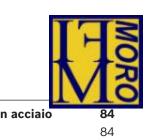

Via Postumia,83 – 31050 Ponzano Veneto (TV)
Tel. 0422 961811 r.a. – Fax. 0422 961830/26
Altri punti vendita:
Treviso – Via dei Da Prata, 34 (lat. Vle della Repubblica)
Tel. 0422 42881 r.a. – Fax. 0422 428840
Conegliano – Via dell'Industria, 24
Tel. 0438 418235 – 0438 370747 – Fax 0438 428860
www.morotreviso.com - info@morotreviso.com

Guide a sfere su rotaia

Pattino a sfere, guide a sfere, accessori



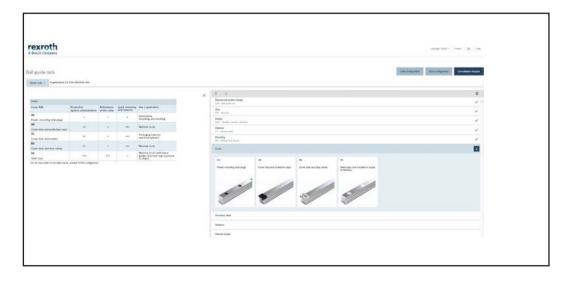
www.boschrexroth.com

Informazioni generali sul prodotto	4	Pattini a sfere ad alta velocità BSHP in acciaio
Novità in breve	4	Descrizione del prodotto
Descrizione del prodotto	6	FNS, FLS, SNS, SLS
Avvertenze	8	
Selezione di una guida lineare conforme a DIN 637	10	Pattino a sfere super in acciaio
Panoramica dei prodotti pattini a sfere con fattori		Descrizione del prodotto
di carico e momenti di carico	12	FKS
Panoramica dei prodotti rotaie a sfere		SKS
con lunghezze rotaia	16	
Dati tecnici generali e calcoli	18	Pattini a sfere BSHP in alluminio
Forma e versione	26	Descrizione del prodotto
Precarico del sistema	30	FNS
Classi di precisione	33	SNS
Gabbia guidasfere	35	
Guarnizioni	35	Pattini a sfere BSHP Resist NR
Materiali	36	Descrizione del prodotto
Materiali	30	FNS, FLS, FKS, SNS, SLS, SKS
Descrizione del prodotto pattini a sfere ad alta		FN3, FL3, FN3, 3N3, 3L3, 3N3
precisione BSHP in acciaio	38	Pattini a sfere BSHP Resist NR II
Descrizione del prodotto	38	Descrizione del prodotto
Confronto	39	FNS, FLS, FKS, SNS, SLS, SKS
Esempi di applicazione	45	1 10, 1 23, 1 10, 310, 323, 310
Listing of applicazione	43	Pattini a sfere BSHP Resist CR
Pattino a sfere BSHP standard in acciaio	46	Descrizione del prodotto
Panoramica	46	FNS, FLS, SNS, SLS, SNH, SLH, FNN,
Esempio di ordinazione	47	FKN, SNN, SKN, FKS, SKS
FNS - Flangia Normale Altezza standard	48	
FLS - Flangia Lungo Altezza standard	50	Rotaie a sfere in acciaio standard
FKS – Flangiato Corto Altezza standard	52	Descrizione del prodotto
SNS - Stretta Normale Altezza standard	54	Ordinazione di rotaie di guida con lunghezze
SLS - Stretto Lungo Altezza standard	56	delle rotaie consigliate
SKS - Stretto Corto Altezza standard	58	SNS/SNO con nastro di copertura e serranastri
SNH - Stretto Normale Alto	60	SNS/SNO con nastro di copertura
SLH - Stretto Lungo Alto	62	e cappucci di protezione
FNN - Flangiato Normale Basso	64	SNS/SNO con tappi di chiusura fori in plastica
FKN - Flangiato Corto Basso	66	SNS con tappi di chiusura in acciaio
SNN - Stretto Normale Basso	68	SNS avvitabili dal basso
		3N3 avvitabili dai basso
SKN - Stretto Corto Basso	70	Rotaie a sfere in versione standard Resist NR II
Pattini a sfere BSHP in acciaio per carichi pesanti	72	Descrizione del prodotto
FNS	72	
FLS	74	Rotaie a sfere in versione standard Resist CR
SNS	76	Descrizione del prodotto
SLS	78	
SNH	80	Rotaie a sfere standard con scala graduata
SLH	82	Descrizione del prodotto
	02	2 333. Liono doi prodotto

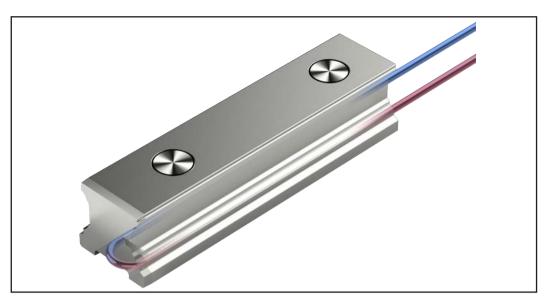
Larghezza guide a sfere su rotaia BSHP in acciaio	
e Resist CR	126
Descrizione del prodotto	126
BNS - Largo Normale Altezza standard	128
CNS - Compatto Normale Altezza standard	132
Descrizione del prodotto	134
Ordinazione di rotaie con lunghezze	
delle rotaie consigliate	135
Accessori per pattini a sfere	140
Descrizione del prodotto	140
Guarnizione frontale	142
Guarnizione FKM	143
Kit guarnizioni	144
Adattatore per lubrificazione	145
Piastra di lubrificazione	146
Piastra di lubrificazione G 1/8	147
Unità di lubrificazione frontali	150
Soffietto	154
Nipplo di lubrificazione, raccordi di lubrificazione,	
prolunghe	158
Accessori per rotaie a sfere	162
Descrizione del prodotto	162
Nastro di protezione	163
Tappi di chiusura fori	167
Lardone a sezione rastremata	170
Apricartone	171
Elemento di serraggio e frenatura	172
Elementi idraulici di serraggio e frenatura	
Descrizione del prodotto	172
Elementi idraulici di serraggio e frenatura, KBH, FLS	174
Elementi idraulici di serraggio e frenatura, KBH, SLS Elementi idraulici di serraggio descrizione	175
del prodotto	176
Dati tecnici e calcoli	177
Elementi idraulici di serraggio KWH, FLS	178
Elementi pneumatici di serraggio e frenatura,	
descrizione del prodotto	182
Elementi pneumatici di serraggio e frenatura MBPS	184
Elementi pneumatici di serraggio e frenatura UBPS	186
Elementi pneumatici di serraggio descrizione	
del prodotto	188
Elementi pneumatici di serraggio MK	190
	192

Informazioni approfondite	237
Manutenzione	236
Lubrificazione	222
Lubrificazione	220
Avvertenze per la lubrificazione	220
Rotaia a sfere in più tratti	218
Tolleranze di montaggio	215
Fissaggio	206
Istruzioni di montaggio generali	204
Avvertenze per il montaggio	204
di bloccaggio e frenanti	202
Indicazioni di sicurezza per elementi	
Piastra distanziatrice	201
Elementi di serraggio manuali HK	199
del prodotto	198
Elementi di serraggio manuali, descrizione	
Elementi pneumatici di serraggio LCPS	196
Elementi pneumatici di serraggio LCP	194


Novità in breve


Con i nuovi configuratori Bosch Rexroth accelera la selezione e la configurazione di pattini a sfere di rotaie a sfere. Nell'ambito di ogni decisione, un controllo di plausibilità integrato monitora in tempo reale la possibilità di realizzare la configurazione individuale. Infine, i componenti selezionati possono essere ordinati direttamente nell'eShop di Bosch Rexroth.

Link al configuratore del pattino



Link al configuratore della rotaia

Prolungamento degli intervalli di rilubrificazione in caso di lubrificazione a grasso

Secondo recenti analisi nell'ambito collaudi di Bosch Rexroth, in caso di lubrificazione a grasso e a determinate condizioni d'esercizio sono possibili intervalli di rilubrificazione decisamente più lunghi. Nel caso di piccoli carichi, temperature ambiente normali e velocità di corsa da mediamente alte ad alte, nelle guide a sfere su rotaie è possibile realizzare fino a 20000 km senza rilubrificazione. Questo enorme incremento è stato reso possibile dal continuo miglioramento della qualità di fabbricazione del pattino e della rotaia di guida che hanno portato a superfici migliori e ad una maggiore esattezza dimensionale geometrica delle piste.

Pattino per il montaggio

Pattino per il montaggio per allineare in parallelo con estrema precisione e per allineare le giunzioni di rotaie a sfere composte da più tratti.

Descrizione del prodotto

Con elementi sostituibili da magazzino, combinare unità guida complete...

Da Rexroth la fabbricazione delle rotaie e dei pattini a sfere, specialmente nella zona delle piste di rotolamento delle sfere viene effettuata con tale precisione che ogni singolo componente è perfettamente intercambiabile in qualsiasi momento. Di conseguenza, il numero di possibili combinazioni all'interno di ogni classe di precisione è infinito. Ciò consente una logistica unica nel suo genere e ai massimi livelli mondiali. Ogni elemento può essere disposto e applicato in modo personalizzato. Sulla rotaia a sfere, entrambi i lati possono essere utilizzati come laterali di riferimento.

