

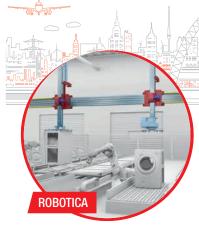
Telescopic Rail

Via Postumia,83 – 31050 Ponzano Veneto (TV)
Tel. 0422 961811 r.a. – Fax. 0422 961830/26
Altri punti vendita:
Treviso – Via del Da Prata, 34 (lat. V.le della Repubblica)
Tel. 0422 42881 r.a. – Fax. 0422 428840
Conegliano – Via dell'Industria, 24
Tel. 0438 418235 – 0438 370747 – Fax 0438 428860
www.morotreviso.com - info@morotreviso.com

PROGETTIAMO E PRODUCIAMO PER ESSERTI VICINO

Un processo industrializzato che sfocia in vari livelli di personalizzazione

Con responsabilità ed etica, da oltre 40 anni Rollon progetta e produce soluzioni per il moto lineare al servizio di diversi settori industriali. La solidità di un gruppo internazionale per la tecnologia, si coniuga oggi con la capillarità di un supporto locale per il servizio.



VALORI

COLLABORAZIONE

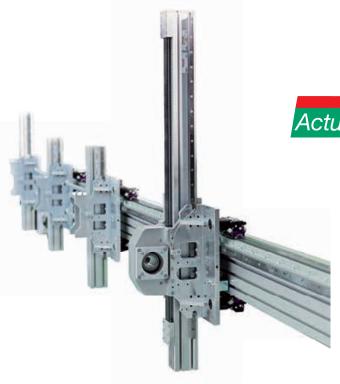
Consulenza tecnica di alto livello e competenze trasversali permettono di intercettare le esigenze del cliente e tradurle in linee guida in un'ottica di continuo confronto, mentre la forte specializzazione in diversi settori industriali opera da acceleratore di progetti nello sviluppo di applicazioni innovative.

Rollon si prende carico della progettazione e dello sviluppo di soluzioni per il moto lineare, sollevando i propri clienti da ogni aspetto non strettamente correlato al loro core business. Da componenti a catalogo a sistemi meccanicamente integrati creati ad hoc: tecnologia e competenza si traducono nella qualità delle nostre applicazioni.

MEDICALE

SOLUZIONI LINEARI DIVERSIFICATE PER OGNI ESIGENZA APPLICATIVA

Guide lineari e telescopiche



Attuatori lineari e sistemi per l'automazione

Actuator Line

Attuatori lineari con differenti configurazioni e trasmissioni, disponibili con azionamento a cinghia, vite o pignone e cremagliera in base alle differenti esigenze in termini di precisione e velocità. Guide con cuscinetti o sistemi a ricircolo di sfere per diverse capacità di carico e ambienti critici.

Actuator System Line

Attuatori integrati per l'automazione industriale, trovano applicazione in numerosi settori industriali: dall'asservimento delle macchine industriali a impianti di assemblaggio di precisione, linee di packaging e linee di produzione ad alta velocità. Nasce dall'evoluzione della Actuator Line al fine di soddisfare le richieste più esigenti dei nostri clienti.

Indice

TR-47

Telescopic Rail

Caratteristiche tecniche

Codici di ordinazione con descrizioni

1 Descrizione del prodotto Telescopic Rail: Estrazione parziale e completa in sette serie	TR-2
2 Riepilogo delle sezioni	TR-5
3 Dati tecnici	
Caratteristiche e note	TR-7
4 Dimensioni e capacità di carico	
ASN	TR-8
DSS	TR-12
DSSS	TR-14
DSB	TR-16
DSD	TR-17
DSE	TR-19
DSC	TR-21
DE	TR-23
DES	TR-26
DED	TR-28
DEZ	TR-30
DBN	TR-32
DMS	TR-34
5 Note tecniche	
Scelta della guida telescopica, Verifica al carico statico	TR-36
Flessione	TR-37
Carico statico	TR-38
Durata	TR-39
Velocità, Forza di apertura e chiusura,	
Corsa bilaterale, Temperatura	TR-42
Protezione anticorrosione, Lubrificazione, Gioco e precarico	TR-43
Viti di fissaggio	TR-44
Note per il montaggio	TR-45
Codici di ordinazione	

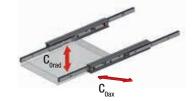
	Riferimento			Codice di prodotto	Estra- zione	Taglia	Pro		Auto- allineamento	Cur	sore	
	Famiglia	Prodotto	Sezione				Tipologia	Piste temprate		Sfere	Cusci- netti	Acciaio
		ASN		ASN22 ASN28 ASN35 ASN43 ASN63	50%	22 28 35 43 63	Trafilato a freddo		+			
	MALES MALES	DE		DE22 DE28 DE35 DE43 DE63 DE28S DE28S DE28S DE35S DE43S DE28D DE43D DE63D DE43D	100%	22 28 35 43 63 28 35 43 28 35 43 28 35 43	Trafilato a freddo		**			
Telescopio Rail		DS	(Carolina)	DSS28 DSS35 DSS43 DSS63 DSS43S DSS43S DS843S DS828 DSB35 DSB43 DSD28 DSD28 DSD35 DSD43 DSD63	100%	28 35 43 63 43 28 35 43 28 35 43 63	Trafilato a freddo		++			
		DSC		DSC43	100%	43	Trafilato a freddo		++			
	1	DBN		DBN22 DBN28 DBN35 DBN43	100%	22 28 35 43	Trafilato a freddo		++			•
		DMS		DMS63	100%	63	Trafilato a freddo		++			
		DSE		DSE28 DSE35 DSE43 DSE63	150	28 35 43 63	Trafilato a freddo		++			

I dati riportati devono essere verificati in base all'applicazione.

■ standard

acciaio

acciaio inox


Χ alluminio B doppia corsa

BM doppia corsa con dispositivo di recupero

 $^{^{\}star}$ II valore massimo è definito in base all'applicazione. Per ulteriori informazioni, si prega di contattare il nostro ufficio tecnico.

Mate	eria	le		zione rsa	Rite- nuta	Bloccaggio in posizione chiusa	Smorzatori d'urto in posi- zione chiusa	copp	ia capa- arico per ia [N]	Massima lunghezza della guida	Massima corsa	Massima velocità di estensione*	Rigidità (flessione)	Intervallo di tempe- ratura
Х		Α	В	ВМ				C _{Orad}	C _{0ax}	[mm]	[mm]	[m/s]		[°C]
								5934	4154	770	394	0,8		
								15736	11014	1170	601	0,8		
								26520	18564	1490	759	0,8	+++	-20°C/+170°C
								48596	34018	1970	1013	0,8		
								88494	61946	1970	1013	0,8		
								1348	546	770	788	0,8		
								2338	1074	1170	1202	0,8		
								3816	1586	1490	1518	0,8		-20°C/+170°C
								6182	2868	1970	2026	0,8		
								14396	6124	1970	2026	0,8		
							•	2100	758	1170	1186	0,8		
								3540	1574	1490	1510	0,8	+++	-20°C/+50°C
								5964	2522	1970	2066	0,8		
								2014	856	1170	1216	0,8		
								3460	1534	1490	1503	0,8		
				-				5784	2484	1970	2011	0,8		-20°C/+170°C
								15512	6514	1970	1962	0,8		
								7524	3830	1970	1923	0,8		
								4480	-	1490	1518	0,8		
								7016	-	1730	1758	0,8		-20°C/+80°C
							•	9816	-	1970	2026	0,8		-20 G/+00 G
								25664	-	1970	2026	0,8		
							•	10208	-	1970	2026	0,8		-20°C/+50°C
								4480	-	1490	1518	0,8	++++	
								7016	-	1730	1758	0,8	TTTT	
								9816	-	1970	2026	0,8		
								5162	-	1490	1446	0,8		-20°C/+80°C
			-					9736	-	1730	1630	0,8		
								11660	-	1970	1916	0,8		
			•				•	38018	-	1970	1758	0,8		
							•	11058	4150	1970	2028	0,8	+++	-20°C/+80°C
								562	472	770	788	0,8		
								1244	1074	1170	1202	0,8		0000/.47000
								1334	1120	1490	1518	0,8	+	-20°C/+170°C
								2662	2558	1970	2026	0,8		
								39624	-	2210	2266	0,8	++++	-20°C/+80°C
								1702	-	1170	1803	0,8		
								3182	-	1490	2277	0,8		2000/.0000
								5012	-	1970	3039	0,8	++++	-20°C/+80°C
								11344	-	1970	3039	0,8		

	Riferimento			Codice di prodotto	Estra- zione	Taglia	Pro	filo	Auto- allineamento	Cur	sore	
	Famiglia	Prodotto	Sezione				Tipologia	Piste temprate		Sfere	Cusci- netti	Acciaio
				HTT030		30						
		HTT		HTT040	60 % to 66 %	40	Trafilato a freddo		+	•		•
			15	HTT050		50						
				HVC045		45						
		HVC	pa de	HVC050	100.0/	50	Lamiera piegata e trafilato a freddo		++	•		•
			The same of the sa	HVC058	100 %	58	traniato a neudo					
				HVC075		75						
		H1C*1	Character Co.	H1C075	150%	75	Profilo lavorato, trafilato a freddo e lamiera piegata		++	•		•
				H1T060		60						
	The state of the s	H1T*1	OF THE	H1T080	150 % to	80			++	•		
				H1T100	200 %	100						
				H1T150		150	Profilo lavorato e trafilato a freddo					
Hegra Rail		Н2Н	111	H2H080	150 % to 200 %	80	aumado a noddo		++	•		•
				LTH30		30						
		LTH		LTH45		45	Trafilato		++	•		•
			96	LTH30S	100 %	30	a freddo					
				LTH45S HGT060		45 60						
		HGT	oll lio	HGT080 HGT100 HGT120 HGT150 HGT200 HGT240	100 %	80 100 120 150 200 240	Profilo lavorato e trafilato a freddo		++	•		•
		LTF	<u>@10, %119</u>)	LTF44	100 %	44	Trafilato a freddo		++	•		•
	State of the state	HGS	OIL OIL O	HGS060	100 %	60	Profilo lavorato		++	•		•

I dati riportati devono essere verificati in base all'applicazione.

Per molte applicazioni sono disponibili soluzioni speciali o trattamenti superficiali alternativi. Per ulteriori informazioni, si prega di contattare il nostro ufficio tecnico.

- *1 La sovraestensione corrisponde al 150 % della corsa (1=150 % di estrazione). Per una sovraestensione del 200 % (2=200 % di estrazione) si prega di contattare il nostro ufficio tecnico.
- $^{\star 2}$ L'intervallo di temperatura varia da -30 °C a +250 °C in base all'applicazione. Per ulteriori informazioni, si prega di contattare il nostro ufficio tecnico.
- *3 Le capacità di carico per le versioni in alluminio (se disponibili) corrispondono al 40 % dei valori dichiarati, per le versioni in acciaio inox (se disponibili) corrispondono al 60 %.
- *4 Sono disponibili differenti tipi di acciaio inox, come l'opzione «electropolishing». Per ulteriori informazioni, si prega di contattare il nostro ufficio tecnico.
- *5 La disponibilità dei sistemi di bloccaggio dipende dalla lunghezza della guida e cambia per i diversi prodotti. Per ulteriori informazioni, si prega di contattare il nostro ufficio tecnico.
- *6 Il valore massimo dell'intervallo di temperatura corrisponde a +50°C qualora si utilizzino gli smorzatori d'urto. Per ulteriori informazioni, si prega di contattare il nostro ufficio tecnico.
- \star7 Il valore massimo è definito in base all'applicazione. Per ulteriori informazioni, si prega di contattare il nostro ufficio tecnico.

- disponibile
- solo fino a 1000 mm di lunghezza
 - standard

IV	lateria	ile	Direz cor		R	itenu	ta	Blo	ccagg	Ji0* ⁵	Smorza- tori d'urto	cità di c	na capa- arico per ia [N]	Massima lunghezza della guida	Massima corsa	Massima velocità di estensione* ⁷	Rigidità (flessione)	Intervallo di tempera- tura* ^{2*6}
	X*4	A	В	BM	EG	E0	EB	VG	VO	VB	DG	C _{0rad} *3	C _{0ax}	[mm]	[mm]	[m/s]		[°C]
					•	•	•				-	1200		1000	660			
	•	•	•		•	•	•				•	2550	su richiesta	1000	660	0,8	+++	-20°C/+170°C
					•	•	•				•	2900		1200	720			
												1200		1200	1200			
						•		•	•	•	•	1500	su richiesta	1500	1500	0,8	+	-20°C/+170°C
	•			•				•	•	•		2100		1500	1500	-,-		
				•				•	•	•		3300		2000	2000			
			•		•	•	•				•	1350	-	1500	2250	0,5	+	-20°C/+170°C
					•	•	•					2600	-	1500	2250			
					•	•	•					3200	-	1500	2250			
	•	•	•								•	5500	-	2000	3000	0,5	++	-20°C/+170°C
												7500	-	2000	3000			
	•	•			•	•	•				•	su richiesta	-	2000	3000	0,5	++	-20°C/+170°C
												1470		1200	1215			
												3346	su richiesta	1500	1522	0,5	++	-20°C/+170°C
											•	1498		1200	1217			
					•	•	•				•	3084 5500		1500 1500	1522 1500			
	•	•	•	•		•		•	•	•	•	9350 11000 11800 13900 17500 20000	su richiesta	2000 2000 2000 2000 2000 2300 2000	2000 2000 2000 2000 2000 2300 2000	0,5	+++	-20°C/+170°C
			•									1296	-	1010	1010	0,3	+	-20°C/+170°C
		•	•		•	•	•					1400	-	1000	1000	0,5	+++	-20°C/+170°C
X		aio aio inox ninio	B BM	1 dopp	oia corsa oia corsa ositivo d	a con	ero	E0 EB	ritenuta	ı in posi ı in entr	izione chiusa izione aperta ambe le	VO blo	ccaggio in pos ccaggio in pos ccaggio in enti		DG smorzator chiusura	i d'urto per la		

	Riferimento			Codice di prodotto	Estra- zione	Taglia	Pro	ofilo	Auto- allineamento	Curs	sore	
	Famiglia	Prodotto	Sezione				Tipologia	Indurimento Rollon NOX*1		Sfere	Cusci- netti	Acciaio
			a	TLR18		18	T ()					
		TLR		TLR28	100%	28	Trafilato a freddo	•	+++		•	•
				TLR43		43						
	1000	TLQ		TLQ18FF TLQ28		18 28	Trafilato					
		ILQ		TLQ28	80% A 120%	43	a freddo	-	+			•
		TLN	Ō.	TLN30		30	Lamiera		+			
.		TEN	Ď	TLN40	100%	40	piegata	_	T			-
Telerace		TQN		TQN30		30	Lamiera		+			
				TQN40	80% A 120%	40	piegata	_				_
		TLAX	Q D	TLAX26		26	Lamiera		+			
		1200	D	TLAX40	100%	40	piegata					
	The state of the s	TQAX		TQAX26		26	Lamiera		+			
	The state of the s	1000		TQAX40	80% A 120%	40	piegata				-	

I dati riportati devono essere verificati in base all'applicazione.

standard acciaio B doppia corsa X acciaio inox BM doppia corsa

X acciaio inox BM doppia corsa con A alluminio dispositivo di recupero

	Riferimento			Nome del pro- dotto	Estra- zione	Taglia	Pro		Auto- allineamento	Cur	sore	
	Famiglia Prodotto	Prodot- to	Sezione				Tipo	Piste temprate		Sfere	Perni volventi	Acciaio
		LRS	Ĵ	LRS 37	70%	37	Lamiera piegata		++	•		•
Light Rai		LFS		LFS46	100%	46	Lamiera piegata		++	•		•
			ig.	LRS56		56						
		LRS		LRS71	100%	71	Lamiera piegata		++	•		•
			₩.	LRS76		76						

I dati riportati devono essere verificati in base all'applicazione.

