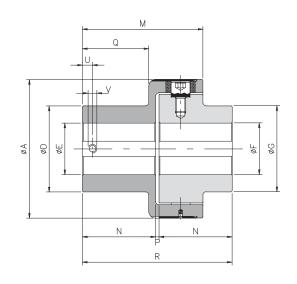
1,4 = 100 °C

1,8 = 120 °C

Fattore di frequenza all'avvio (f_A) 1 = 0 ÷ 120 avii per ora 1,2 = 240 avii per ora 1,4 = 400 avii per ora 1,6 = 800 avii per ora 1,8 = 1600 avii per ora

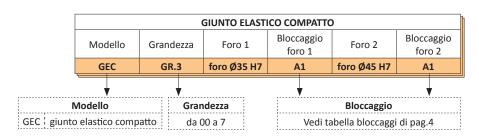
Completata e verificata la scelta del giunto in funzione della coppia da trasmettere, è necessario ora prendere in considerazione la flessibilità necessaria, confrontando i disallineamenti ammessi dal tipo di giunto scelto con quelli reali previsti dagli alberi da collegare. È bene tener presente che i disallineamenti assiale e parallelo devono essere considerati abbinati tra loro, in quanto inversamente proporzionali (uno si riduce quando l'altro aumenta). Se si presentano contemporaneamente tutti i tipi di disallineamenti, è necessario che la somma in percentuale rispetto al valore massimo non superi il 100%.

MONTAGGIO


Non sono richieste particolari procedure per il montaggio di questo giunto. Esso può essere montato sia in verticale e sia in orizzontale.

- 1) effettuare un allineamento radiale e assiale il più preciso possibile, per avere il massimo assorbimento di eventuali disallineamenti e la massima durata del giunto.
- 2) Con giunto pre-assemblato, inserire il semigiunto esterno su un albero. Accertarsi che l'estremità di quest'ultimo non ecceda la superficie del semigiunto stesso (quota "N") e fissare quest'ultimo sull'albero stesso con il relativo sistema di fissaggio previsto.
- 3) Avvicinare il secondo albero inserendolo nel semigiunto interno, per una quantità non superiore alla lunghezza del foro (quota "N"). Se l'inserimento risultasse difficoltoso, causa un disallineamento accentuato, è opportuno allentare tutti i perni di collegamento, ottenendo così una maggiore flessibilità tra i due semigiunti.
- 4) Dopo avere inserito e fissato gli alberi, togliere i perni di collegamento uno ad uno, bagnarli con loctite frenafiletti e rimontarli serrandoli a fondo in modo progressivo seguendo una sequenza di tipo a croce.

5) Ricoprire i perni con la fascia di protezione, facendo coincidere i fori della fascia con le rispettive sfere di bloccaggio.


DIMENSIONI

Crandozza	^	D	ΕI	H7	FI	1 7	G	М	N	Р	0	R	U	V
Grandezza	А	D	grezzo	max	grezzo	max	G	IVI	IN	Р	Q	K	U	'
00	63	42	5	20	5	20	42	52	25	2	18	52	8	M4
0	78	50	10	28	10	28	50	63,5	32	3,5	28	67,5	10	M5
1	108	70	12	38	12	38	70	89	49	4	44	102	12	M6
2	130	80	15	45	15	45	80	111	65	4	59	134	15	M8
3	161	100	15	60	15	60	100	140	85	4	77	174	15	M8
4	206	120	20	70	20	70	120	168	105	4	97	214	20	M10
5	239	135	30	80	30	80	135	201	130	4	120	264	20	M10
6	315	215	40	150	40	110	175	260	165	5	150	335	25	M12
7	364	240	40	180	40	140	210	310	205	5	185	415	25	M12