Caratteristiche

- ▶ Fattori di carico parimenti elevati in tutte e quattro le direzioni principali
- ▶ Bassissima rumorosità e miglior comportamento di scolamento
- ► I migliori valori dinamici:

Velocità: v_{max} fino a 10 m/s

Accelerazione: $a_{max} = 500 \text{ m/s}^2$

- ▶ Lubrificazione permanente su più anni possibile
- ▶ Sistema di lubrificazione minima con serbatoio integrato con lubrificazione a olio¹)
- ► Raccordi di lubrificazione su tutti i lati con filetto metallico¹)
- Struttura intercambiabile illimitata attraverso possibilità di combinazione a piacere di tutte le versioni di rotaie a sfere con tutte le varianti di pattini a sfere
- ▶ Massima rigidità di sistema attraverso disposizione a O precaricata
- ▶ Massima compensazione dell'errore di montaggio con super-pattini a sfere
- ▶ 60 % di risparmio del peso con pattini a sfere in alluminio (rispetto ai pattini a sfere in acciaio)

Altre caratteristiche salienti

- Intercambiabilità con la guida a rulli su rotaia
- Sistema di misurazione integrato, induttivo e esente dall'usura come opzione
- ▶ Vasto programma di accessori
- ► Sovrastrutture sui pattini a sfere avvitabili dall'alto e dal basso¹)
- ► Aumento della rigidità in caso di sollecitazione di sollevamento e laterale grazie a ulteriore avvitamento su due fori al centro del pattino a sfere¹)
- ► Filetto di fissaggio frontale per tutte le unità
- ▶ Elevata rigidità in tutte le direzioni di sollecitazione, pertanto utilizzabile anche come pattino singolo
- ▶ Protezione completa con guarnizioni integrate
- ▶ Elevata resistenza momento torcente
- ▶ Ridotte oscillazioni delle molle grazie alla geometria di ingresso ideale e all'elevato numero di sfere
- ► Scorrimento silenzioso e fluido grazie al rinvio progettato in modo ottimale e alla guida delle sfere o alla gabbia guida-sfere
- ▶ Diverse classi di precarico

Protezione anti-corrosione (opzionale)¹⁾

- ▶ Resist NR: Corpo dei pattini a sfere in acciaio resistente alla corrosione secondo DIN EN 10088
- ▶ Resist NR II: Corpo del pattino a sfere o della rotaia a sfere così come di tutte le parti in acciaio resistente alla corrosione secondo norma DIN EN 10088
- ▶ Resist CR: Corpo del pattino a sfere o della rotaia a sfere in acciaio con rivestimento resistente alla corrosione, con cromatura dura, argento opaco

▶ Rumorosità ottimizzata

Nastro di copertura garantito per i fori di fissaggio della rotaia a sfere

- ► Una copertura per tutti i fori consente di risparmiare tempi e costi
- ► In acciaio per molle resistente alla corrosione DIN EN 10088
- ► Semplice e sicuro nel montaggio
- ► Aggancio e fissaggio

Per ulteriori prodotti dal campo delle guide a sfere su rotaia sono disponibili cataloghi separati:

Sistema di misura integrato IMS per guide a sfere e a rulli su rotaia

Sistema di misura integrato IMScompact per guide a sfere su rotaia BSHP

Mini guide a sfere su rotaia

Guida a sfere su rotaia NRFG per l'impiego nell'industria degli imballaggi e nel settore alimentare

Avvertenze

Avvertenze generali

► Combinazione di differenti classi di precisione Quando si combinano rotaie e pattini a sfere di diverse classi di precisione, si modificano le tolleranze per le dimensioni H e A3. Vedi "Classi di precisione e loro tolleranze".

Uso conforme

- ▶ Le guide a sfere di Rexroth sono guide lineari capaci di assorbire sollecitazioni derivanti da forze agenti da tutte le direzioni trasversali e da tutti i momenti agenti su tutti gli assi. Le guide a sfere sono destinate esclusivamente ad assolvere la funzione di guida e posizionamento se installate su macchine.
- ▶ Il prodotto è destinato esclusivamente all'uso professionale e non privato.
- L'utilizzo conforme alla destinazione d'uso implica la lettura completa e la comprensione della rispettiva documentazione e in particolare delle "Avvertenze per la sicurezza".

Uso non conforme

Ogni altro uso differente da quello descritto nel paragrafo "Utilizzo conforme" non è conforme e pertanto non è ammissibile. Se in applicazioni rilevanti sotto il profilo della sicurezza vengono montati o utilizzati prodotti non idonei, possono generarsi condizioni operative non volute nell'applicazione, che possono causare danni a persone e/o danni materiali. Utilizzare il prodotto in applicazioni rilevanti sotto il profilo della sicurezza se questo uso è specificato e consentito espressamente nella documentazione del prodotto. In caso di utilizzo non conforme, Bosch Rexroth AG non si assume alcuna responsabilità. L'utilizzatore si assume da solo i rischi in caso di utilizzo non conforme alla descrizione. Rientra nell'utilizzo non conforme alla destinazione del prodotto:

il trasporto di persone

Indicazioni di sicurezza generali

- ▶ Osservare le norme e disposizioni di sicurezza del Paese in cui viene impiegato o utilizzato il prodotto.
- ▶ Osservare le norme vigenti sulla prevenzione degli infortuni e sulla tutela ambientale.
- ▶ Utilizzare il prodotto soltanto in uno stato tecnico perfetto.
- ▶ Osservare i dati tecnici e le condizioni ambientali indicati nella documentazione del prodotto.
- ▶ Mettere in funzione il prodotto soltanto dopo aver accertato che il prodotto finale (ad esempio una macchina o un impianto) in cui è montato un prodotto risponda alle disposizioni specifiche del Paese, alle norme di sicurezza e alle norme applicative.
- ▶ Le guide a sfera su rotaia Rexroth non devono essere utilizzate in zone a rischio di esplosioni conformemente alla direttiva ATEX 94/9/CE.
- ▶ Di norma, le guide a sfere su rotaia Rexroth non possono essere modificate o trasformate. Il gestore può eseguire unicamente i lavori descritti nella "Guida rapida" e/o nel "Manuale di montaggio per guide a sfere su rotaia".
- ▶ Di norma, il prodotto non va smontato.
- ► Con velocità di corsa elevate subentra un certa rumorosità dovuta al prodotto. Bisogna eventualmente adottare relative misure per proteggere l'udito.
- ▶ Bisogna rispettare particolari requisiti di sicurezza di determinati settori (ad es. costruzione di gru, teatri, tecnica alimentare) riportati in leggi, direttive e norme.
- In linea di principio va osservata la norma seguente: DIN 637 norme di sicurezza per il dimensionamento e il funzionamento delle guide profilate con circolazione del corpo volvente.

Direttive e norme

Le guide a sfere su rotaia BSHP Rexroth sono indicate per movimentazioni lineari a elevata dinamica che richiedono affidabilità e precisione. L'industria delle macchine utensili e altri settori devono osservare una serie di norme e direttive. Queste prescrizioni variano notevolmente da un Paese all'altro. È pertanto essenziale comprendere le legislazioni valide a livello regionale.

DIN EN ISO 12100

Questa normativa tratta la sicurezza delle macchine – principi base per la progettazione, valutazione e riduzione dei rischi. Essa offre una visione generale e contiene istruzioni sullo sviluppo di macchine e del loro uso conforme alla destinazione.

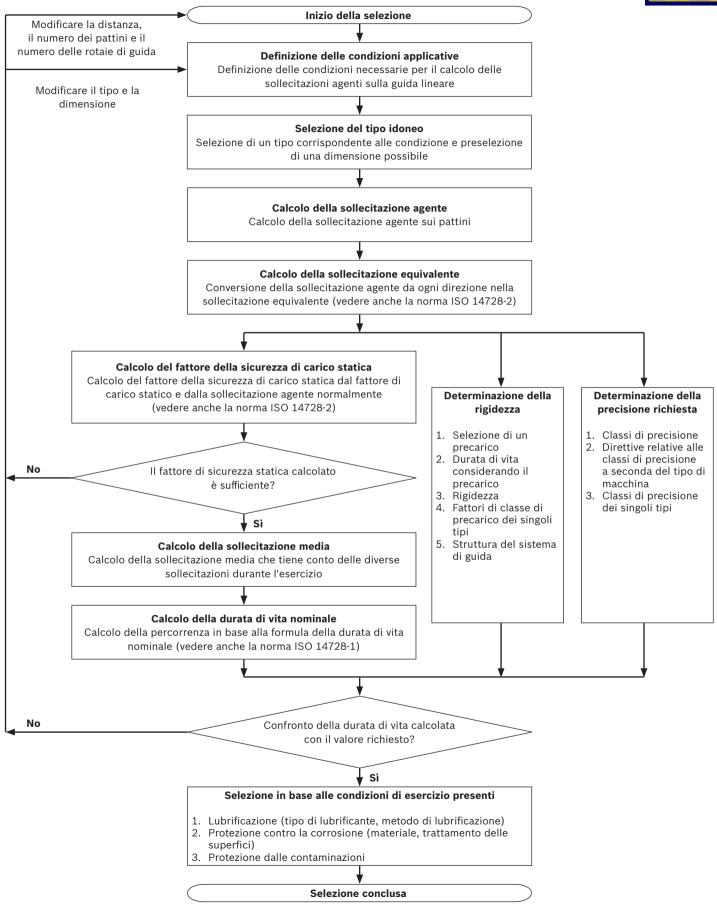
Direttiva 2006/42/CE

Questa Direttiva Macchine descrive i requisiti fondamentali di sicurezza e di tutela della salute per la progettazione e la produzione di macchine. Il costruttore di una macchina, o il suo delegato, deve garantire che venga effettuata una valutazione dei rischi per accertare i requisiti di sicurezza e di tutela della salute in vigore. La macchina deve essere progettata e costruita tenendo conto dei risultati della valutazione dei rischi.

Direttiva 2001/95/CE

Questa direttiva descrive la sicurezza generale di tutti i prodotti che vengono messi in circolazione e che sono destinati ai consumatori o che vengono presumibilmente utilizzati da loro, compresi i prodotti che vengono usati dai consumatori nell'ambito di un servizio.

Direttiva 1999/34/CE


Questa direttiva descrive la responsabilità per danno da prodotti difettosi ed è valida per beni mobili prodotti industrialmente, indipendentemente dal fatto che siano stati inseriti o non in un altro bene mobile o immobile.