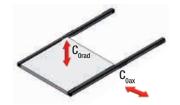
standard

acciaio X acciaio inox A alluminio

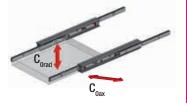
nio BM corsa in entrambe le direzioni con disco

corsa in entrambe le

 $^{^{\}star 1}$ Trattamento termochimico di nitrurazione ad alta profondità e ossidazione.


 $^{^{\}star 2}$ Disponibili anche nella versione TLN.HP con capacità di carico maggiorata.

^{*3} Il valore massimo è definito in base all'applicazione. Per ulteriori informazioni, si prega di contattare il nostro ufficio tecnico.


^{*} Il valore massimo è definito in base all'applicazione. Per ulteriori informazioni, si prega di contattare il nostro ufficio tecnico.

Materia	lle		zione rsa	Cicli con corsa variabile	Estensione verticale	Smorzatori d'urto in posi- zione chiusa	Massim cità di ca coppi	arico per	Massima lunghezza della guida		Massima velocità di estensione*³		Intervallo di tempera- tura
Х	Α	В	BM				C _{Orad}	C _{0ax}	[mm]	[mm]	[m/s]		[°C]
							1304 3264	-	770 1490	770 1500	1,0	++++	-20 °C/+110 °C
							7672	-	1970	1980			
							946 2058	426 808	770 1490	770 1490	1,0	+++	-20 °C/+110 °C
					_	_	4978	1784	1970	1970	.,,,		
							1776*2	-	1490	1500	1,0	++++	-20 °C/+80 °C
							3648*2	-	1970	1980	.,-		
							1362	476	1490	1490	1,0	+++	-20 °C/+80 °C
				_	_	-	2592	906	1970	1970	1,0	777	20 0/+00 0
						_	1330	-	1200	1200	1.0		-20 °C/+80 °C
_				•		•	2422	-	1600	1600	1,0	++++	-20 °C/+80 °C
							1008	352	1200	1200	1,0	+++	-20 °C/+80 °C
_				-	_	-	2170	760	1600	1600	1,0	1 77	25 5/ +00 0

I	Materiale			zione rsa	Ritenuta posizione chiusa	Bloccaggio	Smorzatori d'urto in posi- zione chiusa	Mas capacità per cop	di carico	Massima lunghezza della guida	Max. corsa [mm]	Max velocità di	Rigidità (fles- sione)	Intervallo di tempe- ratura
	Х	Α	В	BM				C _{Orad}	C _{0ax}	[mm]		estrazione* [m/s]		[°C]
					•		•	780	-	700	541	0,5	+	-20°C - +80°C
								400	-	600	610	0,5	+	+10 °C/+40 °C
					•		•	1290	-	1100	1100			
					•			2120	-	1100	1100	0,5	+	-20°C - +80°C
							•	3250	-	1500	1504			

Descrizione del prodotto

Telescopic Rail: Estrazione parziale e completa in sette serie

Fig. 1

La famiglia di prodotto Telescopic Rail è composta da sette serie ad estrazione parziale o completa con diverse sezioni ed elementi intermedi ad S, a doppia T o quadrate. Elevate capacità di carico, insieme ad economicità e scorrevolezza, sono da sempre le caratteristiche di spicco della famiglia di prodotto Telescopic Rail.

Le caratteristiche principali:

- Elevata capacità di carico con flessione ridotta
- Elementi intermedi resistenti a flessione
- Passo dei fori standardizzato
- Corsa senza gioco anche al massimo carico applicabile
- Struttura compatta
- Elevata affidabilità

Campi di applicazione principali della famiglia di prodotti Telescopic

- Veicoli su rotaia (ad es. vani manutenzione e batterie estraibili, porte)
- Costruzioni e meccanica generale (ad es. alloggiamenti e porte)
- Logistica (ad es. carrelli estraibili per casse o per movimenti delle pinze)
- Aeronautica
- Macchine per imballaggio
- Industria delle bevande
- Macchine speciali

ASN

Guida semitelescopica composta da una guida a C (,parte fissa') e da un cursore (,parte mobile').

Questa soluzione compatta e semplice consente capacità di carico molto elevate. L'unione tra la guida e la struttura a cui la guida è fissata costituisce un insieme ad alta rigidità.

Fig. 2

DS

Guida ad estrazione completa composta da due guide, che costituiscono gli elementi fisso e mobile, e un elemento intermedio ad S. Questo ha un grande momento di inerzia e un'elevata rigidezza in una forma snella. Ne deriva una capacità di carico elevata con ridotta flessione anche quando la guida telescopica è completamente estesa.

La serie DS è disponibile in tre diverse versioni: la versione S con estrazione da un solo lato (DSS), la versione B con fermo nella posizione chiusa per estrazioni da un solo lato (DSB) e la versione D con estrazione da ambedue i lati (DSD).

...versione S disponibile con blocchi di fermo in acciaio inox, rinforzati e dotati di smorzamento

Fig. 3

DSE

Guida con estensione del 150% della lunghezza composta da quattro elementi. Ha un'elevata rigidezza, grazie ad elementi intermedi con elevato momento di inerzia, in una forma snella.

Ne deriva una capacità di carico elevata, con ridotta flessione anche quando la guida telescopica è completamente estesa.

Fig. 4

DSC

Estensione completa composta da un elemento intermedio compatto e rigido a flessione che collega assieme due guide di dimensioni differenti quale elemento fisso e mobile. Questa forma costruttiva consente di ridurre tutti i componenti alla sezione e lunghezza necessarie per la realizzazione dell'estensione completa. La serie DSC offre rigidità e alto supporto del carico uniti a sezione compatta. In questo modo si crea una combinazione ottimale di prestazioni e risparmio di peso.

Fig. 5

Guida ad estrazione completa composta da due guide, unite in modo da formare un profilo a doppia T, e due cursori, uno fisso e uno mobile, che vengono collegati rispettivamente alla parte fissa e alla parte mobile della struttura da movimentare. La sezione pressochè quadrata rende la guida compatta e consente capacità di carico elevate e flessione ridotta, specialmente in caso di carico radiale. Per le estensioni con corse bidirezionali è disponibile una versione dedicata (DE..D) che prevede un dispositivo di recupero dell'elemento intermedio.

...versione S disponibile con blocchi di fermo in acciaio inox, rinforzati e dotati di smorzamento

Fig. 6

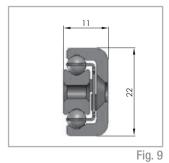
DBN

Guida ad estrazione completa composta da due guide, una fissa e una mobile, e due cursori che, uniti tra loro, costituiscono l'elemento intermedio. La soluzione costruttiva è simile a quella della serie DE ed offre una buona protezione contro l'entrata di sporcizia nella zona delle sfere.

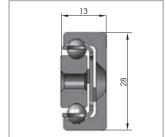
Fig. 7

DMS

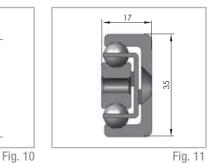
Sistema telescopico per carichi elevati, composto da elementi della serie ASN e da un elemento intermedio realizzato con un profilo a doppia T ad elevata rigidezza. Questa guida ad estrazione completa è adatta per sopportare carichi elevati con una flessione estremamente ridotta.


Fig. 8

Riepilogo delle sezioni



Estrazione parziale


ASN22

Capacità di carico p. TR-8

ASN28

Capacità di carico p. TR-9

ASN35

Capacità di carico p. TR-9

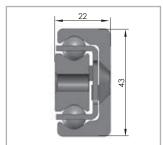


Fig. 12

ASN43

Capacità di carico p. TR-10

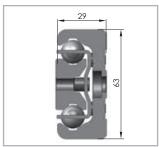
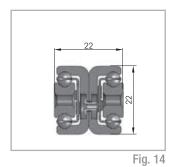
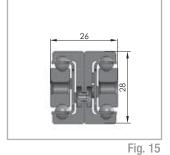



Fig. 13

ASN63


Capacità di carico p. TR-10

Estrazione totale

DE22

Capacità di carico p. TR-23

DE28

Capacità di carico p. TR-23

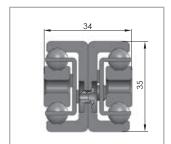
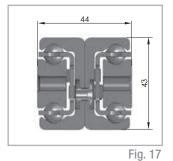
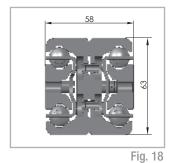
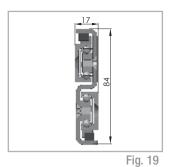



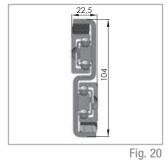
Fig. 16


DE35

Capacità di carico p. TR-24


DE43

Capacità di carico p. TR-24


DEF63

Capacità di carico p. TR-24

DSS28

Capacità di carico p. TR-12

DSS35

Capacità di carico p. TR-12

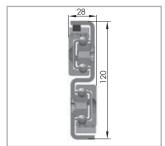
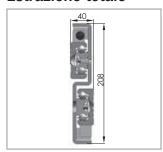
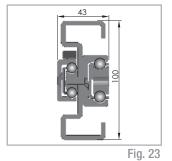
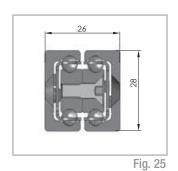


Fig. 21

DSS43Capacità di carico p. TR-13

Estrazione totale


Fig. 22 DSS63

DSC43

22 Fig. 24

DBN22

DBN28

Capacità di carico p. TR-13

Capacità di carico p. TR-21

Capacità di carico p. TR-32

Capacità di carico p. TR-32

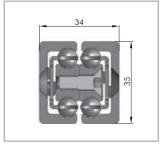


Fig. 26

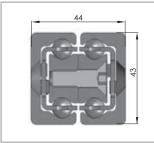


Fig. 27

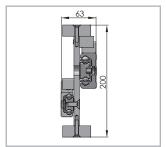
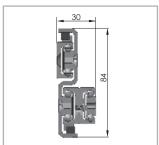


Fig. 28

Fig. 31

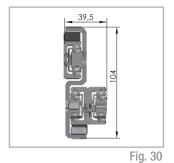
DBN35

Capacità di carico p. TR-33


Capacità di carico p. TR-33

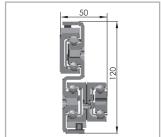
DBN43

DMS63


Capacità di carico p. TR-34

Estrazione maggiorata

DSE28


Capacità di carico p. TR-19

DSE35

Fig. 29

Capacità di carico p. TR-19

DSE43

Capacità di carico p. TR-20

Capacità di carico p. TR-20

DSE63

Dati tecnici // ~

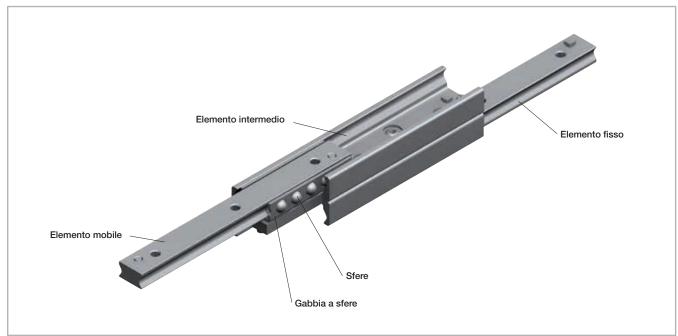
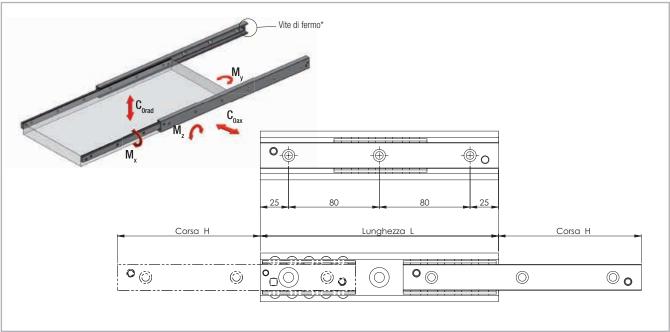


Fig. 33

Caratteristiche:

- Sezioni disponibili serie ASN / DE: 22, 28, 35, 43, 63
- Sezioni disponibili serie DS: 28, 35, 43, 63
- Sezioni disponibili serie DSE: 28, 35, 43, 63
- Sezioni disponibili serie DSC: 43
- Sezioni disponibili serie DBN: 22, 28, 35, 43
- Sezioni disponibili serie DMS: 63
- Piste di rotolamento temprate ad induzione
- Guide e cursori in acciaio al carbonio per cuscinetti volventi trafilato a freddo
- Sfere in acciaio al carbonio temprato per cuscinetti volventi
- Max. velocità di traslazione: 0,8 m/s (31,5 in/s) (in relazione alle modalità di applicazione)
- Intervallo di temperatura DE...S e DSS...: da -20°C a +50°C (da -4° F a +122° F)
- Intervallo di temperatura ASN, DE, DBN, fino a -20 °C to +170 °C (-4 °F to +338 °F); DS, DSE, DSC e DMS da -20 °C a +80°C (da -4 °F a +176 °F)
- Zincatura elettrolitica a norma ISO2081, altre protezioni anticorrosione su richiesta (vedere pag. TR-43, Protezione anticorrosione)

Note:


- Tutti I dati di capacità di carico si riferiscono ad una coppia di guide eccetto il valore Mx della serie ASN (vedi Pagg. TR-8, TR-9, TR-10)
- Si consiglia il montaggio con direzione del movimento orizzontale
- Montaggio con direzione del movimento verticale su richiesta
- Si consigliano fermi di fine corsa esterni
- Corsa bidirezionale per le serie ASN, DSD, DE, DBN (DMS su richiesta)
- Corse speciali su richiesta
- Tutti i dati di capacità di carico si riferiscono ad un uso continuativo
- Il calcolo di durata a fatica si riferisce esclusivamente alle serie di sfere con carico applicato
- Attenzione: delle serie DSB, DMS, DSE esistono le versioni guida destra e guida sinistra
- Tutte le guide telescopiche devono essere collegate al carico con viti di fissaggio in classe di resistenza 10.9
- I fermi interni servono a bloccare il cursore e la gabbia a sfere quando non sono sotto carico. Per sistemi sotto carico, usare fermi esterni come fine corsa.