CARATTERISTICHE TECNICHE

	Coppi	ia [Nm]			Velocità	Temperatura	Durezza			Disallin	eamenti						
Grandezza			Peso [Kg]	Inerzia [Kgm²]	max	d'esercizio e	elemento	Angola	Angolare α [°]		e X [mm]	Radiale K [mm]					
	nom	max	[NY]	[KgIII]	[Rpm]		elastico [Sh-A]	continuo	intermittente	continuo	intermittente	continuo	intermittente				
00	35	50	0,8	0,00045	6000			1°	1° 30′	±0,7	± 1,5	0,5	0,7				
0	70	110	1,5	0,00124	5500			1°	1° 30′	±0,7	± 1,5	0,5	0,7				
1	280	420	4,2	0,00633	5000			0° 48′	1°	±0,7	± 1,5	0,5	0,7				
2	570	860	7,7	0,01592	4500			0° 36′	0° 48′	±0,7	± 1,5	0,6	0,7				
3	980	1500	14,2	0,04666	4000	-15 ÷ +150	74 ±3	0° 30′	0° 42′	±0,8	± 1,6	0,6	0,8				
4	2340	3600	22,6	0,12546	3100	15 1 1150	7123	0° 24′	0° 30′	±0,8	± 1,6	0,6	0,8				
5	3880	5800	36,0	0,26035	2800			0° 24′	0° 30′	±0,8	± 1,6	0,6	0,8				
6	15000	20000	78,1	0,88951	2000			0° 24′	0° 30′	±0,8	± 1,6	0,6	0,8				
7	30000	35000	128,4	1,77108	1500			0° 24′	0° 30′	±0,8	± 1,6	0,6	0,8				

ESEMPIO DI ORDINAZIONE

• I pesi si riferiscono al giunto foro grezzo.

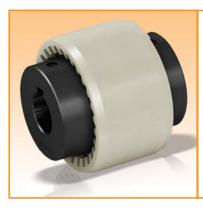
A richiesta

- Le inerzie si riferiscono al giunto foro massimo.
- Scelta e disponibilità dei diversi tipi di bloccaggi vedi pagine 4 e 5.

NOTE |

GIUNTO A DENTI

Fino a 5.000 Nm di coppia e 125 mm di alesaggio



GD - giunto a denti: introduzione

- Realizzato in acciaio completamente lavorato con trattamento standard di fosfatazione.
- Manicotto in poliammide.
- Staticamente bilanciato.

- Esente da manutenzione e lubrificazione.
- Compatto e semplice da montare.
- Smorzamento delle vibrazioni.

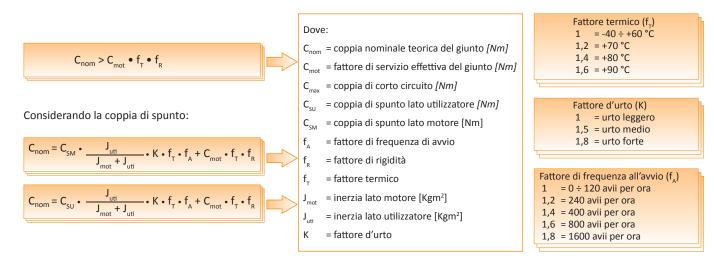
A RICHIESTA

- Possibilità di realizzare diversi sistemi di fissaggio.
- O Versione con manicotto in acciaio, seeger e guarnizioni.
- O Versione con manicotto integrato direttamente in un mozzo.
- Possibilità di trattamenti superficiali specifici.

Il giunto GD è composto da due mozzi in acciaio UNI EN 10083/98 completamente lavorati, dentati esternamente con profilo bombato e assemblati con un unico manicotto in resina poliammide stabilizzata, dentato internamente.

Grazie al profilo della dentatura con cui vengono accoppiati mozzi e manicotto, si riesce ad ottenere un'elevata superficie di contatto anche in presenza di disassamenti, in modo da ridurre le pressioni di contatto a favore di una maggiore durata nel tempo.

L'accoppiamento poliammide/acciaio assicura un funzionamento silenzioso ed affidabile, anche in assenza di manutenzione e lubrificazione. Questo tipo di giunto rappresenta pertanto un collegamento affidabile ed economico per impieghi industriali di media e grande potenza.


DESCRIZIONE DEL MANICOTTO

Il manicotto std. è realizzato in resina poliammide 6.6 stabilizzata con le seguenti caratteristiche fisiche:

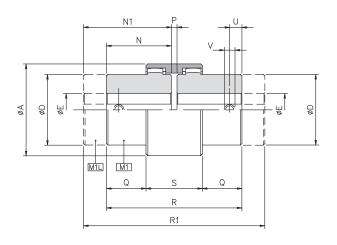
- Resistente a tutti i lubrificanti e fluidi idraulici convenzionali.
- Idoneo a lavorare in modo continuo a temperature da -25°C a 80°C e per brevi periodi fino a 125°C.
- Ottime proprietà di scorrevolezza.
- Elevato potere isolante.
- Ottime proprietà meccaniche.