Regolamento (CE) n. 1907/2006 (REACH)

Questa direttiva descrive le restrizioni in materia di immissione sul mercato e di uso di sostanze e preparati pericolosi. Sono sostanze gli elementi chimici e i loro composti allo stato naturale ovvero ottenuti mediante lavorazioni industriali. Sono preparati i miscugli o le soluzioni composti da due o più sostanze.

Selezione di una guida lineare conforme a DIN 637

Panoramica dei prodotti pattini a sfere con fattori di carico e momenti di carico

Per carichi presanti, a afere 7 in accialo 70 Resist CR 9 Samita afere 7 in accialo 8 Resist CR 9 Samita afere 7 in accialo 8 Resist CR 9 Samita Afere 7 in accialo 8 Samita Afere	Pattini a sfere			Pagin	a	Grand	ezza	15	20	25	30	35	45	55	65
Pattini standard, per carichi per carich						c tc _o	↑ ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	Fattori c	li carico	(N) e mo i	nenti di	carico (N	m)		
Pesanti, a sfere" Imacialica" Imaciali						С	1)					I		109000	172000
Resist CR Resist CR Rid23 Resist CR Rid23 R	•				106 ⁶⁾									-	
Resist CR ⁹ Resist CR ⁹ Resist CR ⁹ Ric22 ³¹⁰ Ric222 ³¹⁰ Ric222 ³¹⁰ Ric222 ³¹⁰ Ric222 ³¹⁰ Ric222 ³¹⁰ Ric2220 ³¹⁰ Ric22200 ³¹⁰ Ric2220 ³¹⁰ Ric22200 ³¹⁰ R	•	CO CO	R2001 ⁴⁾	994)										174000	280000
Resist CR® R1622390 R201149 P394 R201149 R201149 R201149 P394 R1621390			SNS											3 480	6 810
R20114 99% Mile 31 120 380 510 830 1740 3560 5.550		<i>∕</i>		54 ³⁾	(4 ³⁾ 106 ⁶⁾								l .	- J	- 0010
SNH R1621316 603	Resist On						1)							5 550	11100
R1621 ³¹⁶ 603							2)							-	
FLS R1653***			SNH				1)	68	200	290	440	720	1 540	2 320	4 560
FLS			R1621 ³⁾⁶⁾	60 ³⁾				62	190	270	420	700	1 480	_	-
FLS R1653 ³⁰⁶ R2002 ⁴⁰ 99 ⁴¹ 106 ⁶¹ C 1 12800 29800 37300 48000 68700 111000 139000 2 2 1 1 1 2 2 2 2 2						M _{LO}		- 1	1			I		3 690	7 400
R1653 ³⁾⁶ R2002 ⁴⁾ 99 ⁴⁾ R1623 ³⁾⁶ R2012 ⁴⁾ R1623 ³⁾⁶ R2002 ⁴⁾ R2012 ⁴ R2012 ⁴ R2012 ⁴ R2012 ⁴ R2012 ⁴ R2012 ⁴⁾ R2012 ⁴ R201														_	
R2002 ⁴⁾ SLS R1623 ³¹⁶⁾ R2012 ⁴⁾ P39 ⁴⁾ R1624 ³¹⁶⁾ R1026 ³ R1624 ³¹⁶⁾ R1026 ³		1900		==0)		1								139000	223000
Ri623 Sis Sis Ri623 Sis Sis Ri623 Sis Sis Ri623 Sis Sis Ri623 Sis Ri62					1066)									245000	404000
SLS R1623 ³¹⁶ Se ³ 106 ⁶			R2002*	99"		C ₀								245000	404000
R1623 ³⁾⁶⁾ R2012 ⁴⁾ 994) R1624 ³⁾⁶⁾ R1664 ³⁾⁶⁾⁹ R1663 ³⁾⁶ R1663 ³⁾⁶⁾⁹ R1663 ³⁾⁶ R1663 ³⁾⁶⁾⁹ R1663 ³⁾⁶ R1663 ³⁾⁶⁾⁹ R1663 ³⁾⁶⁾⁹ R1663 ³⁾⁶ R1663 ³⁾⁶⁾⁹ R1663 ³ R1663 ³⁾⁶ R1663 ³⁾⁶ R1663 ³⁾⁶ R1663 ³⁾⁶ R1663 ³⁾⁶ R1663 ³ R		^	SLS				1)							4 410	8 810
R20124) P34 R1624396) R20124) R1624396) R20124) R16693 R20104) R201049				56 ³⁾		1 .	2)			I		1		-	_
R16243)6 623 10663 R20104 FR R16243)6 643 FR R16943)6 8 FKN R16943)6 8 FKN R16643)6 8 FKN R16943)6 8 FKN R16643)6 8			R2012 ⁴⁾	994)		M _{to}		180	540	750		1		7 780	16000
R16243)6 629 106 M _L 2) 110 330 500 710 1 230 2 630 - M _L 2) 110 330 500 710 1 230 2 630 - M _L 2) 110 330 500 710 1 230 2 630 - M _L 2) 110 330 500 710 1 230 2 630 - M _L 2) 110 330 500 710 1 230 2 630 - M _L 2) 240 4 666 6 990 M _L 2) 150 460 670 1 1 010 2 090 4 370 - R200049 994		GI.												_	
Pattini standard a sfere? in acciaio3) Resist NR4) Resist CR6) Resist CR6) R16663/ R20104) R20104/ R20104) R20104/ R20104				62 ³⁾								1		3 960	8 160
Pattini standard a fere? in accialo3) Resist NR4) Resist CR8 R16663/R20104) R20104) R20104) R16653/R20104) R20104) R20104) R20104) R16633/R20104) R20104) R2			R1624 ³⁾⁶⁾											- 000	14800
Pattini standard a sfere ⁷) in a sf		Control of the contro				M.				- 1		1		6 990	14800
Resist NR ⁴) Resist CR ⁶) Re	Pattini standard		FKS				1)						- 4 37 0	_	_
Resist NR4) Resist CR6) R16663 R20104) R16663 R20104) R16663 R20104) R16663 R20104) R2		19		52 ³⁾	106	1	2)						_	_	_
Resist NR4) Resist CR6) R16663 R20104) R16663 R20104) R16663 R20104) R16663 R20104) R2	acciaio ³⁾		R2000 ⁴⁾	99 ⁴⁾		Co		7 340	16500	21200	28900	49300	-	_	_
R16663) 583) R20104) 994) R16663) 583) R106 Mt	Resist NR ⁴⁾	T. C.				Co							_	_	_
R2010 ⁴⁾ 99 ⁴⁾ R2010 ⁴⁾ 99 ⁴⁾ R2010 ⁴⁾ 99 ⁴⁾ R2010 ⁴⁾ 99 ⁴⁾ R2010 ⁴⁾ R2010 ⁴⁾ 99 ⁴⁾ R2010 ⁴⁾ R	Resist CR ⁶⁾			58 ³⁾ 106 _	1 .						1	-	-	-	
No			.>ø . ° °		106								_	_	
No. 1066 1						M _{t0}			- 1			l .		_	<u> </u>
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							2)						_	_	_
FNN R1693 ³⁾⁶⁾⁸⁾ R1694 ³⁾⁶⁾⁸⁾ R1694 ³⁾⁶⁾⁸⁾ R1664 ³⁾⁶ R1664 ³ R1664 ³⁾⁶ R1664 ³ R1666 ³								32	89	140	230	460	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						M _{LO}		28			220	430	_	_	
SNN R1694 ³⁾⁶⁾⁸⁾ 68 ³⁾ 106 ⁶⁾ M _t 1) - 190 410				6/13)	1066)	С	1)	-	14500	28600	-	-	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			K1093-7-7-7	04"	100"			-	24400		-	-	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			SNN D4 60 43 (6) 8)	603)	1006)	M _t	1)	-	190	410	-	-	-	-	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			K1034-7-7-7	00"	1007	M _{t0}		-	310	510	-	-	-	-	-
FKN R1663 ³⁾⁶⁾⁸⁾ SKN R1664 ³⁾⁶⁾⁸⁾ 70 ³⁾ R106 ⁶⁾ R106 ⁶						_		-			_	-	-	-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						M _{LO}	1)	-	165	360	-	_	-	-	_
SKN R1664 ³⁾⁶⁾⁸⁾ 70 ³⁾				003)	4006)	С	1)	-	9 600	19800	-	-	-	-	_
R1664 ³⁾⁶⁾⁸⁾ 70 ³⁾ 106 ⁶⁾ M _{to} 1) - 170 300 M _L 1) - 40 130			R1663 ^{3/0/0/}	663)	1060)	Co	1)	-	13600	21200	-	-	-	-	-
M _{to} 1) - 1/0 300				=03\	4006)	M _t	1)	-	120	280	-	-	-	-	_
			R1664 ^{3/0/0/}	703)	1066)	M _{t0}	1)	-	170	300	-	-	-	-	_
M. 1) - 58 140		Ť				M _L			40	130					
					<u></u>	M _{L0}			58	140		-	-		
Pattini a sfere FKS super in 1661 ³⁾⁶⁾ 88 ³⁾ 107 ⁶⁾ C 1) 3 900 10100 11400 15800 21100		€		003)	1076)	С		3 900	10100	11400	15800	21100	-	-	-
acciaio ³⁾				000,	10/%	F _{max}		1 500	3 900	4 400					_
Resist CR ⁶) SKS 1662 ³⁾⁶) 90 ³) 107 ⁶) M _t 1) 39 130 170 270 450	Resist CR ⁶⁾			003)		M _t		39	130	170	270	450	_	-	-
1662 ³⁷³ 90 ³⁷ 107 ³⁷ M _{tmax} 1) 15 50 65 105 175			1002-,07	300,	10/%	M _{tmax}	1)	15	50	65	105	175	-	-	_