Dimensioni e capacità di carico

ASN

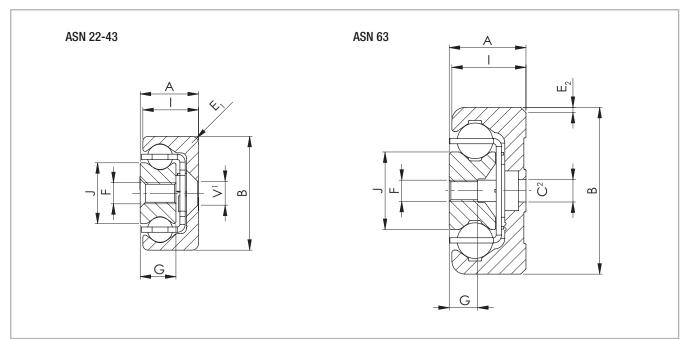
* Per raggiungere tutti i fori di fissaggio, rimuovere la vite di fermo. A questo proposito vedere anche pagina TR-45 Note per il montaggio

Fig. 34

Serie	Sezione	Lun-	Corsa	Capacità	à di carico (e momenti	per coppia	di guide	Num.
		ghezza L [mm]	H [mm]	C _{0rad} [N]	C _{0ax} [N]	M _x * [Nm]	M _y [Nm]	M _z [Nm]	fori
		130	76	626	438	5,7	20	30	2
		210	111	1430	1002	10,7	72	102	3
		290	154	1988	1392	14,9	138	198	4
		370	196	2556	1790	19	226	324	5
ASN	22	450	231	3402	2380	24	360	516	6
		530	274	3958	2770	28,2	496	710	7
		610	316	4524	3168	32,3	654	934	8
		690	351	5378	3764	37,3	872	1246	9
		770	394	5934	4154	41,5	1078	1538	10

 $^{^{\}star}$ La capacità di carico $\mathrm{M_{_{X}}}$ è riferita alla singola guida

Sezione	Lun-	Corsa	Capacita	di carico (e momenti	per coppia	di guide	Num.
	ghezza L [mm]	H [mm]	C _{orad} [N]	C _{0ax} [N]	M _x * [Nm]	M _y [Nm]	M _z [Nm]	fori
	130	74	1226	858	15,3	40	56	2
	210	116	2232	1562	26,1	114	164	3
	290	148	3868	2708	39,6	264	376	4
	370	190	4890	3422	50,4	426	610	5
	450	232	5910	4138	61,2	628	898	6
	530	274	6932	4852	72	870	1242	7
20	610	316	7952	5566	82,8	1150	1642	8
20	690	358	8974	6282	93,6	1470	2100	9
	770	400	9994	6996	104,4	1828	2612	10
	850	433	11656	8160	117,9	2330	3330	11
	930	475	12676	8872	128,7	2778	3968	12
	1010	517	13696	9586	139,5	3262	4660	13
	1090	559	14716	10300	150,3	3788	5410	14
	1170	601	15736	11014	161,1	4350	6216	15
	210	127	2130	1492	29,4	114	164	3
	290	159	4120	2884	46,9	292	416	4
	370	203	5276	3694	59,9	476	680	5
	450	247	6434	4504	73	708	1010	6
	530	279	8564	5994	90,4	1086	1550	7
	610	323	9716	6802	103,5	1422	2030	8
	690	367	10870	7608	116,6	1804	2576	9
	770	399	13042	9130	134	2382	3404	10
35	850	443	14190	9932	147,1	2870	4100	11
	930	487	15338	10736	160,2	3404	4862	12
	1010	519	17530	12272	177,6	4184	5978	13
	1090	563	18674	13072	190,7	4824	6890	14
	1170	607	19818	13874	203,8	5508	7868	15
	1250	639	22024	15416	221,2	6490	9272	16
	1330	683	23164	16214	234,3	7280	10400	17
	1410	727	24306	17014	247,4	8116	11594	18
	1490	759	26520	18564	264,8	9300	13286	19
	28	130	130	130	130 74 1226 858	130 74 1226 858 15,3	130	130


 $^{^{\}star}$ La capacità di carico $\mathrm{M_{x}}$ è riferita alla singola guida

700	e capac	ità di caric	0						
Serie	Sezione	Lun-	Corsa	Capacita	à di carico	e momenti	per coppia	di guide	Num.
		ghezza L [mm]	H [mm]	C _{orad} [N]	C _{0ax} [N]	M _x * [Nm]	M _y [Nm]	M _z [Nm]	fori
		210	123	3190	2234	60,6	168	240	3
		290	158	5744	4020	93,8	402	576	4
		370	208	6754	4728	115,9	616	880	5
		450	243	9380	6566	149,2	1018	1456	6
		530	278	12078	8454	182,4	1524	2176	7
		610	313	14822	10376	215,6	2128	3042	8
		690	363	15726	11008	237,8	2588	3698	9
		770	398	18464	12926	271	3362	4804	10
		850	433	21230	14862	304,2	4238	6054	11
		930	483	22108	15476	326,4	4878	6968	12
		1010	518	24868	17408	359,6	5922	8460	13
ASN	43	1090	568	25754	18028	381,8	6674	9534	14
71011	10	1170	603	28508	19956	415	7886	11266	15
		1250	638	31276	21894	448,2	9198	13142	16
		1330	688	32150	22504	470,4	10130	14472	17
		1410	723	34912	24438	503,6	11612	16590	18
		1490	758	37690	26382	536,8	13196	18850	19
		1570	793	40476	28334	570,1	14880	21256	20
		1650	843	41322	28926	592,2	16058	22940	21
		1730	878	44104	30872	625,5	17912	25588	22
		1810	928	44958	31472	647,6	19202	27432	23
		1890	963	47734	33414	680,8	21224	30320	24
		1970	1013	48596	34018	703	22628	32324	25
		610	333	21182	14828	474	3106	4438	8
		690	373	25068	17548	547,5	4144	5920	9
		770	413	28978	20284	621	5332	7616	10
		850	453	32904	23032	694,5	6668	9526	11
		930	493	36842	25790	768	8154	11648	12
		1010	533	40790	28554	841,4	9788	13984	13
		1090	573	44746	31322	914,9	11574	16534	14
		1170	613	48708	34096	988,4	13508	19296	15
	63	1250	653	52674	36872	1061,9	15590	22272	16
ASN		1330	693	56644	39650	1135,4	17824	25462	17
		1410	733	60618	42432	1208,9	20204	28864	18
		1490	773	64594	45216	1282,4	22736	32480	19
		1570	813	68574	48002	1355,9	25416	36310	20
		1650	853	72554	50788	1429,4	28246	40352	21
		1730	893	76536	53576	1502,8	31226	44608	22
		1810	933	80522	56364	1576,3	34354	49078	23
		1890	973	84506	59154	1649,8	37632	53760	24

 $^{^{\}rm t}$ La capacità di carico $\rm M_{_{X}}$ è riferita alla singola guida

ASN

¹ Fori di fissaggio (V) per viti a testa svasata a norma DIN7991
² Fori di fissaggio (C) per viti a testa cilindrica a norma DIN7984. In alternativa fissaggio con viti Torx® in versione speciale con testa ribassata (su richiesta)

Fig. 35

	Serie	Sezione		Dimensioni della sezione									Peso
			A [mm]	B [mm]	l [mm]	J [mm]	G [mm]	E ₁ [mm]	E ₂ [°]	V	С	F	[kg/m]
		22	11	22	10,25	11,3	6,5	3	-	M4	-	M4	1,32
		28	13	28	12,25	15	7,5	1	-	M5	-	M5	2,02
	ASN	35	17	35	16	15,8	10	2	-	M6	-	M6	3,05
		43	22	43	21	23	13,5	2,5	-	M8	-	M8	5,25
		63	29	63	28	29,3	10,5	-	2 x 45	-	M8	M8	10,30

Versione S con corsa monodirezionale (corsa singola)

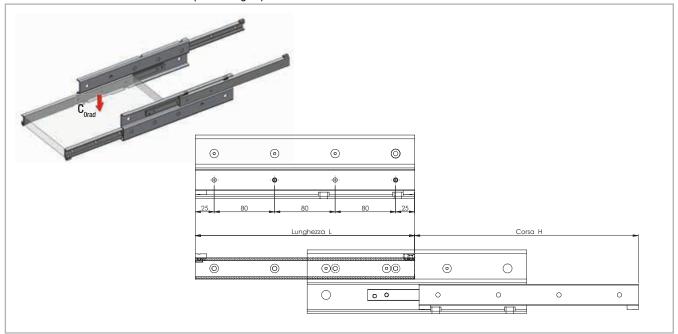


Fig. 36

Serie	Sezione	Lun- ghezza L [mm]	Corsa H [mm]	Capacità di carico per coppia di guide C _{Orad} [N]	N.fori accessibili / N.fori totale
		290	296	1140	3/4
		370	380	1538	4/5
		450	464	1938	4/6
		530	548	2340	6/7
		610	630	2752	6/8
		690	714	3154	7/9
	28	770	798	3556	7/10
DSS		850	864	4222	9/11
טסט		930	950	4480	9/12
		1010	1034	4108	10 / 13
		1090	1118	3792	10 / 14
		1170	1202	3522	12/15
		1250	1266	3390	12/16
		1330	1350	3172	13 / 17
		1410	1434	2980	13 / 18
		1490	1518	2810	15/19
					Tab. 5

Serie	Sezione	Lun- ghezza L [mm]	Corsa H [mm]	Capacità di carico per coppia di guide C _{orad} [N]	N.fori accessibili / N.fori totale
		450	494	2500	5/6
		530	558	3370	6/7
		610	646	3816	6/8
		690	734	4264	7/9
		770	798	5158	8 / 10
		850	886	5602	9/11
		930	974	6048	9/12
	35	1010	1038	6952	10 / 13
DSS		1090	1126	7016	11 / 14
		1170	1214	6480	12 / 15
		1250	1278	6242	12 / 16
		1330	1366	5814	13 / 17
		1410	1454	5442	14 / 18
		1490	1518	5272	15 / 19
		1570	1606	4964	15 / 20
		1650	1694	4690	16 / 21
		1730	1758	4564	17 / 22

Serie	Sezione	Lun- ghezza L [mm]	Corsa H [mm]	Capacità di carico per coppia di guide C _{orad} [N]	N.fori accessibili / N.fori totale	Se	rie	Sezione	ľ	Lun- ghezza L [mm]
		530	556	4122	6/7					610
		610	626	5206	6/8					690
		690	726	5550	7/9					770
		770	796	6638	7/10					850
		850	866	7746	9/11					930
		930	966	8072	9/12					1010
		1010	1036	9180	10 / 13					1090
		1090	1106	10208	10 / 14					1170

Serie	Sezione	Lun- ghezza L [mm]	Corsa H [mm]	Capacità di carico per coppia di guide C _{orad} [N]	N.fori accessibili / N.fori totale
		610	666	7004	6/8
		690	746	8504	8/9
		770	826	10024	8/10
		850	906	11560	9/11
		930	986	13104	9/12
		1010	1066	14658	11 / 13
		1090	1146	16218	11 / 14
		1170	1226	17784	12 / 15
DSS	63	1250	1306	19354	12/16
טסט	03	1330	1386	20928	14 / 17
		1410	1466	22504	14 / 18
		1490	1546	24082	15 / 19
		1570	1626	25664	15 / 20
		1650	1706	24728	17 / 21
		1730	1786	23654	17 / 22
		1810	1866	22668	18 / 23
		1890	1946	21762	18 / 24
		1970	2026	20926	20 / 25
					Tab. 8

Tab. 7

12/15

12/16

13 / 17

14/18

15/19

15/20

16/21 17 / 22

18/23

18/24

19/25

DSS

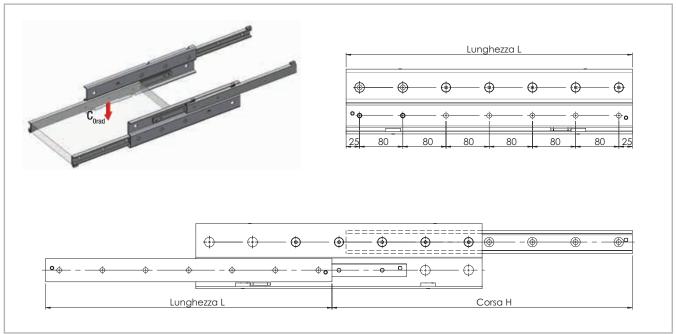
DSS

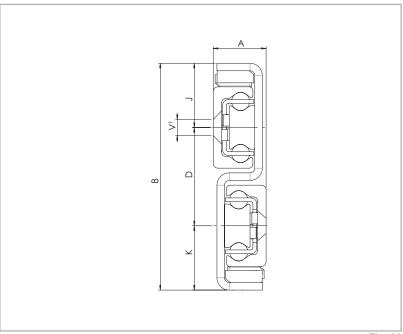
Versione S con corsa monodirezionale (corsa singola)

¹ Fori di fissaggio (V) per viti a testa svasata a norma DIN7991	Fi

			Peso				
	A [mm]	B [mm]	K [mm]	D [mm]	J [mm]	V	[kg/m]
28	17	84	24,5	35	24,5	M5	6,40
35	22,5	104	30,5	43	30,5	M6	10,10
43	28	120	34	52	34	M8	14,60
63	40	208	64	80	64	M10	32,60
	35 43	[mm] 28 17 35 22,5 43 28	[mm] [mm] 28 17 84 35 22,5 104 43 28 120	[mm] [mm] [mm] 28 17 84 24,5 35 22,5 104 30,5 43 28 120 34	[mm] [mm] [mm] [mm] 28 17 84 24,5 35 35 22,5 104 30,5 43 43 28 120 34 52	[mm] [mm] [mm] [mm] [mm] 28 17 84 24,5 35 24,5 35 22,5 104 30,5 43 30,5 43 28 120 34 52 34	[mm] [mm] [mm] [mm] [mm] [mm] 28 17 84 24,5 35 24,5 M5 35 22,5 104 30,5 43 30,5 M6 43 28 120 34 52 34 M8

...versione S con blocchi di fermo in acciaio inox, rinforzati e dotati di smorzamento