DIMENSIONAMENTO

Come preselezione della grandezza del giunto si può utilizzare la formula generica descritta a pagina 6 . Stabilita in questo modo la grandezza del giunto da utilizzare, è possibile eseguire altre verifiche considerando ulteriori parametri:

Completata e verificata la scelta del giunto in funzione della coppia da trasmettere è necessario ora prendere in considerazione la flessibilità necessaria confrontando i disallineamenti ammessi dal tipo di giunto scelto con quelli reali previsti dagli alberi da collegare. Se si presentano contemporaneamente tutti i tipi di disallineamento è necessario che la somma in percentuale rispetto al valore massimo non superi il 100%.

MONTAGGIO


Non sono richieste particolari procedure per il montaggio di questo giunto. Esso può essere montato sia in verticale e sia in orizzontale.

- 1) effettuare un allineamento radiale e assiale il più preciso possibile, per avere il massimo assorbimento di eventuali disallineamenti e la massima durata del giunto.
- 2) Montare i due semigiunti sui due alberi. Accertarsi che l'estremità dei due alberi non ecceda la superficie del relativo semigiunto (quota "N") e fissare quest'ultimo sull'albero stesso con il relativo sistema di fissaggio previsto.
- 3) Inserie il manicotto sui due semigiunti, facendo particolarmente attenzione a rispettare la distanza dei due semigiunti stessi, quota "P" a

4) prima di avviare la trasmissione assicurarsi che il manicotto sia libero di spostarsi assialmente.

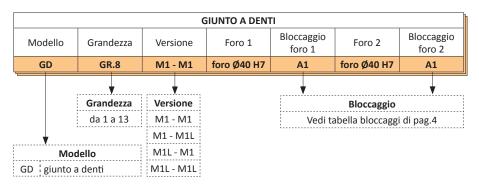
DIMENSIONI

Cuandana	^	-	EI	H7	N.	NI4		0	D.	D4			, , l
Grandezza	Α	D	grezzo	max	N	N1	Р	Q	R	R1	S	U	V
1 (14)	40	24	-	14	23	40	4	6,5	50	84	37	6	M5
2 (19)	48	30	-	19	25	40	4	8,5	54	84	37	6	M5
3 (24)	52	36	-	24	26	50	4	7,5	56	104	41	6	M5
4 (28)	66	44	-	28	40	55	4	19	84	114	46	10	M8
5 (32)	76	50	-	32	40	55	4	18	84	114	48	10	M8
6 (38)	83	58	-	38	40	60	4	18	84	124	48	10	M8
7 (42)	92	65	-	42	42	▲ 60	4	19	88	▲ 124	50	10	M8
8 (48)	95	67	-	48	50	▲ 60	4	27	104	▲ 124	50	10	M8
9 (55)	114	82	-	55	52	▲ 65	4	29,5	108	▲ 134	58	20	M10
10 (65)	132	96	-	65	55	▲ 70	4	36	114	1 44	68	20	M10
11 (80)	175	124	25	80	90	-	6	46,5	186	-	93	20	M10
12 (100)	210	152	35	100	110	-	8	63	228	-	102	30	M12
13 (125)	270	192	45	125	140	-	10	78	290	-	134	40	M16

CARATTERISTICHE TECNICHE

Consider		Coppia [Nm]		Peso [Kg]		Inerzia [Kgm²]			Velocità	Temperatura	Disallineamenti			
Grandezza	nom	max	M1	M1L	Manicotto	M1	M1L	Manicotto	max [Rpm]	d'esercizio [°C]	Angolare α	Assiale X [mm]	Radiale K [mm]	
1 (14)	11,5	23	0,10	0,13	0,022	0,000010	0,000013	0,000007	14000		2°	±1	±0,3	
2 (19)	18,5	36,5	0,18	0,28	0,028	0,000018	0,000032	0,000013	11800		2°	±1	±0,4	
3 (24)	23	46	0,23	0,42	0,037	0,000036	0,000076	0,000020	10600		2°	±1	±0,4	
4 (28)	51,5	103,5	0,54	0,73	0,086	0,000122	0,000187	0,000068	8500		2°	±1	±0,5	
5 (32)	69	138	0,66	0,90	0,104	0,000207	0,000328	0,000116	7500		2°	±1	±0,5	
6 (38)	88	176	0,93	1,42	0,131	0,000394	0,000787	0,000171	6700		2°	±1	±0,4	
7 (42)	110	220	1,10	1,46	0,187	0,000510	0,001223	0,000286	6000	-25 ÷ +80	2°	±1	±0,4	
8 (48)	154	308	1,50	1,83	0,198	0,000744	0,001445	0,000327	5600		2°	±1	±0,4	
9 (55)	285	570	2,30	3,26	0,357	0,001962	0,003378	0,000741	4800		2°	±1	±0,6	
10 (65)	420	840	3,17	3,95	0,595	0,004068	0,007586	0,001519	4000		2°	±1	±0,6	
11 (80)	700	1400	8,40	-	1,130	0,015292	-	0,006471	3150		2°	±1	±0,7	
12 (100)	1200	2400	15,37	-	1,780	0,040213	-	0,015696	3000		2°	±1	±0,8	
13 (125)	2500	5000	31,19	-	3,880	0,137141	-	0,054469	2120		2°	±1	±1,1	