Pattini a sfere			Pagina		Grande	ezza	15	20	25	30	35	45	55	65
					c Jc.	†	Fattori d	i carico (N) e mon	nenti di c	arico (Nm)		
Pattino a sfere ad alta velocità		FNS R2001 9.	85		С	1)	6 880	16300	20000	25500	36200	-	-	-
in acciaio ⁷⁾		K2001 9.	05		Co	1)	8 860	20800	25100	33500	56500	-	-	-
		SNS R2011 9.	85		M _t	1)	66	210	280	440	780	-	-	-
		K2011 9.			M _{t0}	1)	85	270	360	580	1 210	-	-	-
					M _L	1)	47	140	200	310	510	-	-	-
					M _{LO}	1)	61	180	250	400	790	-	-	-
	/9/20	FLS			С	1)	8 930	20700	26000	32100	46600	-	-	-
		R2002 9.	85	85	C ₀	1)	12800	29200	36600	46700	81100	-	-	-
	4611				M _t	1)	86	260	370	560	1 000	-	-	-
		SLS	1 1		M _{t0}	1)	120	370	520	810	1 740	-	-	-
		R2012 9.			M _L	1)	85	240	370	520	900	-	-	-
		,			M _{L0}	1)	120	340	520	750	1 560	-	-	-
Pattini a sfere in		FNS			С	1)	9 860	23400	28600	36500	51800	-	-	_
alluminio ⁷⁾		R1631	94		С	2)	8 850	22 200	26 700	34 800	49 400	-	-	_
	O. C.				F _{max}	1) 2)	3 000	7 200	8 800	12200	16200	-	-	-
					M _t	1)	95	300	410	630	1 110	-	-	-
		SNS	96		M _t	2)	85	280	380	600	1 060	-	-	-
	R163	R1632			M _{tmax}	1) 2)	29	92	125	210	345	-	-	_
						M _L	1)	68	200	290	440	720	-	-
	-01				ML	2)	62	190	270	420	700	-	-	-
					M _{Lmax}	1) 2)	16	50	70	110	170	-	-	-

I fattori di carico dinamico e i momenti sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1.

Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori C, M_t e M_L in base a tabella.

- 1) Pattino a sfere senza gabbia guida-sfere.
- 2) Pattino a sfere con gabbia guidasfere.
- 3) Acciaio: Tutte le parti in acciaio in acciaio al carbonio.
- 4) Grandezza Resist NR 15 35: Corpo dei pattini a sfere in acciaio resistente alla corrosione secondo DIN EN 10088.
- 5) Resist NR II: Tutte le parti metalliche in acciaio resistente alla corrosione secondo norme DIN EN 10088.
- 6) Resist CR: Corpo del pattino a sfere in acciaio con rivestimento resistente alla corrosione, con cromatura dura, argento opaco.
- 7) Pattino a sfere BSHP
- 8) Pattino a sfere BSHP solo misura 25

Per le denominazioni brevi delle forme costruttive vedere Descrizione del prodotto

Pattini a sfere			Pagin	a	Grand	dezza	15	20	25	30	35	45	55	65
								20/40	25/70		35/90			
							Fattori	di carico	(N) e mo	menti di	carico (N	lm)		
Pattino a sfere	<i>→</i>	FNS			С	1)	5 100	12300		20800		-	-	_
Resist NR II ⁵⁾⁷⁾		R2001 0.	102		С	2)	4 700	11400		19300	27600	_	-	_
					Co	1)	9 300	16900	21000	28700	37500	-	-	-
	~				Co	2)	8 400	15000		25 800	37500	-	-	
		SNS			M _t	1)	63	205	270	460	760	-	-	-
		R2011 0.	103		M _t	2)	58	190	250	425	760	-	-	-
					M _{t0}	1)	90	215	295	500	805	-	-	-
	9				M _{t0}	2)	81	190	265	450	805	_	-	_
					ML	1)	34	110	150	245	375	-	-	-
					M_L	2)	31	100	140	225	375	-	-	_
					M _{LO}	1)	49	115	165	265	390	-	-	-
					M _{LO}	2)	44	100	150	240	390			
	688	FLS			С	1)	8 500	16000	20000	26300	36500	-	-	-
		R2002 0.	102		С	2)	7 600	15 200	18 100	25 000	34 800	-	-	-
					Co	1)	14000	24400	31600	40100	56200	-	-	-
					Co	2)	12 100	22 500	27 400	37300	52500	-	-	_
		SLS			M _t	1)	82	265	365	590	1025	-	-	-
		R2012 0.	103		M_t	2)	73	250	330	560	975	_	-	_
					M _{t0}	1)	132	310	450	695	1 210	-	-	-
	The state of the s				M _{t0}	2)	118	295	410	660	1 150	_	-	_
					ML	1)	64	190	290	420	710	-	-	-
					M_L	2)	58	180	265	400	675	-	-	_
					M _{LO}	1)	104	230	350	495	840	-	-	-
					M _{L0}	2)	93	215	320	470	805			
		FKS			С	1)	4 500	8 200		14500	19300	-	-	-
		R2000 0.	102		С	2)	3 900	8 200	9 200	14500	19300		-	_
					Co	2)	5 600	9 400	12600	17200	22400	-	-	-
	~	SKS			Co	1)	4 600 44	9 400 125	10500 195	17200	22400		_	
	^				M _t	2)	37	125	175	320 320	545 545	-	-	-
		R2010 0.	103		M _t	1)	55	115	180	295	485	-	_	<u> </u>
					M _{t0}	2)	48	115	160	295	485		_	_
	Ť				M _L	1)	16	45	70	110	170			
					M,	2)	13	45	60	110	170			_
					M _{LO}	1)	19	40	65	105	150		_	_
					M _{L0}	2)	16	40	55	105	150			
Pattini a sfere		BNS			C	1)	_	14900		-	70700	-	_	
larghi in	∕ ≫\	R1671 ³⁾⁶⁾	126 ³⁾	126 ⁶⁾		2)	_	13 700		_	-	_	_	_
acciaio ³⁾⁷⁾		112072			C ₀	1)	_	20600	50200	_	126000	_	_	
Resist CR ⁶⁾⁷⁾					C ₀	2)	_	18 200	45 200	_	_	_	_	_
nesist on		CNS			M _t	1)	-	340		_	3 500		_	_
		R1672 ³⁾⁶	130 ³⁾	1306)	M _t	2)	_	310		_	_	_	_	_
					M _{t0}	1)	_	470	1 870	-	6 240		-	_
					M _{t0}	2)	_	410	1 680	_	-	_	_	_
					ML	1)	_	140	490	-	1 470	_	-	_
	*				M	2)	-	130	460	_	-	_	-	_
					M _{LO}	1)	-	190	680	-	2 620	-	-	_
					MLO	2)	-	170	620	-	-	_	_	_

I fattori di carico dinamico e i momenti sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1.

Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori C, M_1 e M_1 in base a tabella.

- 1) Pattino a sfere senza gabbia guida-sfere.
- 2) Pattino a sfere con gabbia guidasfere.
- 3) Acciaio: Tutte le parti in acciaio in acciaio al carbonio.
- 4) Grandezza Resist NR 15 35: Corpo dei pattini a sfere in acciaio resistente alla corrosione secondo DIN EN 10088.
- 5) Resist NR II: Tutte le parti metalliche in acciaio resistente alla corrosione secondo norme DIN EN 10088.
- 6) Resist CR: Corpo del pattino a sfere in acciaio con rivestimento resistente alla corrosione, con cromatura dura, argento opaco.
- 7) Pattino a sfere BSHP
- 8) Pattino a sfere BSHP solo misura 25

Per le denominazioni brevi delle forme costruttive vedere Descrizione del prodotto

Panoramica dei prodotti rotaie a sfere con lunghezze rotaia

Le rotaie a sfere possono essere tagliate a misura su richiesta del cliente. Le lunghezze massime per rotaie monopezzo sono riportate nella seguente tabella e nel capitolo "Rotaie a sfere". Qualora fossero necessarie lunghezze maggiori, Bosch Rexroth può fornire rotaie a sfere a più tratti.

Rotaie a sfere			Pagina	Grande	zza						
				15	20	25	30	35	45	55	65
				Lunghe	zza rotai	a (mm)					
Rotaie a sfere in acciaio standard		SNS / SNO R1605 .3 / R1605 .B Avvitabile dall'alto, con nastro di copertura e chiusure nastro	110	3 836	5 816	5 816	5 836	5 836	5 771	3 836	3 746
		SNS / SNO R1605 .6 / R1605 .D Avvitabile dall'alto, con nastro di copertura e cappucci di protezione	112	3 836	5 816	5 816	5 836	5 836	5 771	3 836	3 746
		SNS / SNO R1605 .0 / R1605 .C Avvitabili dall'alto, con tappi di chiusura fori in plastica	114	3 836	5 816	5 816	5 836	5 836	5 771	3 836	3 746
		SNS R1605 .5 Avvitabile dall'alto, per tappi di chiusura fori in acciaio	116	-	_	5 816	5 836	5 836	5 771	3 836	3 746
		SNS R1607 .0 Avvitabile dal basso	118	3 836	5 816	5 816	5 836	5 836	5 771	3 836	3 746
Rotaie a sfere in versione standard Resist NR II ¹⁾		SNS R2045 .3 Avvitabile dall'alto, con nastro di copertura e chiusure nastro	120	1 856	3 836	3 836	3 836	3 836	_	_	_
		SNS R2045 .0 Avvitabili dall'alto, con tappi di chiusura fori in plastica	121	1 856	3 836	3 836	3 836	3 836	_	-	_
		SNS R2047 .0 Avvitabile dal basso	121	1 856	3 836	3 836	3 836	3 836	_	-	_
Rotaie a sfere in versione standard Resist CR ²⁾		SNS R1645 .3 Avvitabile dall'alto, con nastro di copertura e chiusure nastro	122	3 836	3 836	3 836	3 836	3 836	3 776	3 836	3 746
-		SNS R1645 .0 Avvitabili dall'alto, con tappi di chiusura fori in plastica	123	3 836	3 836	3 836	3 836	3 836	3 776	3 836	3 746
		SNS R1647 .0 Avvitabile dal basso	123	3 836	3 836	3 836	3 836	3 836	3 776	3 836	3 746
			1	1							