Fig. 38

Serie	Sezione	Lunghezza L [mm]	Corsa H [mm]	Capacità di carico per coppia di guide C _{orad} [N]	N.fori accessibili / N.fori totale
		530	556	4122	6/7
		610	626	5206	6/8
		690	726	5550	7 / 9
		770	796	6638	7 / 10
		850	866	7746	9 / 11
		930	966	8072	9 / 12
		1010	1036	9180	10 / 13
		1090	1106	10208	10 / 14
		1170	1206	9220	12 / 15
DSSS	43	1250	1276	8796	12 / 16
		1330	1376	8054	13 / 17
		1410	1446	7728	14 / 18
		1490	1516	7426	15 / 19
		1570	1616	6890	15 / 20
		1650	1686	6650	16 / 21
		1730	1756	6426	17 / 22
		1810	1856	6022	18 / 23
		1890	1926	5838	18 / 24
		1970	2026	5500	19 / 25

DSS...S

...versione S con blocchi di fermo in acciaio inox, rinforzati e dotati di smorzamento

¹ Fori di fissaggio (V) per viti a testa svasata a norma DIN7991

Fig. 39

Serie	Sezione		Dimensioni della sezione							
		A [mm]	B [mm]	K [mm]	D [mm]	J [mm]	V			
DSSS	43	28	120	34	52	34	M8	14.60		

Versione B con dispositivo di bloccaggio in chiusura

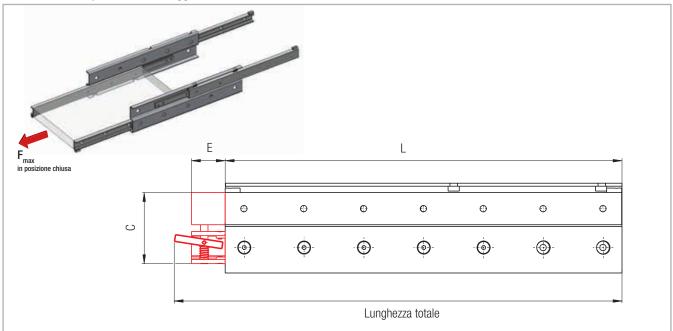
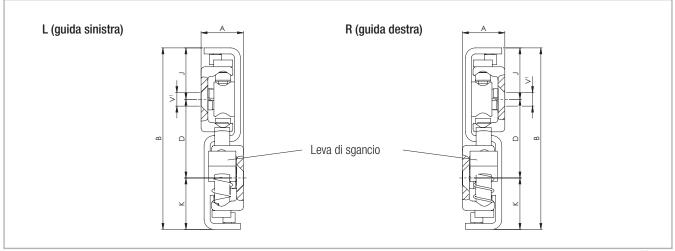



Fig. 40

1 Fori di fissaggio (V) per viti a testa svasata a norma DIN7991

Fig. 41

La versione DSB si basa sulla versione con estrazione da un lato (DSS). Valgono le stesse capacità di carico, sezioni e lunghezze disponibili delle guide (vedere pag. TR-12 e segg.). I dati nella tab.10 si riferiscono ai dettagli legati al dispositivo di bloccaggio.

Per la versione DSB prestare attenzione se guida destra o sinistra. Il carico massimo sul bloccaggio in posizione chiusa nella direzione di estrazione viene indicato con F_{max} .

Serie	Sezione	L [mm]	Lung. totale [mm]	C [mm]	E [mm]	F _{max*2} [N]	Peso [kg/m]
	28	da 290 a 1490*	L + 52	63	35	2460	6,51
DSB	35	da 450 a 1730*	L + 53	78	33	3000	10,4
	43	da 530 a 1970*	L + 69	95	45	5630	14,98

^{*} Lunghezze disponibili vedere pag. TR-12, tab. 5 e 7 (DSS)

^{*2} Quando si utilizza un blocco

DSD

Versione D con estrazione da ambedue i lati (doppia corsa)

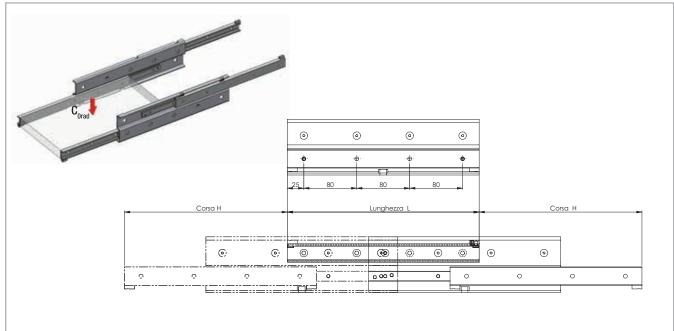


Fig. 42

Serie	Sezione	Lun- ghezza L [mm]	Corsa H [mm]	Capacità di carico per coppia di guide C _{orad} [N]	N.fori accessibili / N.fori totale
		290	246	1790	4/4
		370	326	2210	4/5
		450	406	2634	6/6
		530	486	3252	6/7
		610	566	3674	8/8
	28	690	646	4100	8/9
		770	726	4524	10/10
DSD		850	806	4950	10/11
חפח		930	886	5162	12 / 12
		1010	966	4714	12 / 13
		1090	1046	4336	14 / 14
		1170	1126	4016	14/15
		1250	1206	3740	16 / 16
		1330	1286	3498	16 / 17
		1410	1366	3288	18 / 18
		1490	1446	3100	18/19
					Tab. 13

Serie	Sezione	Lun- ghezza L [mm]	Corsa H [mm]	Capacità di carico per coppia di guide C _{orad} [N]	N.fori accessibili / N.fori totale
		450	350	6050	4/6
		530	430	6382	6/7
		610	510	6762	6/8
		690	590	7600	8/9
		770	670	8016	8/10
		850	750	8446	10 / 11
		930	830	9292	10 / 12
		1010	910	9736	12 / 13
DSD	35	1090	990	9160	12 / 14
		1170	1070	8404	14 / 15
		1250	1150	7764	14 / 16
		1330	1230	7214	16 / 17
		1410	1310	6738	16 / 18
		1490	1390	6320	18 / 19
		1570	1470	5950	18 / 20
		1650	1550	5622	20 / 21
		1730	1630	5328	20 / 22

ZII	i
K #8	

Serie	Sezione	Lun- ghezza L [mm]	Corsa H [mm]	Capacità di carico per coppia di guide C _{orad} [N]	N.fori accessibili / N.fori totale	
			530	476	6036	6/7
		610	556	6530	8/8	
		690	636	7562	8/9	
		770	716	8594	10 / 10	
		850	796	9094	10 / 11	
		930	876	10126	12/12	
		1010	956	11156	12 / 13	
		1090	1036	11660	14/14	
		1170	1116	10784	14/15	
DSD	43	1250	1196	10028	16/16	
		1330	1276	9372	16/17	
		1410	1356	8796	18 / 18	
		1490	1436	8286	18/19	
		1570	1516	7834	20 / 20	
		1650	1596	7426	20 / 21	
		1730	1676	7060	22 / 22	
		1810	1756	6728	22 / 23	
		1890	1836	6426	24 / 24	
		1970	1916	6150	24 / 25 Tab. 15	

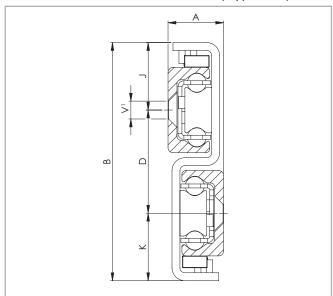
Serie	Sezione	Lun- ghezza L [mm]	Corsa H [mm]	Capacità di carico per coppia di guide C _{orad} [N]	N.fori accessibili / N.fori totale
		610	398	23716	6/8
		690	478	24484	6/9
		770	558	25434	8/10
		850	638	26500	8/11
		930	718	27646	10/12
		1010	798	28848	10 / 13
		1090	878	30092	12 / 14
		1170	958	31368	12/15
DCD	60	1250	1038	32668	14/16
DSD	63	1330	1118	33988	14 / 17
		1410	1198	35322	16 / 18
		1490	1278	36670	16 / 19
		1570	1358	38018	18 / 20
		1650	1438	35538	18 / 21
		1730	1518	33360	20 / 22
		1810	1598	31436	20 / 23
		1890	1678	29720	22 / 24
		1970	1758	28182	22 / 25

Tab. 16

Peso

[kg/m]

Tab. 15


Serie

Sezio-

ne

DSD

Versione D con estrazione da ambedue i lati (doppia corsa)

¹ Fori di fissaggio (V) per viti a testa svasata a norma DIN7991

٧ Α В K D J [mm] [mm] [mm] [mm] [mm] 28 17 84 24,5 35 24,5 M5 6,40 35 22,5 104 30,5 43 30,5 M6 10,10 DSD 43 28 120 34 52 34 M8 14,60 63 40 208 80 M10 32,60 64 64 Tab. 17

Dimensioni della sezione

Si prega di fare attenzione alle note tecniche "Corsa bilaterale" a pag. TR-42

Tele Norman

DSE

Versione E con extra corsa

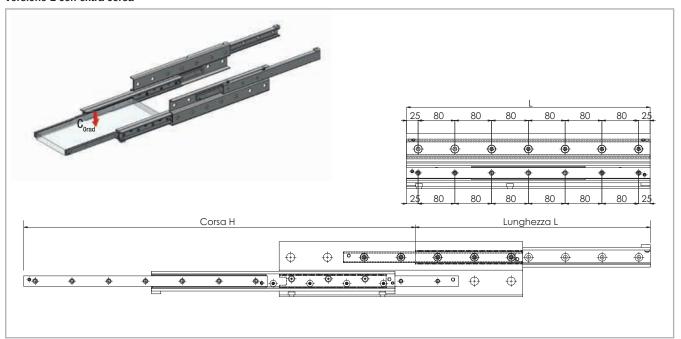
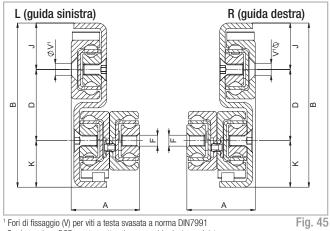


Fig. 44

Serie	Sezione	Lun- ghezza L [mm]	Corsa H [mm]	Capacità di carico per coppia di guide C _{orad} [N]	N.fori parte fissa	N. fori parte mobile
		290	444	702	3/4	4
		370	570	952	4/5	5
		450	696	1200	4/6	6
		530	822	1450	6/7	7
		610	946	1702	6/8	8
DSE	28	690	1072	1684	7/9	9
DOE	20	770	1198	1506	7/10	10
		850	1297	1420	9/11	11
		930	1425	1292	9/12	12
		1010	1551	1184	10 / 13	13
		1090	1677	1094	10 / 14	14
		1170	1803	1016	12/15	15
						Tab. 18

mobile
6
7
8
9
10
11
12
13
14
15
16
17
18
19

TT	Z
K A	S
LVJ	O


Serie	Sezione	Lun- ghezza L [mm]	Corsa H [mm]	Capacità di carico per coppia di guide C _{orad} [N]	N.fori parte fissa	N. fori parte mobile
		530	834	2582	6/7	7
		610	939	3264	6/8	8
		690	1089	3470	7/9	9
		770	1194	4154	7/10	10
		850	1299	4852	9/11	11
		930	1449	5012	9/12	12
		1010	1554	4728	10 / 13	13
		1090	1659	4476	11 / 14	14
		1170	1809	4044	12/15	15
DSE	43	1250	1914	3856	12/16	16
		1330	2064	3532	13 / 17	17
		1410	2169	3388	13 / 18	18
		1490	2274	3256	15/19	19
		1570	2409	3078	15 / 20	20
		1650	2529	2916	16/21	21
		1730	2634	2818	16/22	22
		1810	2784	2640	18 / 23	23
		1890	2889	2560	18 / 24	24
		1970	3039	2412	19 / 25	25
						Tab. 20

Serie	Sezione	Lun- ghezza L [mm]	Corsa H [mm]	Capacità di carico per coppia di guide C _{orad} [N]	N.fori parte fissa	N. fori parte mobile
		610	999	4328	6/8	8
		690	1119	5260	8/9	9
		770	1239	6208	8/10	10
		850	1359	7164	9/11	11
		930	1479	8128	9/12	12
		1010	1599	9096	11 / 13	13
	63	1090	1719	10070	11 / 14	14
		1170	1839	11046	12/15	15
DSE		1250	1959	11344	12/16	16
DSE	03	1330	2079	10714	14/17	17
		1410	2199	10152	14/18	18
		1490	2319	9644	15/19	19
		1570	2439	9186	15 / 20	20
		1650	2559	8768	17 / 21	21
		1730	2679	8388	17 / 22	22
		1810	2799	8038	18 / 23	23
		1890	2919	7718	18 / 24	24
		1970	3039	7420	20 / 25	25

Tab. 21

DSE

Versione E con extra corsa

Fori di fissaggio (V) per viti a testa svasata a norma DIN7991
 Per la versione DSE prestare attenzione se guida destra o sinistra.