A richiesta


NOTE

- I pesi si riferiscono al giunto foro grezzo.
- Le inerzie si riferiscono al giunto foro massimo.
- Scelta e disponibilità dei diversi tipi di bloccaggi vedi pagine 4 e 5.

GD - giunto a denti: approfondimento

ESEMPIO DI ORDINAZIONE

GIUNTO FLESSIBILE

Fino a 5.100 Nm di coppia e 85 mm di alesaggio

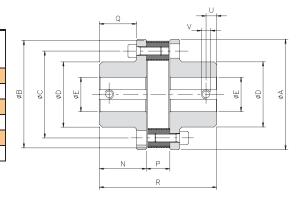
GF - giunto flessibile: dati tecnici

- Realizzato in acciaio completamente lavorato con trattamento standard di fosfatazione.
- Semplicità d'esecuzione.

- Assorbimento di elevati dissallineamenti angolari.
- O Elemento elastico telato per un elevata affidabilità.
- Manutenzione senza spostamento assiale dei mozzi.
- Foro finito in tolleranza ISO H7 e ridotta rugosità con cava in tolleranza ISO H9.

A RICHIESTA

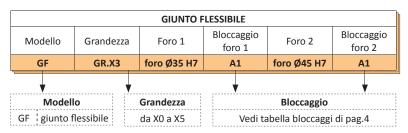
- O Possibilità di realizzare diversi sistemi di fissaggio.
- O Possibilità di trattamenti superficiali specifici.
- O Possibilità di collegamento alla gamma dei limitatori di coppia (giunti di sicurezza).
- Esecuzioni personalizzate per esigenze specifiche.


Il giunto GF, pur presentando un'elevata semplicità di costruzione, garantisce un'alta affidabilità elastica che consente il recupero di elevati disallineamenti angolari (fino a 5°), riducendo decisamente le irregolarità del moto.

È costituito da due mozzi in acciaio UNI EN10083/98 completamente lavorati e da un anello centrale elastico collegato mediante viti e bulloni in modo alternato ai due mozzi stessi.

Come preselezione della grandezza del giunto si può utilizzare la formula generica descritta a pagina 6.

DIMENSIONI


C	A	D	_	_	ΕI	H7	N	D		D		.,
Grand.	А	В	С	D	grezzo	max	N	Р	Q	R	U	٧
х о	98	100	78	48	10	28	45	17	34	107	8	M4
X 1	128	130	100	70	14	38	55	24	44	134	12	M6
X 2	162	165	125	90	19	48	72	29	56	173	12	M6
Х3	178	185	140	105	19	55	76	36	60	188	15	M8
X 4	198	205	160	125	28	65	84	44	68	212	15	M8
X 5	235	240	195	155	30	85	100	50	80	250	15	M8

CARATTERISTICHE TECNICHE

	Connia					С	Disallineamenti			Elemento elastico		
Grand.		Coppia [Nm] F		Inerzia [Kgm²]	Velocità max [Rpm]	angolare α[°]	assiale X [mm]	radiale K [mm]	durezza [Sh-A]	temperature d'esercizio	temperatura massima	
	Nom	Max				α[]	X [IIIII]	Kimii	. ,	[°C]	[°C]	
X 0	75	225	3,4	0,00256	5000	3°	1,5	1				
X 1	230	690	6,0	0,00826	4500	4°	2	1	70 ± 5			
X 2	470	1410	8,2	0,02654	3600	4°	2,5	1,5	7015	-25 ÷ +70	+130	
Х3	750	2250	12,7	0,04268	3500	4°	3	1,5		-25 + 10	+130	
X 4	1125	3375	16,9	0,07775	2800	4°	3	1,5	60 5			
X 5	1700	5100	22,2	0,19375	2500	4°	3,5	1,5	00±5	60 ± 5		

ESEMPIO DI ORDINAZIONE

■ NOTE A richiesta

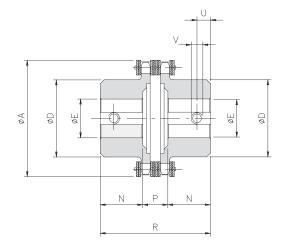
- I pesi si riferiscono al giunto foro grezzo.
- Le inerzie si riferiscono al giunto foro massimo.
- Scelta e disponibilità dei diversi tipi di bloccaggi vedi pagine 4 e 5.