Rotaie a sfere		Pagina	Grandezza		
			20/40	25/70	35/90
			Lunghezza rotaia (mm)	,	
Rotaie a sfere larghe in acciaio	R1675 .0 Avvitabili dall'alto, con tappi di chiusura fori in plastica	134	3 836	3 836	3 836
	BNS R1676 .5 Avvitabile dall'alto, per tappi di chiusura fori in acciaio	136	-	3 836	3 836
	BNS R1677 .0 Avvitabile dal basso	137	3 836	3 836	3 836
Rotaie a sfere larghe Resist CR ²	BNS R1673 .0 Avvitabili dall'alto, con tappi di chiusura fori in plastica	134	3 836	3 836	3 836

¹⁾ Resist NR II: Rotaia a sfere in acciaio resistente alla corrosione secondo DIN EN 10088

Per le denominazioni brevi delle forme costruttive vedere Descrizione del prodotto

²⁾ Resist CR: Rotaia a sfere in acciaio con rivestimento resistente alla corrosione, con cromatura dura, argento opaco

Dati tecnici generali e calcoli

Avvertenze generali

Le specifiche tecniche generali e i calcoli valgono per tutte le guide a sfere su rotaia e quindi per tutti i pattini a sfere e le rotaie a sfere. Dati tecnici particolari sono disponibili per i singoli pattini a sfere e le singole rotaie a sfere.

Classi di precarico

In riferimento a diverse esigenze applicative, i pattini a sfere Rexroth sono disponibili in diverse classi di precarico.

Sono previsti di fabbrica:

- ▶ pattini a sfere senza precarico (classe di precarico CO)
- ▶ pattini a sfere con leggero precarico (classe di precarico C1)
- ▶ pattini a sfere con medio precarico (classe di precarico C2)
- ▶ pattini a sfere con elevato precarico (classe di precarico C3)

Per non ridurre la durata di vita, il precarico non deve superare 1/3 del carico del cuscinetto F.

In generale, la rigidità del pattino a sfere aumenta con l'incremento del precarico. In caso di vibrazioni, selezionare un precarico di entità corrispondente (≥ classe di precarico C2).

Sistemi di guida con rotaie parallele

Oltre alla classe di precarico selezionata, osservare anche la differenza di parallelismo ammissibile delle guide ("Criterio di selezione classi di precisione"). Al montaggio di guide a sfere su rotaia della classe di precisione N, suggeriamo la classe di precarico C0 o la classe di precarico C1, per evitare contrazioni a causa delle tolleranze.

Velocità

 $v_{max}: 3-10 \text{ m/s}$

Per i valori esatti, vedere in corrispondenza dei singoli pattini a sfere.

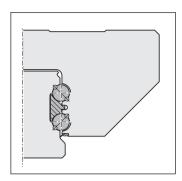
Accelerazione

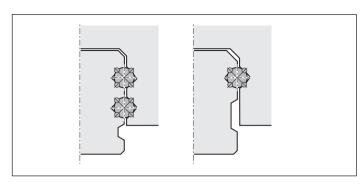
 $a_{max}: 250-500 \text{ m/s}^2$

Per i valori esatti, vedere in corrispondenza dei singoli pattini a sfere.

(Se $F_{comb} > 2.8 \cdot F_{pr}$: $a_{max} = 50 \text{ m/s}^2$) Se la forza di pretensionamento F_{pr} non agisce, vale $a_{max} = 50 \text{ m/s}^2$

Campo di temperatura di esercizio


t: 0 - 80 °C


Per un breve intervallo di tempo ammesse temperature fino a 100 °C.

In caso di temperature sotto lo zero, si prega di chiedere. Nel pattino a sfere senza gabbia guida-sfere: Limite inferiore – $10~^{\circ}$ C.

Il valore d'attrito µ della guida a sfere su rotaia di Rexroth è compreso tra ca. 0,002 e 0,003 (senza l'attrito della guarnizione).

Con la struttura Rexroth con 4 file di sfere, in tutte le direzioni del carico vi è un **contatto in 2 punti**. In questo modo l'attrito è ridotto al minimo.

Altre guide a 2 o 4 file di sfere con **contatto a 4 punti** presentano un attrito maggiore: la forma gotica del profilo della pista causa, attraverso lo slittamento differenziale in caso di sollecitazione laterale, nonché in caso di precarico simile senza sollecitazione, un attrito superiore (a seconda dell'adattamento elastico e della sollecitazione, valori di attrito anche quintuplicati). Questo attrito elevato comporta un riscaldamento parimenti elevato.

Guarnizioni

Le guarnizioni devono prevenire la penetrazione di sporco, schegge, lubrificanti a freddo etc. all'interno del pattino a sfere, per evitare una fine precoce della vita utile. Per ulteriori informazioni, consultare i Criteri di selezione/guarnizioni.

Guarnizione standard (SS)

Nel pattino a sfere Rexroth sono di norma montate guarnizioni universali. Esse hanno un effetto uniforme su guide a sfere con e senza nastro di copertura. Al momento della costruzione si è voluto assicurare un attrito ridotto, con al contempo una buona tenuta. Per i casi in cui è necessario un buon isolamento.

Scorrevole (LS)

Per particolari esigenze di scorrevolezza.

Guarnizione a doppio labbro (DS)

Per forte sollecitazione dai mezzi

Guarnizione frontale

Per la sostituzione in ambienti con numerose particelle di sporco o metallo, nonché per fluidi refrigeranti o di taglio.

Sostituibile in caso di assistenza.

Le guarnizioni frontali sono disponibili come accessori e sono montate dal cliente.

Guarnizione FKM

Per l'utilizzo in condizioni estreme in ambienti con particelle di sporco o metallo grossolane, nonché in caso di utilizzo massiccio di fluidi refrigeranti o di taglio. Sostituibile in caso di assistenza.

Le guarnizioni frontali FKM sono disponibili come accessori e sono montate dal cliente.

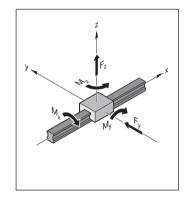
Raschiatore in lamiera

Per l'utilizzo in ambienti con una quantità importante di sporco o schegge grossolani. I raschiatori in lamiera sono disponibili come accessori e sono montati dal cliente.

Dati tecnici generali e calcoli

La scelta della guida lineare in conformità con la norma DIN 637 è descritta a pagina 10. Nel capitolo seguente vengono delucidati i calcoli necessari. Tali calcoli sono integrati nel programma di calcolo "Linear Motion Designer". Il link per il download è disponibile nel capitolo "Ulteriori informazioni".

Forze e momenti


Nelle guide a sfere di Rexroth le piste sono disposte ad un angolo di contatto di 45°. In questo modo si ottiene una portata del sistema complessivo di uguale entità in tutte e quattro le direzioni principali del carico agente. I pattini a sfere possono essere sollecitati da forze e da momenti.

Forze nelle quattro direzioni principali del carico agente

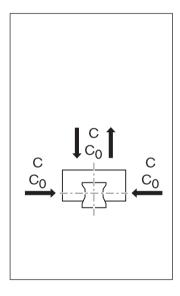
- ► Trazione F, (direzione z positiva)
- ► Spinta F_z (direzione z negativa)
- Carico laterale F_v (direzione y positiva)
- Carico laterale F_v (direzione y negativa)

Momenti

- Momento torcente M_x (sull'asse x)
- ► Momento longitudinale M_x (sull'asse y)
- Momento longitudinale M_x (sull'asse z)

Definizione fattori di carico

Fattore di carico dinamico C


Il carico radiale non variabile in dimensioni e direzione che può assorbire un cuscinetto volvente lineare per un durata nominale di 10^5 m di percorso compiuto (a norma DIN ISO 14728-1).

Nota: I fattori di carico dinamico riportati nelle tabelle risultano superiori ai valori conformi a norma DIN o ISO. Tali valori sono stati comprovati nei test.

Fattore di carico statico Co

Carico statico in direzione del carico corrispondente ad una sollecitazione stimata pari a 4200 MPa al centro del punto di contatto soggetto a massima sollecitazione tra sfera e pista.

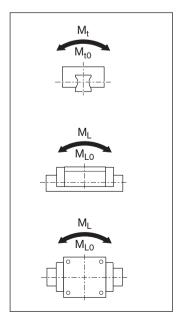
Nota: Con questo carico, nel punto di contatto si verifica una deformazione totale permanente della sfera e della pista corrispondente a circa 0,0001 volte il diametro della sfera. (a norma DIN ISO 14 728-1).

Definizioni dei momenti di carico

Momento torcente di carico dinamico M,

Il momento dinamico di confronto sull'asse x che provoca un carico corrispondente al fattore di carico dinamico C.

Momento torcente di carico statico M_{to}


Il momento statico di confronto sull'asse x che provoca un carico corrispondente al fattore di carico statico C_0 .

Momento di carico longitudinale dinamico M_L

Il momento dinamico di confronto sull'asse trasversale y o sull'asse verticale z che provoca un carico corrispondente al fattore di carico dinamico C.

Momento di carico longitudinale statico M_{LO}

Il momento statico di confronto sull'asse trasversale y o sull'asse verticale z che provoca un carico corrispondente al fattore di carico statico C_0 .