Serie	Sezione		Dimensioni della sezione						
		A [mm]	B [mm]	K [mm]	D [mm]	J [mm]	F	V1	[kg/m]
	28	30	84	24,5	35	24,5	M5	M5	8,4
DCE	35	39,5	104	30,5	43	30,5	M6	M6	13,2
DSE	43	50	120	34	52	34	M8	M8	19,9
	63	69	208	64	80	64	M8	M10	42,9
									Tah 22

DSC

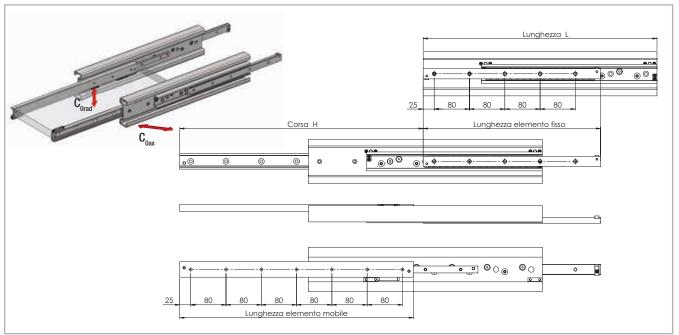
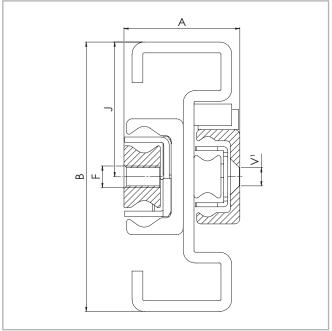



Fig. 46

Serie	Sezione	Lun-	Corsa	Capacità di carico per coppia di guide		Elemento fis	S0	Elemento mo	bile
		ghezza L [mm]	H [mm]	C _{orad} [N]	C _{oax} [N]	N.fori accessibili / N.fori totale	L [mm]	N.fori accessibili / N.fori totale	L [mm]
		530	552	4780	3346	5/5	402	6/7	530
		610	619	5928	4150	6/6	465	6/8	610
		690	725	6190	3840	6/6	520	8/9	690
		770	792	7332	3584	7/7	582	8/10	770
		850	859	8492	3362	8/8	644	9/11	850
		930	965	8738	2918	9/9	700	9/12	930
		1010	1029	10508	2784	10 / 10	770	11 / 13	1010
		1090	1099	11058	2634	10 / 10	825	11 / 14	1090
		1170	1202	10354	2364	11 / 11	887	12 / 15	1170
DSC	43	1250	1272	9874	2254	12 / 12	942	12 / 16	1250
		1330	1375	8998	2054	13 / 13	1005	14 / 17	1330
		1410	1445	8634	1972	14 / 14	1060	14 / 18	1410
		1490	1509	8362	1910	14 / 14	1130	15 / 19	1490
		1570	1615	7698	1758	15 / 15	1185	16 / 20	1570
		1650	1685	7428	1696	15 / 15	1240	16 / 21	1650
		1730	1752	7202	1644	16 / 16	1302	17 / 22	1730
		1810	1843	6812	1556	17 / 17	1365	18 / 23	1810
		1890	1922	6540	1494	18 / 18	1427	19 / 24	1890
		1970	2028	6126	1390	19 / 19	1482	20 / 25	1970

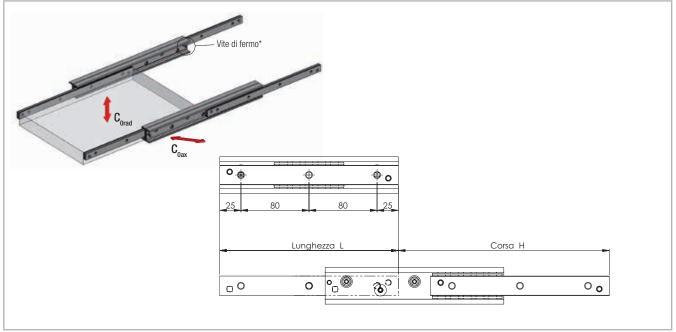

¹ Fori di fissaggio (V) per viti a testa svasata a norma DIN7991

Fig. 47

Serie	Sezione		Dimens	sioni della s	sezione		Peso
		A [mm]	B [mm]	J [mm]	F [mm]	V ₁ [mm]	[kg/m]
DSC	43	43	100	50	M8	M6	13,4

T MORO

DE

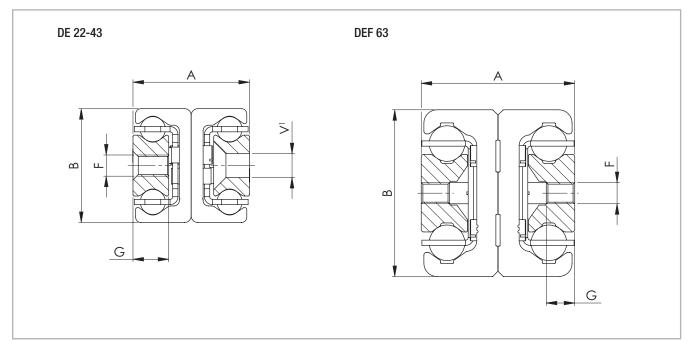
* Per raggiungere tutti i fori di fissaggio, rimuovere la vite di fermo. A questo proposito vedere anche pagina TR-45 Note per il montaggio

Fig. 48

Serie	Sezione	Lun- ghezza	Corsa		i carico per di guide	Num. fori
		L [mm]	H [mm]	C _{0rad} [N]	C _{oax} [N]	
		130	152	238	166	2
		210	222	562	392	3
		290	308	780	546	4
DEF		370	392	1002	526	5
DEV	22	450	462	1348	460	6
DEM		530	548	1142	386	7
		610	632	988	334	8
		690	702	906	306	9
		770	788	802	270	10

Tah	25
rau.	20

Serie	Sezione	Lun- ghezza	Corsa	Capacità di coppia	Num. fori	
		L [mm]	H [mm]	C _{0rad} [N]	C _{oax} [N]	
		130	148	470	328	2
		210	232	864	604	3
		290	296	1534	1074	4
DEF DEV DEM	28	370	380	1936	942	5
		450	464	2338	770	6
		530	548	2214	650	7
		610	633	1910	560	8
		690	717	1684	494	9
		770	801	1506	442	10
		850	866	1420	416	11
		930	950	1292	378	12
		1010	1034	1184	348	13
		1090	1118	1094	320	14
		1170	1202	1016	298	15


Serie	Sezione	Lun- ghezza	Corsa	Capacità di coppia	Num. fori	
		L [mm]	H [mm]	C _{0rad} [N]	C _{oax} [N]	
		210	254	804	562	3
		290	318	1600	1120	4
		370	406	2050	1436	5
		450	494	2500	1586	6
		530	558	3370	1456	7
		610	646	3816	1252	8
		690	734	3378	1096	9
DEF	DEF DEV 35 DEM	770	798	3182	1032	10
		850	886	2850	926	11
DEM		930	974	2582	838	12
		1010	1038	2466	800	13
		1090	1126	2262	734	14
		1170	1214	2090	678	15
		1250	1278	2012	654	16
		1330	1366	1874	608	17
		1410	1454	1754	570	18
		1490	1518	1700	552	19
						Tab. 27

Serie	Sezione	Lun- ghezza	Corsa	Capacità di coppia	Num. fori	
		L [mm]	H [mm]	C _{0rad} [N]	C _{0ax} [N]	
		610	666	8180	5726	8
		690	746	9718	6124	9
		770	826	11270	5568	10
		850	906	12830	5106	11
		930	986	14396	4714	12
	63	1010	1066	13770	4378	13
		1090	1146	12854	4086	14
		1170	1226	12052	3832	15
DEF		1250	1306	11344	3606	16
DEF		1330	1386	10714	3406	17
		1410	1466	10152	3228	18
		1490	1546	9644	3066	19
		1570	1626	9186	2920	20
		1650	1706	8768	2788	21
		1730	1786	8388	2666	22
		1810	1866	8038	2556	23
		1890	1946	7718	2454	24
		1970	2026	7420	2360	25
						Tab. 29

Serie	Sezione	Lun- Corsa ghezza		Capacità di coppia	Num. fori	
		L [mm]	H [mm]	C _{Orad} [N]	C _{0ax} [N]	
		210	246	1210	848	3
		290	316	2228	1560	4
		370	416	2600	1820	5
		450	486	3656	2558	6
		530	556	4750	2868	7
		610	626	5868	2600	8
		690	726	6182	2192	9
	43	770	796	6110	2032	10
		850	866	5694	1892	11
		930	966	5012	1666	12
DEF		1010	1036	4728	1572	13
DEV		1090	1106	4476	1488	14
DEM		1170	1206	4044	1344	15
		1250	1276	3856	1282	16
		1330	1376	3532	1174	17
		1410	1446	3388	1126	18
		1490	1516	3256	1082	19
		1570	1586	3134	1042	20
		1650	1686	2916	970	21
		1730	1756	2818	936	22
		1810	1856	2640	878	23
		1890	1926	2560	850	24
		1970	2026	2412	802	25

> DE

¹ Fori di fissaggio (V) per viti a testa svasata a norma DIN7991

Fig. 49

Serie	Sezione	Dimensioni della sezione					Peso
		A [mm]	B [mm]	G [mm]	F	V	[kg/m]
DEF DEV DEM	22	22	22	6,5	M4	M4	2,64
	28	26	28	7,5	M5	M5	4,04
	35	34	35	10	M6	M6	6,10
	43	44	43	13,5	M8	M8	10,50
	63	58	63	10,5	M8	-	20,60
							Tab. 30

a pag. TR-42

Si prega di fare attenzione alle note tecniche "Corsa bilaterale"

Per la serie DE nelle sezioni da 22 a 43 sono disponibili tre versioni di fori per il fissaggio:

versione DEF con fori filettati,

versione DEV con fori svasati,

versione DEM con ambedue le varianti (mista) (vedere fig. 52).

La misura 63 è disponibile solo con fori filettati.

...versione S con blocchi di fermo in acciaio inox, rinforzati e dotati di smorzamento

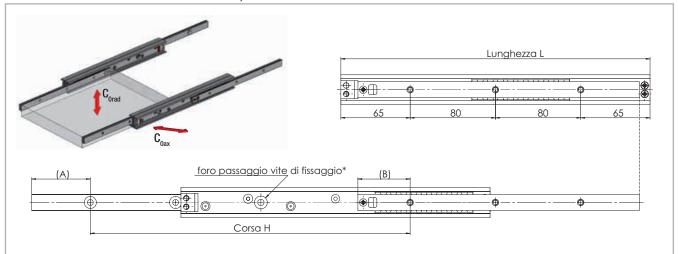
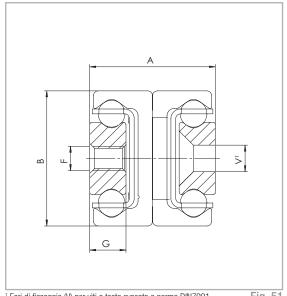


Fig. 50


Serie	Sezione	Lun- ghezza L [mm]	Corsa H [mm]	Capacità di carico per coppia di guide		Cursore [mm]	A [mm]	B [mm]	Num. fori
				C _{Orad} [N]	C _{0ax} [N]				
		290	300	704	494	264			3
		370	384	1084	758	344		49	4
		450	468	1470	756	424			5
		530	533	2100	686	504			6
		610	636	1892	556	584			7
DES	28	690	701	1760	516	664	55		8
DL3	20	770	804	1494	438	744	55	49	9
		850	850	1474	432	824			10
		930	953	1284	376	904			11
		1010	1018	1222	358	984			12
		1090	1102	1124	330	1064			13
		1170	1186	1042	306	1144			14
								T	ab. 31

Serie	Sezione	Lun- ghezza L [mm]	Corsa H [mm]	Capacità di carico per coppia di guide		Cursore [mm]	A [mm]	B [mm]	Num. fori
				C _{Orad} [N]	C _{0ax} [N]				
		370	370	1430	1000	338			4
		450	464	1788	1252	418			5
		530	536	2476	1574	498			6
		610	630	2832	1312	578			7
		690	702	3540	1194	658			8
		770	796	3198	1038	738			9
		850	868	2966	962	818			10
DES	35	930	962	2644	858	898	53	45	11
		1010	1012	2592	842	978			12
		1090	1128	2254	732	1058			13
		1170	1178	2216	720	1138			14
		1250	1272	2030	660	1218			15
		1330	1344	1936	628	1298			16
		1410	1438	1792	582	1378			17
		1490	1510	1718	558	1458			18

			<u> </u>						TAT
Serie	Sezione	Lunghezza L	Corsa H	Capacità di carico	per coppia di guide	Cursore	A	В	Num. fori
		[mm]	[mm]	C _{orad} [N]	C _{oax} [N]	[mm]	[mm]	[mm]	
		370	366	2014	1410	338			4
		450	496	1864	1306	418			5
		530	536	3418	2394	498			6
		610	636	3796	2522	578			7
		690	706	4838	2312	658			8
		770	806	5206	1982	738			9
		850	846	5964	1982	818			10
		930	976	4914	1634	898			11
		1010	1016	4914	1634	978			12
		1090	1116	4398	1462	1058			13
DES	43	1170	1186	4178	1390	1138	53	45	14
		1250	1286	3798	1262	1218			15
		1330	1326	3798	1262	1298			16
		1410	1456	3344	1112	1378			17
		1490	1496	3344	1112	1458			18
		1570	1596	3096	1030	1538			19
		1650	1666	2986	992	1618			20
		1730	1766	2786	926	1698			21
		1810	1806	2786	926	1778			22
		1890	1936	2534	842	1858			23
		1970	2066	2322	772	1938			24
									Tab. 33

DE...S

...versione S con blocchi di fermo in acciaio inox, rinforzati e dotati di smorzamento

¹ Fori di fissaggio (V) per viti a testa	svasata a norma DIN7991
---	-------------------------

Fig. 51

Serie	Sezione		Dimensioni della sezione							
		A [mm]	B [mm]	G [mm]	F	V	[kg/m]			
	28	26	28	7.5	M5	M5	4.04			
DES	35	34	35	10	M6	M6	6.10			
	43	44	43	13.5	M8	M8	10.50			

Versione D con doppia corsa

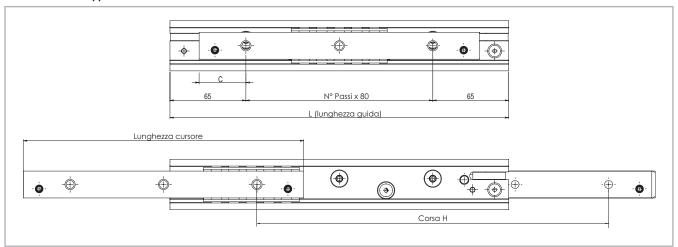


Fig. 52

Versione D (con dispositivo di recupero dell'elemento intermedio)

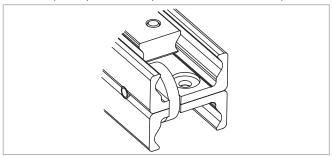


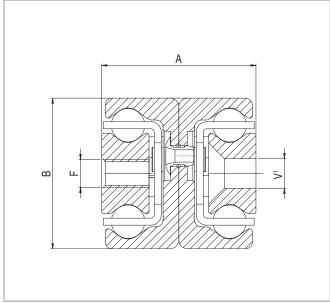
Fig. 53

Il dispositivo di recupero dell'elemento intermedio delle versioni DE...D fa in modo che nelle corse bilaterali (doppia corsa) l'elemento intermedio torni sempre nella corretta posizione e non rimanga fermo in una posizione indefinita. Questa versione speciale è disponibile per le misure 28, 35, 43 e 63 e con tutte e tre le versioni dei fori di fissaggio. Si basa sulla versione standard della serie DE ma si discosta nelle caratteristiche tecniche per le modalità costruttive. Per ulteriori informazioni contattare il nostro servizio tecnico.