GIUNTO A CATENA

Fino a 8.000 Nm di coppia e 110 mm di alesaggio

- Realizzato in acciaio completamente lavorato con trattamento standard di fosfatazione.
- Perdita di potenza, assorbita dal giunto, trascurabile.
- Semplicità di esecuzione.

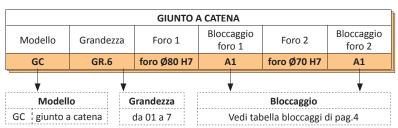
- Dentatura dei mozzi con trattamento termico.
- Ottimo rapporto Qualità/prezzo.
- Manutenzione senza spostamento assiale dei mozzi.


A RICHIESTA

- O Possibilità di realizzazione di diversi sistemi di fissaggio sui mozzi.
- O Possibilità di trattamenti superficiali specifici.
- O Esecuzioni personalizzate per esigenze specifiche.
- Possibilità di collegamento alla gamma dei limitatori di coppia (giunti di sicurezza).

Il giunto GC è costituito da due pignoni in acciaio, lavorati e collegati tra loro da una catena doppia. La realizzazione del giunto completamente in acciaio permette di utilizzarlo ad alte temperature e di ridurre la perdita di potenza tra parte motrice e condotta. Come preselezione della grandezza del giunto si può utilizzare la formula generica descritta a pag.6.

DIMENSIONI


Cuan da	٨	-	Εŀ	H7	N	D	D		\/
Grandezze	А	D	grezzo	max	N	Р	R	U	V
01	45	25	8	12	9	13	31	4	M3
00	57	37	10	20	20	21	61	5	M3
0	75	50	12	28	19	23,5	61,5	8	M4
1	101	70	16	38	29	29	87	12	M6
2	126	89	20	55	38	32	108	12	M6
3	159	112	20	70	56	24,5	142,5	15	M8
4	183	130	28	80	59	37	155	15	M8
5	216	130	30	80	88	40	216	15	M8
6	291	150	40	90	103	46	252	25	M10
7	310	170	50	110	124	46	295	25	M10

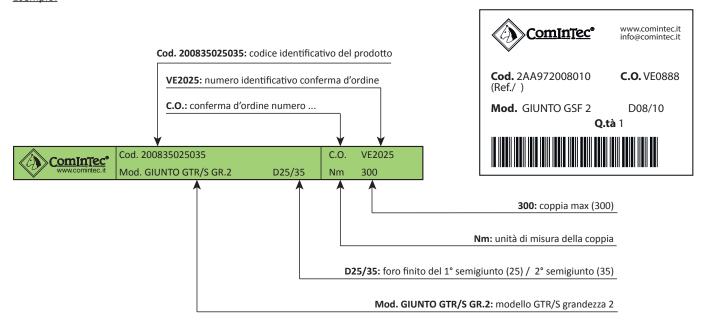
CARATTERISTICHE TECNICHE

	Coppia max	Passo					Disallineamenti	
Grandezza	[Nm]	(catena doppia) ISO-R 606	Peso [Kg]	Inerzia [Kgm²]	Velocità max [Rpm]	Angolare α [°]	Assiale X [mm]	Radiale K [mm]
01	140	3/8" x 7/32" z12	0,2	0,00002	6000		1,50	0,20
00	190	3/8" x 7/32" z16	0,6	0,00009	5000		1,50	0,20
0	600	3/8" x 7/32" z22	1,0	0,00030	3800		1,50	0,20
1	700	1/2" x 5/16" z22	2,7	0,00148	2800		2,40	0,25
2	1400	3/4" x 7/16" z18	5,4	0,00497	2200		3,20	0,30
3	2500	1" x 17,02 z17	11,8	0,01817	1800	2°	4,50	0,35
4	3200	1" x 17,02 z20	16,9	0,03530	1500		4,80	0,40
5	4000	1" x 17,02 z24	19,5	0,05333	1300		4,80	0,40
6	7000	1" 1/4 x 3/4" z26	42,5	0,19027	1000		6,30	0,50
7	8000	1" 1/4 x 3/4" z28	58,6	0,28643	900		6,30	0,50

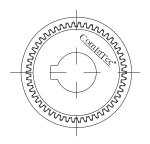
ESEMPIO DI ORDINAZIONE

NOTE

- I pesi si riferiscono al giunto foro grezzo.
- le inerzie si riferiscono al giunto foro massimo.
- Scelta e disponibilità dei diversi tipi di bloccaggi vedi pagine 4 e 5.