Definizione e calcolo della durata di vita nominale

Durata stimata raggiungibile con una probabilità del 90 % valida riferita ad un singolo cuscinetto volvente o ad un gruppo di cuscinetti volventi apparentemente identici sottoposti alle stesse condizioni di esercizio e realizzati utilizzando i materiali oggi generalmente impiegati di normale livello qualitativo e nelle consuete condizioni di esercizio (a norma DIN ISO 14728-1).

Durata di vita nominale in metri

(1)
$$L_{10} = \left(\frac{C}{F_{m}}\right)^{3} \cdot 10^{5} \,\mathrm{m}$$

Durata in ore d'esercizio con corsa e frequenza delle corse costanti

(2)
$$L_{h 10} = \frac{L_{10}}{2 \cdot s \cdot n \cdot 60}$$

Se la lunghezza della corsa s e la frequenza delle corse n sono costanti per tutta la durata, si può determinare la durata in ore d'esercizio secondo la formula (2).

Durata di vita nominale con velocità variabile

(3)
$$L_{h 10} = \frac{L_{10}}{60 \cdot v_{m}}$$

La durata può essere calcolata alternativamente in ore d'esercizio tramite la velocità media $v_{\rm m}$ secondo la formula (3).

Questa velocità media v_m viene calcolata con velocità gradualmente variabili mediante i tempi parziali q_{tn} delle singole intensità di carico (4).

(4)
$$V_m = \frac{|v_1| \cdot q_{t1} + |v_2| \cdot q_{t2} + ... + |v_n| \cdot q_{tn}}{100\%}$$

Durata di vita modificata

$$L_{na} = a_1 \cdot \left(\frac{C}{F_m}\right)^3 \cdot 10^5 \,\mathrm{m}$$

$$L_{ha} = \frac{L_{na}}{2 \cdot s \cdot n \cdot 60}$$

Se la probabilità di durata del 90% non è sufficiente, i valori relativi alla durata di vita devono essere ridotti applicando un fattore a₁ in conformità con la tabella riportata sotto.

Probabilità di durata (%)	L _{na}	Fattore a ₁
90	L _{10a}	1,00
95	L _{5a}	0,64
96	L _{4a}	0,55
97	L _{3a}	0,47
98	L _{2a}	0,37
99	L _{1a}	0,25

Avvertenze

La norma DIN ISO 14728-1 limita la validità della formula (1) ai carichi dinamici equivalenti $F_m < 0.5$ C. Nei nostri test è stato tuttavia dimostrato che questa formula per la durata di vita – in condizioni di esercizio ideali – può essere applicata a carichi fino a $F_m = C$. In caso di lunghezza di corsa inferiore a $2 \cdot la$ lunghezza del pattino a sfere B_1 (vedere le tabelle dimensionali) in alcune circostanze occorre ridurre il fattore di carico. Si prega di contattarci.

Dati tecnici generali e calcoli

Carico del cuscinetto per il calcolo della durata di vita

Avvertenza

In genere sia per il rapporto di carico dinamico e statico non si deve scendere al di sotto del valore minimo di 4,0. In particolare in caso di applicazioni che richiedono elevata rigidezza e/o elevata durata di vita, è necessario un rapporto di carico più elevato.

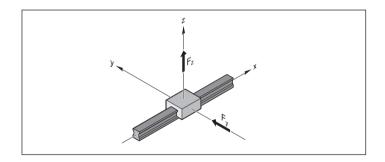
In caso di sollecitazione da trazione verificare la resistenza delle viti. Vedere il capitolo "Istruzioni di montaggio".

Rapporto di carico dinamico

 $\frac{C}{F_{m}, max}$

Rapporto di carico statico

$$\frac{C_0}{F_{\text{eff}}, \text{max}}$$


Carico combinato equivalente

In caso di carico esterno combinato - verticale e orizzontale - calcolare il carico equivalente dinamico F_{comb} secondo la formula (5).

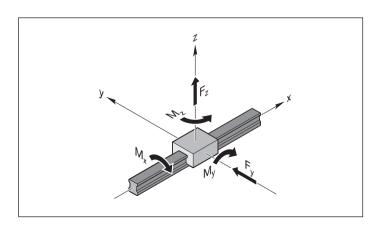
Avvertenza

La struttura della guida a sfere consente questo calcolo semplificato.

(5) $F_{comb} = |F_y| + |F_z|$

Avvertenza

Un carico esterno agente con un'angolazione qualsiasi sul pattino a sfere; scomporre nelle parti F_y e F_z in base al segno e impiegare i valori indicati nelle formule (5) o (6).


Carico del cuscinetto combinato equivalente in combinazione con i momenti

Con la formula (6) è possibile raccogliere tutti i carichi parziali che si riscontrano in una determinata condizione ottenendo un unico carico comparativo, il cosiddetto carico combinato equivalente.

Il calcolo dei momenti indicato nella formula (6) vale solo in caso di impiego di una rotaia a sfere singola con un solo pattino a sfere. Nel caso di altre combinazioni la formula risulta più semplice.

Le forze e i momenti considerati nel sistema di coordinate possono agire anche in direzione opposta. Un carico esterno agente con un'angolazione qualsiasi sul pattino a sfere; scomporre nelle parti F_y e F_z e impiegare i valori indicati nella formula (6). La struttura del pattino a sfere consente questo calcolo semplificato.

(6)
$$F_{comb} = |F_y| + |F_z| + C \cdot \frac{|M_x|}{M_t} + C \cdot \frac{|M_y|}{M_1} + C \cdot \frac{|M_z|}{M_1}$$

Considerazione della forza di pretensionamento interna Applicare la forza di pretensionamento F_{pr}

Per incrementare la rigidezza e la precisione del sistema di guida, si raccomanda di impiegare pattini a sfere pretensionati (cfr. "Criterio di selezione precarico del sistema").

In caso di impiego di pattini a sfere appartenenti alla classe di precarico C2 e C3, può essere necessario considerare la forza di precarico interna in quanto le due file di sfere a e b risultano pretensionate tra loro da una forza di pretensionamento interna F_{pr} eccedente il valore e si deformano in misura pari a δ_{pr} (vedere il diagramma).

- a = Fila di sfere (inferiore) sotto carico (N)
- = Fila di sfere (superiore) in assenza di carico
- = Deformazione del contatto volvente con F (-)
- S_{pr} = Deformazione del contatto volvente con F_{pr} (-)
- = Carico del pattino a sfere (N)
- or = Forza di pretensionamento interna (N)

Carico del cuscinetto effettivo equivalente

A partire da un carico esterno pari a 2,8 colte la forza di pretensionamento interna $F_{\rm pr}$, su una fila di sfere cessa di agire il pretensionamento.

(7)
$$F_{\text{eff}} = F_{\text{comb}}$$

Caso 1

 $F_{comb} > 2.8 \cdot F_{pr}$ In questo caso la forza di pretensionamento interna F_{pr} non si riflette sulla durata di vita.

(N)

In condizioni di carico caratterizzate da elevata dinamicità il carico combinato equivalente dovrebbe essere di $F_{comb} < 2.8 \; F_{pr}$ per prevenire eventuali danni ai cuscinetti dovuti allo slittamento.

(8)
$$F_{\text{eff}} = \left(\frac{F_{\text{comb}}}{2.8 \cdot F_{\text{pr}}} + 1\right)^{3/2} F_{\text{pr}}$$

Caso 2

 $F_{comb} \le 2.8 \cdot F_{pr}$ La forza di pretensionamento F_{pr} rientra nel calcolo del carico equivalente effettivo del cuscinetto.

T NOR

Dati tecnici generali e calcoli

Carico del cuscinetto dinamico equivalente

Il rilevamento del carico del cuscinetto dinamico equivalente F_m per il calcolo della durata di vita avviene secondo tracciato q_m in base alla formula (9).

(9)
$$F_m = \frac{3}{\sqrt{(F_{\text{eff 1}})^3 \cdot \frac{q_{s1}}{100 \%} + (F_{\text{eff 2}})^3 \cdot \frac{q_{s2}}{100 \%} + ... + (F_{\text{eff n}})^3 \cdot \frac{q_{sn}}{100 \%}}$$

Carico del cuscinetto statico equivalente

Se il carico statico esterno del cuscinetto - agente in senso verticale e orizzontale - si combina con un momento longitudinale o di torsione statico, calcolare il carico statico equivalente dei cuscinetti $F_{0\ comb}$ in base alla formula (10).

(10)
$$F_{0 \text{ comb}} = |F_{0y}| + |F_{0z}| + C_0 \cdot \frac{|M_{0x}|}{M_{t0}} + C_0 \cdot \frac{|M_{0y}|}{M_{L0}} + C_0 \cdot \frac{|M_{0z}|}{M_{L0}}$$

Avvertenze

Il carico del cuscinetto statico equivalente $F_{0 \text{ comb}}$ non deve superare il fattore di carico statico C_0 . La formula (10) vale solo in caso di utilizzo di una singola rotaia a sfere. Un carico esterno agente con un'angolazione qualsiasi sul pattino a sfere; scomporre nelle parti F_{0v} e F_{0z} e impiegare i valori indicati nella formula (10).

Definizioni e calcolo per il rapporto di carico dinamico e statico

Utilizzando il rapporto tra fattore di carico e carico del pattino a sfere è possibile preselezionare la guida. Il rapporto di carico dinamico C/F_{max} e il rapporto di carico statico $C_0/F_{0\,max}$ devono essere selezionati in base all'applicazione. Da tali valori si ottengono i fattori di carico necessari. Dalle panoramiche dei fattori di carico si ottengono la dimensione e il modello corrispondenti.

Valori indicativi relativi ai rapporti di carico

La seguente tabella contiene i valori indicativi relativi ai rapporti di carico. I valori riportati nella tabella sono semplicemente valori di riferimento elaborati in base alle tipiche richieste dei clienti dei diversi settori (ad es. durata di vita, precisione, rigidezza).