Corsa Capacità di carico Cursore

Serie	Sezio- ne	Lun- ghezza L	Н		di carico ppia di ide	Cursore [mm]	C [mm]	Num. fori
		[mm]	[mm]	C _{0rad} [N]	C _{oax} [N]			
		290	292	836	586	250	45	3
		370	376	1224	856	330	45	4
		450	460	1618	782	410	45	5
	28	530	544	2014	658	490	45	6
		610	628	1940	570	570	45	7
DEFD DEVD		690	712	1706	500	650	45	8
DEWD	20	770	796	1524	448	730	45	9
		850	880	1376	404	810	45	10
		930	964	1256	368	890	45	11
		1010	1048	1154	338	970	45	12
		1090	1132	1068	314	1050	45	13
		1170	1216	992	292	1130	45	14
							T	ab. 35

	ne	L		per co gui	ppia di ide	[mm]	[mm]	fori
		[mm]	[mm]	C _{0rad} [N]	C _{0ax} [N]			
		290	303	890	624	250	45	3
		370	391	1322	926	330	45	4
		450	479	1760	1232	410	45	5
		530	543	2562	1534	490	45	6
		610	631	3012	1308	570	45	7
	35	690	719	3460	1140	650	45	8
		770	783	3302	1072	730	45	9
DEFD DEVD		850	871	2946	956	810	45	10
DEMD	33	930	959	2660	864	890	45	11
		1010	1023	2536	824	970	45	12
		1090	1111	2322	754	1050	45	13
		1170	1199	2140	694	1130	45	14
		1250	1263	2060	668	1210	45	15
		1330	1351	1916	622	1290	45	16
		1410	1439	1790	582	1370	45	17
		1490	1503	1734	562	1450	45	18


Tab. 36

Serie	Sezio- ne	Lun- ghezza	Corsa H	Capacità per coppi	di carico a di guide	Cursore [mm]	C [mm]	Num. fori
		L [mm]	[mm]	C _{Orad} [N]	C _{oax} [N]			
		290	301	1002	702	240	40	3
		370	401	1400	980	320	40	4
		450	471	2318	1622	400	40	5
		530	541	3312	2318	480	40	6
		610	641	3696	2484	560	40	7
		690	711	4724	2280	640	40	8
		770	781	5784	2108	720	40	9
		850	881	5506	1830	800	40	10
		930	951	5166	1718	880	40	11
		1010	1021	4866	1618	960	40	12
DEFD DEVD	43	1090	1121	4360	1450	1040	40	13
DEMD		1170	1191	4144	1378	1120	40	14
		1250	1261	3948	1312	1200	40	15
		1330	1361	3608	1200	1280	40	16
		1410	1431	3458	1150	1360	40	17
		1490	1501	3322	1104	1440	40	18
		1570	1601	3076	1024	1520	40	19
		1650	1671	2968	986	1600	40	20
		1730	1741	2866	952	1680	40	21
		1810	1841	2682	892	1760	40	22
		1890	1911	2600	864	1840	40	23
		1970	2011	2448	814	1920	40	24

Serie	Sezio- ne	Lun- ghezza	Corsa H	Capacità per coppi		Cursore [mm]	C [mm]	Num. fori
		L [mm]	[mm]	C _{orad} [N]	C _{oax} [N]			
		610	602	7688	5382	558	39	7
		690	682	9236	6466	638	39	8
		770	762	10796	6514	718	39	9
		850	842	12362	5890	798	39	10
		930	922	13934	5374	878	39	11
		1010	1002	15512	4942	958	39	12
	63	1090	1082	14386	4574	1038	39	13
		1170	1162	13388	4256	1118	39	14
DEFD		1250	1242	12520	3980	1198	39	15
טבוט	03	1330	1322	11758	3738	1278	39	16
		1410	1402	11084	3524	1358	39	17
		1490	1482	10482	3332	1438	39	18
		1570	1562	9942	3160	1518	39	19
		1650	1642	9456	3006	1598	39	20
		1730	1722	9014	2866	1678	39	21
		1810	1802	8612	2738	1758	39	22
		1890	1882	8244	2620	1838	39	23
		1970	1962	7906	2514	1918	39	24 lb. 38

DE...D

Versione D con doppia corsa

1 Fori di fissaggio (V) per viti a testa svasata a norma DIN7991

Fig. 54

Serie	Sezio-	Dim	Peso			
	ne		B [mm]	F	V¹	[kg/m]
	28	26	28	M5	M5	4,04
DED	35	34	35	M6	M6	6,10
טבט	43	44	43	M8	M8	10,50
	63	58	63	M8	-	20,60

Tab. 39

Per la serie DE...D nelle sezioni da 28 a 43 sono disponibili tre versioni di fori per il fissaggio:

versione DEF con fori filettati,

versione DEV con fori svasati,

versione DEM con ambedue le varianti (mista).

La misura 63 è isponibile solo con fori filettati.

Versione Z con estrazione completa sincronizzata

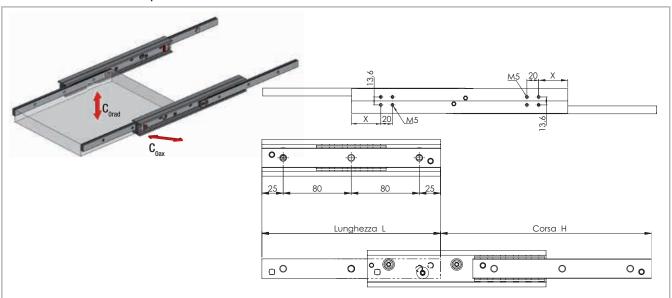
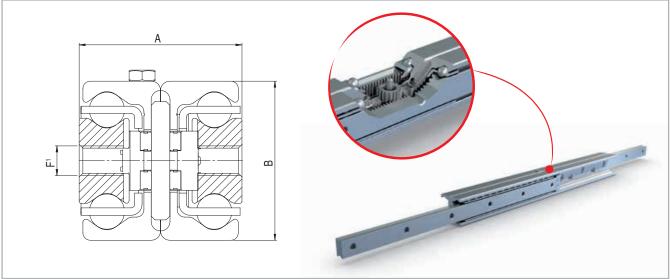


Fig. 55

Serie ¹	Sezione	Lunghezza L	L H coppia di ç			N. fori				
		[mm]	[mm]		C _{0rad} [N]	C _{0ax} [N]				
		290	243	30	1746	1222	4			
		370	323	50	1947	1363	5			
		450	403	70	2481	1737	6			
		530	483	90	3016	1915	7			
		610	563	110	3229	1618	8			
		690	643	130	3762	1401	9			
					770	723	150	3714	1235	10
			850	803	170	3321	1104	11		
					930	883	190	3004	999	12
		1010	963	210	2741	911	13			
DEFZ	43	1090	1043	230	2521	838	14			
DETZ	43	1170	1123	250	2334	776	15			
		1250	1203	270	2172	722	16			
		1330	1283	290	2032	675	17			
		1410	1363	310	1908	634	18			
		1490	1443	330	1799	598	19			
		1570	1523	350	1701	566	20			
		1650	1603	370	1614	537	21			
		1730	1683	390	1535	510	22			
		1810	1763	410	1463	486	23			
		1890	1843	430	1398	465	24			
		1970	1923	450	1338	445	25			

¹ La guida con estrazione completa sincronizzata è disponibile solo nella versione F con i fori filettati


Tab. 40

Versione Z (con pignone e cremagliera)

Il meccanismo a pignone e cremagliera consente l'apertura a partire dall'elemento intermedio, permettendo l'estrazione sincronizzata e garantendo così una moltiplicazione dell'azionamento (a parità di movimento, la corsa dell'azionamento viene dimezzata). Questa versione speciale è disponibile nella taglia 43 con fori filettati. Si basa sulla versione standard della serie DE ma si discosta nelle caratteristiche tecniche per le modalità costruttive. Per ulteriori informazioni contattare il nostro servizio tecnico.

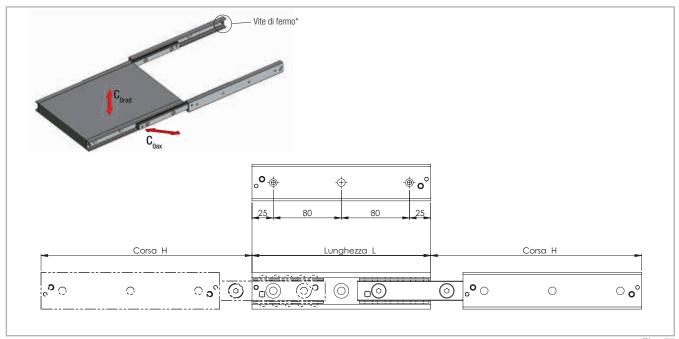
DE...Z

Versione Z con estrazione completa sincronizzata

¹ Fori di fissaggio (V) per viti a testa svasata a norma DIN7991 * Lunghezza massima della vite di fissaggio 10mm

Fig. 56

Serie	Sezione	Dimens	ioni della	sezione	Peso [kg/m]	
		A [mm]				
DEFZ	43	44	43	M8	10.50	


Tab. 41

DEF43Z con fori filettati è disponibile nella versione sinistra e destra:

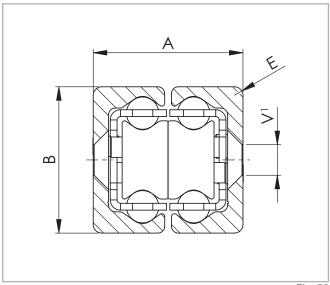
DEF43Z....L

DEF43Z....R

* Per raggiungere tutti i fori di fissaggio, rimuovere la vite di fermo. A questo proposito vedere anche pagina TR-45 Note per il montaggio

Fig. 57

Serie	Sezio- ne	Lun- ghezza	Corsa		Capacità di carico per coppia di guide				
		L [mm]	H [mm]	C _{0rad} [N]	C _{0ax} [N]				
		130	152	238	166	2			
		210	222	562	392	3			
		290	308	472	472	4			
	22	370	392	372	372	5			
DBN		450	462	324	324	6			
		530	548	272	272	7			
		610	632	234	234	8			
		690	702	216	216	9			
		770	788	190	190	10			
						Tab. 42			


Serie	Sezio- ne	Lun- ghezza	Corsa		di carico a di guide	Num. fori
		L [mm]	H [mm]	C _{0rad} [N]	C _{oax} [N]	
		130	148	470	328	2
		210	232	864	604	3
		290	296	1244	1074	4
	28	370	380	964	964	5
		450	464	786	786	6
		530	548	664	664	7
DBN		610	633	572	572	8
DDIN		690	717	504	504	9
		770	801	452	452	10
		850	866	426	426	11
		930	950	388	388	12
		1010	1034	356	356	13
		1090	1118	328	328	14
		1170	1202	304	304	15

Serie	Sezio- ne	Lun- ghezza	Corsa	Capacità per coppi	di carico a di guide	Num. fori
		L [mm]	H [mm]	C _{0rad} [N]	C _{0ax} [N]	
		210	254	804	562	3
		290	318	1334	1120	4
		370	406	1044	1044	5
		450	494	858	858	6
		530	558	788	788	7
		610	646	676	676	8
		690	734	594	594	9
	35	770	798	558	558	10
DBN		850	886	500	500	11
		930	974	454	454	12
		1010	1038	434	434	13
		1090	1126	398	398	14
		1170	1214	366	366	15
		1250	1278	354	354	16
		1330	1366	330	330	17
		1410	1454	308	308	18
		1490	1518	298	298	19
						Tab. 44

Serie	Sezio- ne	Lun- ghezza	Corsa	Capacità per coppi		Num. fori
		[mm]	H [mm]	C _{0rad} [N]	C _{0ax} [N]	
		210	246	1210	848	3
		290	316	2228	1560	4
		370	416	2600	1820	5
		450	486	2662	2558	6
		530	556	2386	2386	7
		610	626	2164	2164	8
		690	726	1824	1824	9
		770	796	1690	1690	10
		850	866	1576	1576	11
		930	966	1386	1386	12
		1010	1036	1308	1308	13
DBN	43	1090	1106	1238	1238	14
		1170	1206	1118	1118	15
		1250	1276	1066	1066	16
		1330	1376	976	976	17
		1410	1446	938	938	18
		1490	1516	900	900	19
		1570	1586	868	868	20
		1650	1686	806	806	21
		1730	1756	780	780	22
		1810	1856	730	730	23
		1890	1926	708	708	24
		1970	2026	668	668	25

Tab. 45

DBN

¹ Fori di fissaggio (V) per viti a testa svasata a norma DIN7991

Fig. 58

Serie	Sezione	Din	Dimensioni della sezione								
		A [mm]	B [mm]	E [mm]	V	[kg/m]					
	22	22	22	3	M4	2,64					
DDN	28	26	28	1	M5	4,04					
DBN	35	34	35	2	M6	6,10					
	43	44	43	2,5	M8	10,50					
						Tah 46					

Tab. 46

Si prega di fare attenzione alle note tecniche "Corsa bilaterale" a pag. TR-42

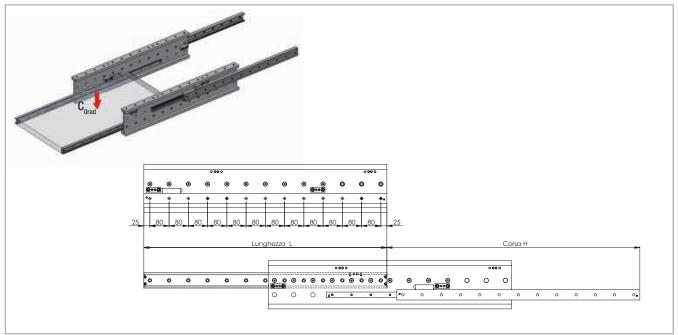
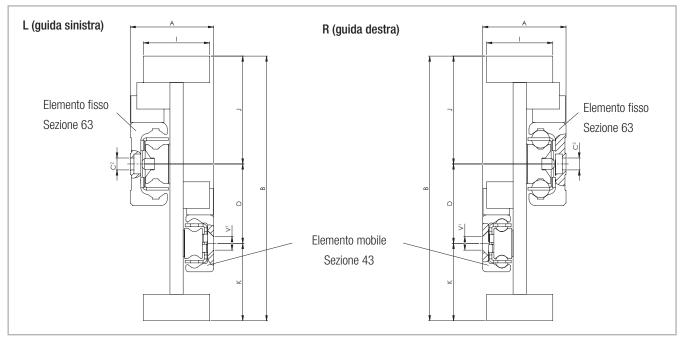
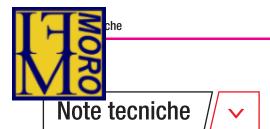



Fig. 59

Serie	Sezione	Lun- ghezza L [mm]	Corsa H [mm]	Capacità di carico per coppia di guide C _{orad} [N]	elemento fisso N.fori accessibili / N.fori totale	elemento mobile N.fori accessibili / N.fori totale
		1010	1051	16104	10 / 13	10 / 13
		1090	1141	17496	10 / 14	11 / 14
		1170	1216	19168	11 / 15	11 / 15
		1250	1291	20848	12 / 16	13 / 16
		1330	1381	22238	13 / 17	13 / 17
	63	1410	1456	23920	13 / 18	14 / 18
		1490	1531	25608	14 / 19	14 / 19
DMS		1570	1621	26996	14 / 20	15 / 20
DIVIO	03	1650	1696	28686	16 / 21	16 / 21
		1730	1771	30380	16 / 22	17 / 22
		1810	1861	31766	17 / 23	17 / 23
		1890	1936	33460	18 / 24	19 / 24
		1970	2026	34846	19 / 25	19 / 25
		2050	2101	36542	19 / 26	20 / 26
		2130	2176	38240	20 / 27	20 / 27
		2210	2266	39624	21 / 28	22 / 28

DMS


Fori di fissaggio (V) per viti a testa svasata a norma DIN7991

Fori di fissaggio (C) per viti a testa cilindrica a norma DIN7984. In alternativa fissaggio con viti Torx® in versione speciale con testa ribassata (su richiesta)

Per la versione DMS prestare attenzione se guida destra o sinistra.