ETICHETTA

MARCATURA


La ComInTec, come elemento identificativo per ogni gruppo, utilizza un'etichetta adesiva dove sono indicati tutti gli elementi utili per la rintracciabilità del gruppo stesso e del lotto di produzione. Questo si rende necessario ed indispensabile per semplificare le richieste di informazione dei componenti di ricambio o il riordino di uno stesso gruppo. Per alcuni prodotti viene utilizzata un'etichetta adesiva plastificata di colore verde con inchiostro indelebile, applicata direttamente sul gruppo. Per altri modelli invece viene utilizzata un'etichetta adesiva di colore bianco con inchiostro a trasferimento termico, applicata sulla confezione del gruppo.

Esempio:

Esempio:

CERTIFICAZIONI ComInTec®

 Azienda certificata dal febbraio 1996 secondo UNI EN ISO 9001.

 Rispetto dell'ambiente interno ed esterno attenendoci ai requisiti della direttiva 2002/95/ CE (RoHS) la quale vieta o riduce al minimo l'uso di sostanze nocive sia nel processo produttivo che nella composizione dei materiali utilizzati e seguendo il D.Lgs. 626/94 sulla sicurezza e salute sul luogo di lavoro.

 Massima attenzione alle richieste del mercato come la conformità alla direttiva 94/9/CE (ATEX) inerente l'utilizzo dei prodotti in ambienti potenzialmente esplosivi.

 European Power Transmission Distributors Association (EPTDA). La più grande organizzazione di distributori e produttori di trasmissione di potenza e di prodotti per il controllo del movimento in Europa.

 Certificazione ABS per utilizzo nel settore navale.

Azienda e produzione interamente

"Made in Italy".

- Patented
- Ricerca e Sviluppo continuo di prodotti, alcuni dei quali protetti da BREVETTO Italiano ed Europeo.

O Conformità REACH (CE) n.1970/2006

Le Vostre esigenze sono le nostre priorità.

Se avete bisogno di aiuto per un progetto, richiedete assistenza o consulenza agli esperti ComInTec

	fficiente compilare questo form ed inviarlo per E-r	nail a tecnico@comintec.it. La vostra richiesta sarà soddisfatta con la massima rapi	idità.
<u>Info</u>	ormazioni generali:		
•	Nome azienda:		
•	Città / Stato:		
•	Nome / Cognome:		
•	Mansione:		
•	Telefono:		
•	E-mail / sito web:		
•	Quantità:		
•	Consumo annuo previsto:		
•	Target price:		
<u>Usc</u>	<u>):</u>		
•	Nome OEM / sito web:		
•	Settore di applicazione / tipo di macchina:		
•	Dove viene applicato:		
•	Modello attualmente utilizzato:		
•	Coppia nominale (Nm):		
•	Velocità (Rpm):		
•	Ambiente di lavoro: Pulito Polveroso Umido Altro		
•	Tipo di giunto:		
•	Diametro albero motore (mm):		
•	Tipo di connessione albero motore: Chiavetta Calettatore Scanalato (unificazione)	

Diametro albero condotto (mm):		_
 Tipo di connessione albero condotto: Chiavetta Calettatore Scanalato (unificazione Altro 		.) -
• Note:		-
		-
		-
/ENTUALE MONTAGGIO CON LIMITATORI DI COPP	IA (GIUNTI DI SICUREZZA)	
Cosa protegge:		-
 Posizione di reinnesto: Equidistante 360° Non importante Altro 		_
 Richiesta di segnalazione elettrica del sovr Si No 	accarico:	
• Note:		-
		-
		_
		-
		_
		-
7. A. A. Sirona in a D. Ing. 406 (2002)		
☐ Autorizzazione D.lgs. 196/2003		
Firma		
UN DISEGNO O UNA FOTO PUÒ AIUT. PREGO INVIATECELA SE DISPONIBILE	ARCI A CAPIRE MEGLIO L'APPLICAZIONE,	