Caso 1: Carico statico $F_{0 \text{ max}} > F_{\text{max}}$:

Rapporto dinamico =
$$\frac{C}{F_{max}}$$

Rapporto statico =
$$\frac{C_0}{F_{0 \text{ max}}}$$

Rapporto statico =
$$\frac{C_0}{F_{\text{max}}}$$

Tipo di macchina/settore	Esempio di applicazione	C/Fmax	C ₀ /F _{0 max}
Macchina utensile	Indicazioni generali	6 9	> 4
	Tornio	6 7	> 4
	Fresa	6 7	> 4
	Rettificatrice	9 10	> 4
	Incisione	5	> 3
Macchine per la lavorazione della gomma e della plastica	Pressofusione	8	> 2
Macchine per la lavorazione del legno	Segatura, fresatura	5	> 3
Settore tecniche di montaggio, tecniche di manipolazione e robot industriali	Handling	5	> 3
Settore idraulico e pneumatico	Sollevamento/abbassamento	6	> 4

Sicurezza di carico statico S_o

Per ogni costruzione con contatto volvente occorre verificare il calcolo relativo alla sicurezza di carico statico. Il fattore di sicurezza di carico statico per una guida lineare si ottiene mediante la seguente equazione:

$$S_0 = \frac{C_0}{F_{0 \text{ max}}}$$

F_{0 max} rappresenta l'ampiezza massima di carico che può agire sulla guida lineare, indipendentemente dal fatto che si tratti o meno di azione temporanea del carico. Può rappresentare l'ampiezza di punta di uno spettro di carico dinamico. Per il dimensionamento valgono i dati in tabella.

Fattore di sicurezza di carico statico S ₀	Condizioni di impiego
Disposizioni sospese in posizione capovolta o applicazioni potenzialmente molto pericolose	≥ 12
Sollecitazione dinamica elevata da fermo, imbrattamento.	8 - 12
Dimensionamento normale di macchine e impianti, se non si conoscono perfettamente tutti i parametri di carico o le precisioni di connessione.	5 - 8
Sono perfettamente noti tutti i dati di carico. È garantito un funzionamento a prova di vibrazioni.	3 - 5

Legenda delle formule

Simboli	Unità	Denominazione
a ₁	_	Fattore durata di vita
С	N	Fattore di carico dinamico
C ₀	N	Fattore di carico statico
F _{max}	N	Carico dinamico massimo
F _{0 max}	N	Carico statico massimo
F_{comb}	N	Carico combinato equivalente
F _{0 comb}	N	Carico del cuscinetto statico equivalente
F _{eff}	N	Carico del cuscinetto effettivo equivalente
F _{eff 1 - n}	N	Carichi singoli effettivi di forma identica
F _m	N	Carico del cuscinetto dinamico equivalente
F _{pr}	N	Forza di pretensionamento
F _y	N	Carico esterno dovuto ad una forza risultante in direzione y
F _{oy}	N	Carico esterno dovuto ad una forza statica in direzione y
F _z	N	Carico esterno dovuto ad una forza risultante in direzione z
F _{0z}	N	Carico esterno dovuto ad una forza statica in direzione z
M _t	Nm	Momento torcente di carico dinamico ¹⁾
M _{t0}	Nm	Momento torcente di carico statico ¹⁾
M _L	Nm	Momento di carico longitudinale dinamico ¹⁾
M _{LO}	Nm	Momento di carico longitudinale statico ¹⁾
M _x	Nm	Carico dovuto al momento risultante sull'asse x
M _{ox}	Nm	Carico dovuto al momento statico sull'asse x
M _y	Nm	Carico dovuto al momento risultante sull'asse y

Simboli	Unità	Denominazione
M _{Oy}	Nm	Carico dovuto al momento statico sull'asse y
M _z	Nm	Carico dovuto al momento risultante sull'asse z
M _{Oz}	Nm	Carico dovuto al momento statico sull'asse z
L ₁₀	m	Durata di vita nominale (corsa di traslazione)
L _{h 10}	h	Durata di vita nominale (tempo)
L _{na}	m	Durata di vita modificata (corsa di traslazione)
L _{ha}	h	Durata di vita modificata (tempo)
n	min ⁻¹	Frequenza delle corse (corse doppie)
S	m	Lunghezza di corsa
S ₀	-	Sicurezza di carico statico
V _m	m/min	Velocità media
V ₁ V _n	m/min	Velocità di traslazione delle fasi 1 n
q _{t1} q _{tn}	%	Tempi parziali per v ₁ v _n delle fasi 1 n
Per i valori v	edere le t	abelle

Forma e versione

Pattini a sfere		Campo di utilizzo	Portata	Particolarità
Pattino a sfere in acciaio standard			Alto (H)	Avvitabile dall'alto e dal basso
	FLS R1653 ¹⁾²⁾⁵⁾ R2002 ³⁾	In caso di elevatissimi requisiti di rigidità	Molto elevato	Avvitabile dall'alto e dal basso
	R1665	In caso di spazio di costruzione limitato in direzione longitudinale	Medio	Avvitabile dall'alto e dal basso A integrazione di DIN 645-1
		In caso di spazio di costruzione limitato in direzione laterale	Alto (H)	Avvitabile dall'alto
		In caso di spazio di costruzione limitato in direzione laterale	Molto elevato	Avvitabile dall'alto
	R1666	In caso di spazio di costruzione limitato in direzione longitudinale e laterale	Medio	Avvitabile dall'alto
		In caso di spazio di costruzione limitato in direzione laterale ed elevati requisiti di rigidezza	Alto (H)	Maggiore rigidezza rispetto a SNS
		In caso di spazio di costruzione limitato in direzione laterale ed elevati requisiti di rigidezza	Molto elevato	Maggiore rigidezza rispetto a SLS
Pattino a sfere in acciaio standard e Resist CR		In caso di spazio di costruzione limitato in direzione verticale	Alto (H)	Minore rigidezza rispetto a FNS Non definito in DIN 645-1
		In caso di spazio di costruzione limitato in direzione verticale e longitudinale	Medio	Minore rigidezza rispetto a FKS Non definito in DIN 645-1
	SNN R1694 ²⁾	In caso di spazio di costruzione limitato in direzione verticale e laterale	Alto (H)	Minore rigidezza rispetto a SNS Non definito in DIN 645-1
		In caso di spazio di costruzione limitato in direzione verticale, longitudinale e laterale	Medio	Minore rigidezza rispetto a SKS Non definito in DIN 645-1

- 1) Pattino a sfere per carichi pesanti
- 2) Pattino a sfere BSHP
- 3) Resist NR
- 4) Resist NR II
- 5) Resist CR

Per le denominazioni brevi delle forme costruttive vedere Descrizione del prodotto

Pattini a sfere			Campo di utilizzo	Portata	Particolarità
Pattino a sfere super in acciaio e Resist CR	R1661		Per compensare tolleranze superiori della struttura del raccordo	Medio	Sono necessari almeno 2 pattini a sfere per rotaia
			Per compensare tolleranze superiori della struttura del raccordo	Medio	Sono necessari almeno 2 pattini a sfere per rotaia
Pattino a sfere in alluminio			Per costruzione leggera Per compensare ridotte tolleranze della struttura del raccordo	Alto (H)	Avvitabile dall'alto e dal basso
			Per costruzione leggera Per compensare ridotte tolleranze della struttura del raccordo	Alto (H)	Avvitabile dall'alto
Pattino a sfere ad alta velocità in acciaio			Per velocità massime (fino a 10 m/s)	Alto (H)	Avvitabile dall'alto e dal basso
			Per velocità massime (fino a 10 m/s)	Alto (H)	Avvitabile dall'alto
Pattini a sfere larghi in acciaio e Resist CR			Per elevati momenti di torsione su una rotaia	Molto elevato	Avvitabile dall'alto e dal basso
<u></u>			Per elevati momenti di torsione su una rotaia e con spazio di costruzione lateralmente limitato	Molto elevato	Avvitabile dall'alto

Forma e versione

Rotaie a sfere		Campo di utilizzo	Tipo di fissaggio	Particolarità
Rotaia a sfere in acciaio standard	SNS / SNO R1605 .3 R1605 .B R1645 .3 ²⁾ R2045 .3 ¹⁾	Esecuzione standard Condizioni ambientali molto difficili Robusta chiusura a nastro	Avvitabile dall'alto	Con nastro di protezione e serranastro. Solo una copertura per tutti i fori. Nessun foro frontale necessario per la chiusura a nastro.
	SNS / SNO R1605 .6 R1605 .D	Condizioni ambientali difficili Chiusura a nastro compatta	Avvitabile dall'alto	Con nastro e cappuccio di protezione. Solo una copertura per tutti i fori.
	SNS / SNO R1605 .0 R1605 .C R1645 .0 ²⁾ R2045 .0 ¹⁾	Economico	Avvitabile dall'alto	Con tappi di chiusura fori in plastica. Nessuno spazio di costruzione frontale necessario.
	SNS R1606 .5	Resistente a influssi meccanici (ad es. urti) Condizioni ambientali molto difficili	Avvitabile dall'alto	Con tappi di chiusura in acciaio. Nessuno spazio di costruzione frontale necessario.
	SNS R1607 .0 R1647 .0 ²⁾ R2047 .0 ¹⁾	Buona accessibilità della sottostruttura Migliore tenuta delle guarnizioni anteriori	Avvitabile dal basso	Utilizzo di viti più grandi rispetto a quelle utilizzate per l'avvitamento dall'alto Forze laterali superiori ammissibili. Nessuno spazio di costruzione frontale necessario.
Rotaie a sfere larghe in acciaio	BNS R1675 .0 R1673 .0 ²⁾	Elevata rigidità al carico	Avvitabile dall'alto	Con tappi di chiusura fori in plastica. Nessuno spazio di costruzione frontale necessario.
	BNS R1676 .5	Elevata rigidità al carico resistente a influssi meccanici (ad es. urti) Condizioni ambientali molto difficili	Avvitabile dall'alto	Con tappi di chiusura in acciaio. Nessuno spazio di costruzione frontale necessario.
	BNS R1677 .0	Elevata rigidità al carico Migliore tenuta delle guarnizioni anteriori	Avvitabile dal basso	Utilizzo di viti più grandi rispetto a quelle utilizzate per l'avvitamento dall'alto Forze laterali superiori ammissibili rispetto a serie mono-fila. Nessuno spazio di costruzione frontale necessario.