Fig. 60

Serie	Sezione		Dimensioni della sezione										
		A [mm]	B [mm]	l [mm]	K [mm]	D [mm]	J [mm]	С	V	[kg/m]			
DMS	63	63	200	50	58,5	60	81,5	M8	M8	43			
										Tab. 48			

Scelta della guida telescopica

La scelta della guida telescopica adatta dovrebbe essere fatta sulla base del carico e della massima flessione ammissibile quando è completamente estesa. La capacità di carico di una guida telescopica dipende quindi da due fattori: la capacità di carico della gabbia a sfere e la rigidezza dell'elemento intermedio. Per corse piuttosto corte la capacità di carico viene determinata dalla capacità di carico della gabbia a sfere, per corse medio-lunghe dalla rigidezza dell'elemento intermedio. Perciò serie che pure hanno componenti analoghi sono adatte per capacità di carico diverse.

Verifica al carico statico

Valori riportati nelle tabelle dei fattori di carico delle corrispondenti serie (vedere cap. 4 Serie disponibili, pag. TR-8 e segg.) indicano il massimo carico ammissibile per una coppia di guide, applicabile al centro delle due guide e nella mezzeria dell'elemento mobile quando la guida è completamente estesa.

Nell'impiego di una coppia di guide il carico agisce centralmente su ambedue le guide (vedere fi g. 62, P).

La capacità di carico di una coppia di guide è:

$$P = C_{0rad}$$

Fig. 61

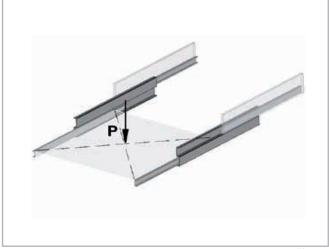


Fig. 62

Flessione

Quando il carico P agisce verticalmente sulla coppia di guide (vedere fig. 65), la flessione elastica prevista, in condizione estesa, viene calcolata nel modo seguente:

$$f = \frac{q}{t} \cdot P (mm)$$

Fig. 63

Dove:

f flessione elastica prevista in mm

q coefficiente legato alla corsa (vedere fig. 66/67)

t coefficiente determinato dal tipo di guida telescopica (vedere fig. 64)

P carico effettivo in N che agisce centralmente sulla coppia di guide

Per la verifica del carico statico vedere anche a pag. TR-38

DS28	t = 360	DBN22	t = 6	
DS35	t = 940	DBN28	t = 16	
DS43	t = 1600	DBN35	t = 26	
DS63	t = 8000	DBN43	t = 112	
DE22	t = 16	DMS63	t = 7000	
DE28	t = 34	DSC43	t = 1600	
DE35	t = 108	DSE28	t = 20	
DE43	t = 240	DSE35	t = 60	
DE63	t = 1080	DSE43	t = 116	
		DSE63	t= 556	

Fig. 64

Nota: La formula riportata sopra (vedere fig. 63) vale per una singola guida. Nel caso di impiego di un coppia di guide il carico sulla singola guida è $P = P_1/2$ (vedere pag. TR-36, fig. 62). Questo calcolo approssimato presuppone una struttura di fissaggio perfettamente rigida. Se non si raggiunge una tale rigidezza, la flessione effettiva sarà maggiore di quella calcolata.

Importante:

Per le guide ad estrazione parziale della serie ASN la flessione viene determinata quasi esclusivamente dalla rigidezza flessionale, ovvero dal momento di inerzia superficiale della struttura di fissaggio.

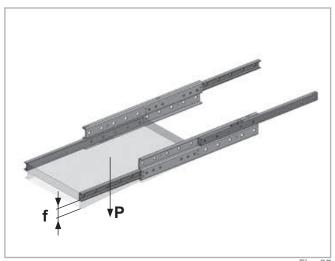


Fig. 65

Per guide tipo DS, DE, DBN, DMS, DSC

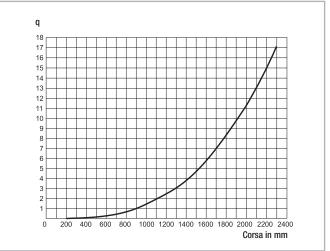
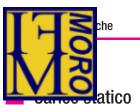



Fig. 66

Per guida tipo DSE

Fig. 67

Le guide telescopiche delle varie serie assorbono forze e momenti diversi (vedere cap. 4 Dimensioni dei prodotti, pag. TR-8 e seguenti).

Per la verifica statica la capacità di carico radiale C_{0rad} , la capacità di carico assiale C_{0ax} e i momenti M_{x} , M_{y} e M_{z} indicano il massimo valore ammissibile del carico. Carichi maggiori compromettono le proprietà di scorrimento

e la resistenza meccanica. Per la verifica del carico statico si impiega un fattore di sicurezza $S_{\scriptscriptstyle 0}$ che tiene conto delle condizioni al contorno dell'applicazione ed è definito più dettagliatamente nelle seguenti tabelle:

Fattore di sicurezza S₀

elevata precisione di montaggio, nessuna deformazione elastica	
Condizioni di montaggio normali	1,5 - 2
Urti e vibrazioni, variazioni di direzione molto frequenti, deformazioni elastiche evidenti	2 - 3,5

Tab. 49

Il rapporto tra il massimo carico ammissibile e quello effettivo deve essere almeno uguale al valore del fattore di sicurezza S_0 adottato.

$$\frac{P_{\text{orad}}}{C_{\text{orad}}} \leq \frac{1}{S_{\text{o}}}$$

$$\frac{P_{0ax}}{C_{0ax}} \le \frac{1}{S_0}$$

$$\frac{M_1}{M_x} \le \frac{1}{S_0}$$

$$\frac{M_2}{M_y} \leq \frac{1}{S_0}$$

$$\frac{M_3}{M_z} \le \frac{1}{S_0}$$

Fig. 68

Le formule riportate sopra valgono per una singola condizione di carico. Se agiscono contemporaneamente due o più delle forze descritte, eseguire la seguente verifica:

$$\frac{P_{0rad}}{C_{0rad}} + \frac{P_{0ax}}{C_{0ax}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{v}} + \frac{M_{3}}{M_{z}} \le \frac{1}{S_{0}}$$

P_{Orad} = carico radiale applicato

 $C_{\text{Orad}} = \text{ carico radiale ammissibile}$

 P_{0ax} = carico assiale applicato

 C_{0ax} = carico assiale ammissibile

 $M_{_{\scriptscriptstyle 1}}~=$ momento applicato in direzione X

M_v = momento ammissibile in direzione X

 M_2 = momento applicato in direzione Y

 M_y = momento ammissibile in direzione Y

 M_3 = momento applicato in direzione Z

 M_{z} = momento ammissibile in direzione Z

Fig. 69

Durata

Il concetto di durata viene definito come l'intervallo di tempo tra la messa in servizio e la comparsa di danni da fatica o da usura sulle superfici di scorrimento. La durata di una guida telescopica dipende da più fattori, quali il carico effettivo, la precisione di montaggio, la presenza di urti e vibrazioni, la temperatura di esercizio, le condizioni ambientali e la lubrificazione. Il calcolo della durata a fatica si riferisce esclusivamente alle serie di sfere con carico applicato.

In pratica, la fine della vita utile della guida e la sua messa fuori servizio avvengono per distruzione o per eccessivo logoramento di un componente

Di ciò si tiene conto mediante un coefficiente di impiego (fi nella formula riportata sotto), e quindi la durata viene calcolata come segue:

$$L_{km} = 100 \cdot (\frac{\delta}{W} \cdot \frac{1}{f_i})^3$$

 $L_{km} = durata calcolata in km$

 δ = fattore di carico in N

W = carico equivalente in N per coppia di guide

f; = coefficiente di impiego

Fig. 70

Coefficiente di impiego f,

	ASN, DS, DE, DBN, DSC
Assenza di urti e vibrazioni, variazioni di direzione modeste e poco frequenti, ambiente pulito	1,3 - 1,8
Leggere vibrazioni e variazioni di direzione medie	1,8 - 2,3
Urti e vibrazioni, variazioni di direzione molto frequenti, ambiente molto sporco	2,3 - 3,5

Tab. 50

Se il carico esterno P è uguale al capacità di carico dinamico C_{Orad} (che ovviamente non deve mai essere superato), la durata in condizioni di funzionamento ideali (f $_{\text{i}}$ =1) è di 100 km. In caso di carico singolo P vale ovviamente: W=P. Se più carichi esterni agiscono contemporaneamente, il carico equivalente si calcola nel modo seguente:

$$W = P_{\text{rad}} + (\frac{P_{\text{ax}}}{C_{\text{0ax}}} + \frac{M_{_1}}{M_{_x}} + \frac{M_{_2}}{M_{_y}} + \frac{M_{_3}}{M_{_z}}) \cdot C_{\text{0rad}}$$

Fig. 71

Lunghe-			ASN				DS	S			D	SE		DSC
zza [mm]	22	28	35	43	63	28	35	43	63	28	35	43	63	43
[]			δ [N]							δ [N]				
130	830	1744												
210	1864	3154	3066	4576										
290	2590	5384	5812	8110		1726				1084				
370	3330	6810	7442	9588		2328				1466				
450	4410	8238	9074	13204		2932	3784			1848	2390			
530	5134	9664	11980	16902		3536	5080	6240		2232	3224	3976		7194
610	5872	11114	13606	20650	30006	4156	5756	7858	10656	2620	3650	5018	6690	8902
690	6960	12542	15234	22010	35416	4762	6434	8394	12918	3004	4080	4792	8126	9322
770	7684	13968	18186	25754	40854	5368	7762	10020	15208	3388	4934	6388	9578	11022
850		16222	19806	29524	46310	6360	8436	11672	17518	4028	5358	7452	11046	12746
930		17622	21428	30858	51778	6948	9110	12180	19842	4406	5784	7758	12526	13144
1010		19048	24402	34620	57258	7556	10452	13832	22178	4792	6650	8820	14012	15760
1090		20474	26018	35962	62748	8162	11122	15500	24522	5412	7072	9896	15504	16592
1170		21900	27636	39720	68242	8768	11794	15292	26874	5562	7496	10190	17002	17868
1250			30622	43494	73742	9792	13146	17658	29232		8368	11264	18504	18702
1330			32236	44822	79246	10386	13814	18154	31596		8790	11562	20010	19980
1410			33850	48590	84754	10992	14484	19818	33962		9212	12632	15914	20818
1490			36846	52372	90266	11612	15840	21492	36332		10088	13710	23028	23456
1570				56166	95780		16506	21976	38706			14096	24540	23826
1650				57466	101296		17176	23650	41080			15078	26056	24660
1730				61252	106814		18536	25330	43458			16160	27572	26394
1810				62562	112332			25808	45838			16444	29088	27824
1890				66344	117854			27486	48218			17526	30606	29408
1970				67658	123376			27966	50602			17814	32126	29770
														T 1 E4

Lunghe-	DMS		DE	/ DBN		DE		DES			DE	D	
zza [mm]	63	22	28	35	43	63	28	35	43	28	35	43	63
	δ [N]			δ [N]				δ [N]				δ N]	
130		330	714										
210		772	1310	1228	1846								
290		1074	2306	2422	3374		881			637	681	769	
370		1380	2912	3104	3948		825	1087	1532	930	1009	1075	
450		1850	3518	3784	5528		1118	1360	1428	1227	1341	1767	
530		2150	4126	5080	7160		1588	1877	2593	1526	1942	2515	
610		2458	4744	5756	8828	12406	1712	2148	2884	1826	2282	2810	5826
690		2934	5350	6434	9322	14722	2192	2678	3664	2127	2622	3581	6989
770		3232	5958	7762	10986	17054	2312	2946	3948	2428	3258	4374	8161
850			6974	8436	12670	19398	2991	3483	5284	2730	3598	4652	9338
930			7566	9110	13144	21750	3099	3749	5019	3032	3938	5452	10519
1010	24308		8172	10452	14822	24110	3597	4580	6364	3334	4590	6265	11703
1090	29974		8776	11122	16514	26476	3900	4554	6625	3636	4929	6531	12889
1170	28914		9382	11794	16978	28846	4200	5391	7445	3939	5268	7346	14077
1250	32972			13146	18664	31220		5649	7705		5929	8169	15266
1330	33526			13814	19136	33596		6203	9108		6266	8426	16457
1410	39684			14484	20818	35974		6460	8785		6604	9250	17649
1490	38570			15840	22510	38356		7014	10187		7271	10080	18842
1570	44316				24210	40738			10434			10330	20035
1650	43196				24660	43122			11267			11160	21229
1730	49414				26356	45508			11514			11995	22423
1810	47822				26812	47896			12947			12240	23618
1890	51926				28504	50284			12594			13074	24813
1970	52450				28966	52672			12290			13320	26009
2050	58682												
2130	57526												
2210	61190												

La massima velocità di traslazione viene determinata dalla massa dell'elemento intermedio, che viene trascinato dalla guida mobile. Perciò la massima velocità di traslazione ammissibile si riduce all'aumentare della lunghezza (vedere fig. 72).

Massima accelerazione: 1,2 m/s²

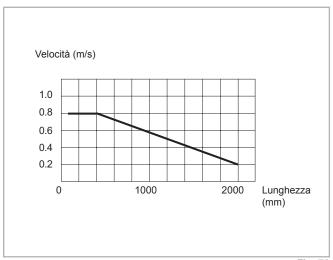


Fig. 72

Forza di apertura e di chiusura

Le forze necessarie per l'azionamento di una guida telescopica dipendono dal carico applicato e dalla flessione in condizione estesa. La forza necessaria per l'apertura è determinata in linea di principio dal coefficiente di attrito del cuscinetto lineare a sfere, che vale circa 0,01 in condizioni corrette di montaggio e lubrificazione. Durante l'estrazione, la forza dimi-

nuisce con la flessione elastica della guida telescopica sotto carico. Per chiudere una guida telescopica è necessaria una forza maggiore perché, a causa della flessione elastica, anche se minima, la guida mobile deve muoversi contro una superficie inclinata in salita.

Corsa bilaterale

Per tutte le versioni che consentono la corsa in entrambe le direzioni, occorre considerare che la posizione dell'elemento intermedio è definita soltanto quando la guida è completamente estesa. Quando la guida è chiusa, l'elemento intermedio può sporgere da ciascun lato di circa la metà della propria lunghezza. Fanno eccezione la serie ASN, che funziona da guida ad estrazione parziale senza elemento intermedio, e la versione

speciale della serie DE con dispositivo di recupero dell'elemento intermedio. La corsa bilaterale delle serie ASN, DE e DBN si ottiene rimuovendo le viti di fermo. Nella serie DS versione D la corsa bilaterale è realizzata con adattamenti costruttivi. La corsa bilaterale è disponibile su richiesta per la serie DMS. Le serie DS versione B, non sono disponibili con corsa bilaterale.

Temperatura

- Le serie ASN, DE, DBN possono essere impiegate fino a una temperatura ambiente di +170 °C (+338 °F). Per temperature maggiori di +130 °C (+266 °F) si raccomanda l'impiego di un grasso al litio per alte temperature d'esercizio. Con grasso standard la temperatura minima corrisponde a -20 °C (-4 °F).
- A causa del paracolpi in gomma, le serie DS, DSE, DSC e DMS hanno un campo di temperatura di applicazione da -20 °C to +80 °C (-4 °F to +176 °F).
- A causa del paracolpi in resina speciale, le serie DSS43S e DE...S hanno un campo di temperatura di applicazione da -20 °C a +50 °C (da -4 °F a +122 °F).

Protezione anticorrosione

- Tutte le serie della famiglia di prodotti Telescopic Rail hanno di serie una protezione anticorrosione mediante zincatura elettrolitica a norma ISO 2081. Se è richiesta una resistenza alla corrosione più elevata, le guide sono disponibili con trattamento Rollon Aloy o nichelatura chimica. Per entrambe sono previste sfere in acciaio inox.
- Sono disponibili su richiesta vari trattamenti superficiali per applicazioni specifiche, ad es. la versione nichelata con omologazione FDA per l'impiego nell'industria alimentare.

Per ulteriori informazioni contattare il nostro servizio tecnico.

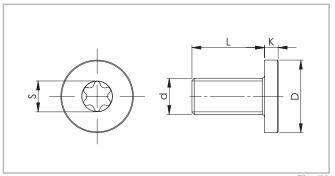
Lubrificazione

L'intervallo di lubrificazione necessario dipende molto da condizioni ambientali, velocità e temperatura. In condizioni normali si raccomanda di eseguire un rabbocco dopo un esercizio di 100 km o dopo un periodo di funzionamento di sei mesi. In casi particolarmente critici l'intervallo deve essere ridotto. Prima di lubrificare, pulire accuratamente le superfici di scorrimento. Le superfici di scorrimento e gli interstizi della gabbia delle sfere vengono lubrificati con un grasso al litio di media consistenza (grasso per cuscinetti volventi).

Sono disponibili su richiesta diversi lubrificanti per applicazioni speciali:

- lubrificante con omologazione FDA per l'impiego nell'industria alimentare
- lubrificante specifico per Clean Room
- lubrificante specifico per settore marino
- lubrificante specifico per alte e basse temperature

Per informazioni specifiche contattare l'ufficio tecnico di Rollon.


Gioco e precarico

Le guide della linea Telescopic Rail sono montate di norma senza gioco. Per ulteriori informazioni vi preghiamo di contattare l'assistenza tecnica Rollon.

Classi di precarico					
Gioco maggiore	Senza gioco	Precarico maggiore			
$G_{\scriptscriptstyle{1}}$	Standard	K,			
· ·		Tob E			

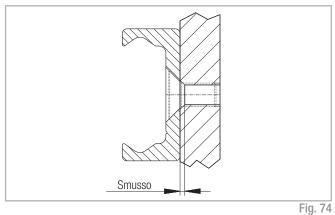
* Per precarico maggiore contattare l'ufficio tecnico

Le viti sono incluse nella fornitura. Tutte le altre guide si fissano con viti a testa svasata o cilindrica rispettivamente a norma DIN 7991 o 7984. Per la misura 63 delle serie ASN e DMS sono disponibili su richiesta viti Torx® con testa cilindrica ribassata (vedere fig. 73).

Fig. 73

Sezione	Tipo di vite	d	D [mm]	L [mm]	K [mm]	S
63	M8 x 20	M8 x 1,25	13	20	5	T40

Tab. 54

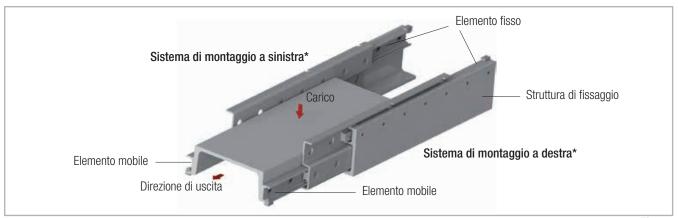

Coppia di serraggio delle viti di fissaggio standard da usare

Classe di resistenza	Sezione	Coppia di serraggio [Nm]
	22	3
	28	6
10.9	35	10
	43	25
	63	30

Tab. 55

Prevedere uno smusso sufficiente sui fori filettati di fissaggio, secondo quanto riportato nella tabella seguente:

Sezione	Smusso (mm)
22	0,5 x 45°
28	1 x 45°
35	1 x 45°
43	1 x 45°
63	1 x 45°



Tab. 56

Note per il montaggio

Generale e per ASN, DE, DBN, DS, DMS

* Nel caso dei modelli DSB, DMS, DSE si deve fare attenzione alla posizione di montaggio a sinistra o destra

Fig. 75

Informazioni generali

- I fermi interni servono a bloccare il cursore e la gabbia a sfere quando non sono sotto carico. Per sistemi sotto carico, usare fermi esterni come fine corsa.
- Per ottenere caratteristiche di scorrimento ottimali, lunga durata e rigidezza, fissare le guide telescopiche su una superficie rigida e piana usando tutti i fori accessibili.
- Per raggiungere tutti i fori di fissaggio delle serie ASN, DEV, DEM e DBN per il montaggio è necessario rimuovere e successivamente rimontare la vite di arresto nella guida.
- Prestare attenzione al parallelismo delle superfici di montaggio. La guida fissa e quella mobile si adattano alla struttura rigida su cui vengono montate.
- Le guide Telescopic Rail sono adatte per l'impiego continuativo in sistemi automatici. In questo caso, la corsa dovrebbe rimanere sempre costante e la velocità di traslazione va verificata (vedere pag. TR-42, fig. 72). Il movimento delle guide telescopiche avviene grazie alle gabbie a sfere interne che per corse ripetute possono subire uno spostamento rispetto alla posizione originaria. Questo sfasamento può influire negativamente sulle caratteristiche di scorrimento o limitare la corsa. Se l'applicazione richiede corse diverse, la forza di azionamento deve essere adeguatamente dimensionata, in modo da poter sincronizzare correttamente lo spostamento della gabbia a sfere. Altrimenti prevedere regolarmente una corsa aggiuntiva, in modo da assicurare il corretto posizionamento della gabbia a sfere.

ASN

- La serie ASN assorbe sia carichi radiali e assiali sia momenti in tutte le direzioni principali.
- Con il montaggio di due guide ad estrazione parziale su un profilo si ottiene una solida guida ad estrazione completa. Per soluzioni personalizzate contattare il nostro servizio tecnico.

DE / DBN

- Le serie DE e DBN assorbono carichi radiali e assiali.
- La funzionalità della versione speciale DE...D è garantita solo se la corsa disponibile viene usata completamente.

DS / DSE / DMS

- Le serie DS, DSE e DMS assorbono carichi radiali. che devono agire sulla guida mobile lungo l'asse verticale della sezione.
- Durante il montaggio accertarsi che il carico sia applicato sull'elemento mobile (la guida inferiore) (vedere fig. 75).
 - Un montaggio invertito pregiudicherebbe il corretto funzionamento.
- Il montaggio deve essere fatto su una struttura di fissaggio rigida, usando tutti i fori di fissaggio accessibili.
- In caso di impiego a coppie, durante il montaggio prestare attenzione all'allineamento parallelo.

Note per il montaggio

Per DSC

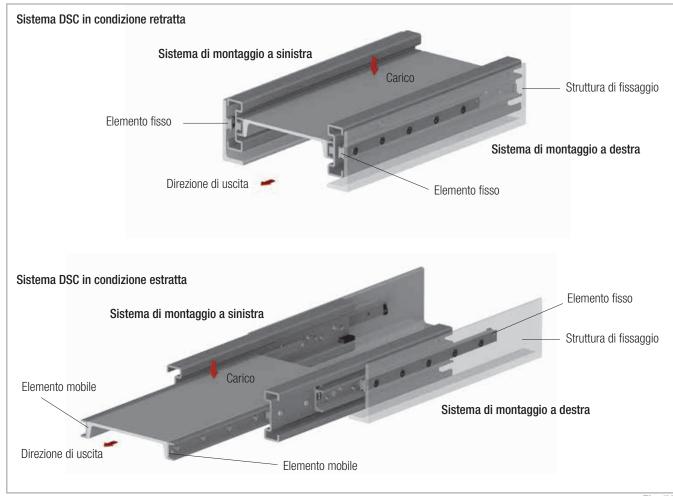


Fig. 76

DSC

- La serie DSC assorbe i carichi radiali e assiali, in questo senso vanno preferite le direzioni di carico radiali.
- E' possibile l'impiego in orizzontale e verticale. Prima del montaggio in verticale consigliamo una verifica con il nostro Servizio Tecnico.
- Nel montaggio è necessario accertarsi che il carico sia montato sull'elemento mobile (vedere fig. 76). Un montaggio invertito pregiudicherebbe il corretto funzionamento.
- Il montaggio deve avvenire su una struttura di collegamento rigida a flessione mediante tutti i fori di fissaggio accessibili.
- Attenzione: La lunghezza del cursore (elemento fisso) è diversa dalla lunghezza di sistema. Vedere a questo proposito la Tab. 23 a pagina TR-21 Capacità di carico DSC. La tabella riporta anche le informazioni sui fori di fissaggio accessibili
- Attenzione: Per realizzare la corsa completa il cursore (elemento fisso) deve essere montato nel sistema retratto nella posizione anteriore.
- Nel montaggio occorre assicurare l'allineamento parallelo.

Codici di ordinazione

Guide telescopiche

DSB	28	690	885	NIC	L	
					Versione des	stra (R) o sinistra (L) (solo per le serie DSB, DMS) TR-7 Note
		Protezione estesa delle superfici se si discosta dallo sta vedere pag. TR-43 Protezione anticorrosione		· · · · · · · · · · · · · · · · · · ·		
			Corsa, se si discosta da quella standard (dati del catalogo)			(dati del catalogo)
			vedere pag.	TR-8 e segg.	Dimensioni d	ei prodotti e guida all'ordinazione - corse speciali
		Lunghezza	vedere pa	ıg. TR-8 e seç	gg.	
	Sezione	vedere pag.	TR-8 e segg.			
Serie v	redere pag. TF	R-8 e segg				

Esempio di ordinazione 1: ASN35-0770

Esempio di ordinazione 2: DSB28-0690-0885-L-NIC Esempio di ordinazione 3 (guida DE...D): DEF28D-0690

Note per l'ordinazione: dati relativi al lato destro e sinistro e alla protezione estesa delle superfici vanno indicati solo se necessari.

Le lunghezze delle guide e le corse vengono sempre indicate con quattro cifre anteponendo degli zeri se necessario

Corse speciali

Sono corse speciali tutte quelle differenti dalla corsa standard H. Sono disponibili in multipli dei valori riportati nelle tab. 57 e 58. Questi valori dipendono dal passo della gabbia a sfere.

Serie	Sezione	Modifica della corsa [mm]
	22	7,5
	28	9,5
ASN	35	12
	43	15
	63	20

Tab. 57

La corsa della serie DMS è modificabile su richiesta.

Per le serie DSD, DSC non è possibile modificare la corsa.

Qualsiasi modifica della corsa influenza i fattori di carico forniti a catalogo. Può accadere che modificando la corsa non siano più accessibili fori di fissaggio importanti. Per ulteriori informazioni contattare il nostro servizio tecnico.

Serie	Sezione	Modifica della corsa [mm]
	22	15
DSS	28	19
DE	35	24
DBN	43	30
	63	40
DES	35	22
	28	28.5
DSE	35	36
DSE	43	45
	63	60

EUROPE

ROLLON S.p.A. - ITALY (Headquarters)

Via Trieste 26 I-20871 Vimercate (MB) Phone: (+39) 039 62 59 1

www.rollon.com - infocom@rollon.com

ROLLON S.p.A. - RUSSIA (Rep. Office)

117105, Moscow, Varshavskoye shosse 17, building 1 Phone: +7 (495) 508-10-70 www.rollon.ru - info@rollon.ru

AMERICA

ROLLON Corporation - USA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492

www.rollon.com - info@rolloncorp.com

ASIA

ROLLON Ltd - CHINA


No. 1155 Pang Jin Road, China, Suzhou, 215200 Phone: +86 0512 6392 1625 www.rollon.cn.com - info@rollon.cn.com

Consultate le altre linee di prodotto

ROLLON GmbH - GERMANY

Bonner Strasse 317-319 D-40589 Düsseldorf Phone: (+49) 211 95 747 0 www.rollon.de - info@rollon.de

ROLLON Ltd - UK (Rep. Office)

The Works 6 West Street Olney Buckinghamshire, United Kingdom, MK46 5 HR Phone: +44 (0) 1234964024

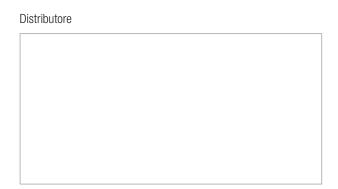
www.rollon.uk.com - info@rollon.uk.com

ROLLON - SOUTH AMERICA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492

www.rollon.com - info@rolloncorp.com

ROLLON India Pvt. Ltd. - INDIA


1st floor, Regus Gem Business Centre, 26/1 Hosur Road, Bommanahalli, Bangalore 560068 Phone: (+91) 80 67027066 www.rollonindia.in - info@rollonindia.in

Les Jardins d'Eole, 2 allée des Séquoias F-69760 Limonest

Phone: (+33) (0) 4 74 71 93 30 www.rollon.fr - infocom@rollon.fr

ROLLON - JAPAN

Tokyo 105-0022 Japan

Phone +81 3 6721 8487

www.rollon.jp - info@rollon.jp

3F Shiodome Building, 1-2-20 Kaigan, Minato-ku,

Tutti gli indirizzi dei nostri partners nel mondo possono essere consultati sul sito internet www.rollon.com