¹⁾ Resist NR II

Per le denominazioni brevi delle forme costruttive vedere Descrizione del prodotto

²⁾ Resist CR

Accessori Assieme ai pattini a sfer scegliere opzionalmente collegamento aggiuntivi	elementi di	Campo di utilizzo
Raschiatore in lamiera		Il raschiatore in lamiera è un elemento aggiuntivo per raschiare particelle grossolane o in caso di imbrattamento indurito sulla rotaia a sfere. Durante la selezione fare attenzione se la rotaia a sfere viene utilizzata con o senza nastro di copertura.
Guarnizione frontale Bicomponente		La guarnizione frontale protegge il pattino a sfere in modo efficace contro la penetrazione di particelle di sporcizia o nonché contro piccole particelle. Questo migliora ulteriormente l'effetto di impermeabilizzazione. La guarnizione frontale bicomponente può essere montata anche in un secondo momento sulla rotaia a sfere.
Guarnizione FKM Mono e bicomponente		Migliore effetto sigillante della guarnizione frontale, tuttavia maggiore attrito. Utilizzo in caso di immissione di sporco molto forte, lubrificanti a freddo o mezzi aggressivi. Resistente agli agenti chimici e alle temperature.
Kit guarnizioni		Il kit guarnizioni è consigliato in caso di utilizzo congiunto del raschiatore in lamiera e della guarnizione frontale.
Adattatore per lubrificazione		Per lubrificazione a olio e grasso dall'alto con pattini a sfere alti SNH e SLH.
Piastra di lubrificazione		Consente ulteriori varianti di lubrificazione dei pattini a sfere. Filettatura metrica e tubo filettato selezionabili per il raccordo di lubrificazione.
Unità di lubrificazione frontale		Se sono richiesti intervalli di rilubrificazione molto lunghi, Nel caso di sollecitazioni normali, esse consentono corse fino a 25 000 km senza rilubrificazione. Questa funzione è possibile solo in assenza di liquidi e con poca sporcizia. La temperatura di lavoro massima è di 60 °C.
Soffietto		I soffietti possono essere acquistati in diverse varianti, come con o senza piastra di lubrificazione. I soffietti in versione resistente al calore sono metallizzati su un lato e quindi non sono combustibili né infiammabili, sono resistenti a scintille, spruzzi di saldatura o trucioli bollenti. Possibili resistenza alla temperatura per un breve intervallo di tempo fino a 200 °C e temperatura di lavoro di 80 °C.
Elemento di serraggio e frenatura		Con gli elementi di serraggio la guida a sfere su rotaia in condizioni statiche può essere bloccata per impedirne lo spostamento. Con gli elementi di frenatura la guida a sfere su rotaia in condizioni dinamiche può essere frenata e in stato di riposo può essere bloccata per impedirne lo spostamento. Sono disponibili le seguenti versioni: oleodinamica, pneumatica ed elementi di serraggio manuali.

Precarico del sistema

Definizione di precarico

I pattini a sfere possono essere sottoposti a pretensionamento per incrementare la rigidezza. Le forze di pretensionamento interne che si manifestano devono essere considerate nel calcolo della durata di vita. La classi di pretensionamento possono essere selezionate in base al campo di impiego. La forza di pretensionamento F_{pr} è riportata nella tabella.

Esempio

- ► Settore d'applicazione: Per sistemi di guida precisi con ridotti carichi esterni ed elevati requisiti di rigidità complessiva. Da tale contesto risulta il fattore di classe di precarico C1.
- ▶ Pattino a sfera selezionato FNS R1651 314 20
- ▶ Con il pattino a sfera selezionato, in base alla tabella si ottiene una forza di pretensionamento F_{nr}.
- Questo viene montato con 840 N di forza di pretensionamento interna F_{pr}.

Codice	Precarico	Campo di utilizzo				
C0 ¹⁾	Senza precarico (gioco)	Per sistemi di guida particolarmente scorrevoli caratterizzati da attriti estremamente ridotti applicazioni con tolleranze di montaggio elevate. Le versioni di gioco sono disponibili solo r classi di precisione H e N.				
C1	Precarico leggero	Per sistemi di guida precisi con ridotti carichi esterni ed elevati requisiti di rigidità complessiva.				
C2	Precarico medio	Per sistemi di guida precisi con al contempo sollecitazione esterna elevata e requisiti importanti per la rigidità complessiva; consigliato anche per sistemi monorotaia. Sollecitazioni di momento superiori alla media sono contenute senza deformazioni elastiche essenziali. Con sollecitazioni di momento medie, rigidità totale migliorata.				
C3	Precarico elevato	Per sistemi guida a elevata rigidità come ad es. macchine utensili di precisione ecc. Carichi e momenti superiori alla media sono contenuti con la più piccola deformazione elastica possibile. Pattini a sfere con precarico C3 disponibili soltanto nella classe di precisione UP, SP e XP, pattini a sfere per carichi pesanti soltanto in UP, SP e P.				

¹⁾ Nei pattini a sfere senza precarico (classe di precarico CO) vi è un gioco tra il pattino a sfere e la rotaia pari a 1 - 10 μm. Nel caso di due rotaie e di utilizzo di più di un pattino a sfera per rotaia, questo gioco viene per lo più compensato dalle tolleranze di parallelismo.

Applicare la forza di pretensionamento F_{pr}

Pattini a sfere	Numeri di		Modello	Classe di	Grandezza							
	identificazione			precarico	15	20	25	30	35	45	55	65
					Forza	di prete	nsionam	ento F _{nr}	(N)			
Pattino a sfere standard	R1651 ³⁾⁶⁾	R2001 ⁴⁾	FNS	C1 ¹⁾	160	380	460	630	840	1 360	1 960	2 46
Pattino a sfera per	R1622 ³⁾⁶⁾	R2011 ⁴⁾	SNS	C1 ²⁾	150	350	430	590	840	1 270		
carichi pesanti	R1621 ³⁾⁶⁾		SNH	C2 ¹⁾	620	1 500	1 820	2 540	3 350	5 450	7 860	9 84
- Acciaio ³⁾ - Resist NR ⁴⁾				C2 ²⁾	580	1390	1700	2 340	3 350	5 060		
- Resist CR ⁶⁾				C3 ¹⁾	1 010	2 440	2 960	4 120	5 450	8 850	12800	16000
				C3 ²⁾	950	2 260	2 770	3 810	5 450	8 230		
	R1653 ³⁾⁶⁾	R2002 ⁴⁾	FLS	C1 ¹⁾	200	490	610	800	1 110	1 810	2 480	3 260
	1	R2012 ⁴⁾	SLS	C1 ²⁾	180	460	550	760	1 060	1 640		
	R1624 ³⁾⁶⁾		SLH	C2 ¹⁾	800	1 950	2 430	3 200	4 450	7 230	9940	13000
				C2 ²⁾	720	1 850	2 200	3 040	4 240	6 550		
				C3 ¹⁾	1 300	3 170	3 950	5 200	7 230	11 800	16 100	21200
				C3 ²⁾	1 170	3 000	3 580	4 940	6 890	10 600		
Pattino a sfere standard	R1665 ³⁾⁶⁾	R2000 ⁴⁾	FKS	C1 ¹⁾	110	250	320	440	590			
- Acciaio ³⁾	R1666 ³⁾⁶⁾	R2010 ⁴⁾	SKS	C1 ²⁾	90	250	280	440	590	1		
- Resist NR ⁴⁾	R1693 ³⁾⁶⁾		FNN	C1 ¹⁾		290	460					
- Resist CR ⁶⁾	R1694 ³⁾⁶⁾		SNN									
	R1663 ³⁾⁶⁾		FKN	C1 ¹⁾		190	320					
	R1664 ³⁾⁶⁾		SKN									
Pattini a sfere super	R1661 ³⁾⁶⁾		FKS	C1 ¹⁾	80	200	230	320	420			
- Acciaio ³⁾	R1662 ³⁾⁶⁾		SKS									
- Resist CR ⁶⁾												
Pattino a sfera ad alta	R20019.		FNS	C2 ¹⁾	420	1 020	1 240	1 720	2 280			
velocità standard	R20119.		SNS									
- Acciaio	R20029.		FLS	C2 ¹⁾	700	1 330	1 660	2 180	3 020			
	R20129.		SLS									
Pattino a sfere standard	R1631		FNS	C1 ¹⁾	160	380	460	630	840			
- Alluminio	R1632		SNS	C1 ²⁾	150	350	430	590	840	1		
Pattino a sfere standard	R20010.		FNS	C1 ¹⁾	100	250	300	420	550			
- Resist NR II ⁵⁾	R20110.		SNS	C1 ²⁾	90	230	280	390	550	1		
				C2 ¹⁾	410	980	1 200	1 660	2 210	-		
				C2 ²⁾	380	910	1 120	1 540	2 210	1		
	R20020.		FLS	C1 ¹⁾	170	320	400	530	730			
	R20120.		SLS	C1 ²⁾	150	300	360	500	700	-		
				C2 ¹⁾	680	1 280	1 600	2 100	2 920	-		
				C2 ²⁾	610	1 220	1 450	2 000	2 780	-		
	R20000.		FKS	C1 ¹⁾	90	160	210	290	390			
	R20100.		SKS	C1 ²⁾	80	160	180	290	390	-		
	1					1			1	1		1
Pattini a sfere larghi	R1671 ³⁾⁶⁾		CNS	C1 ¹⁾	1	270	580		1160			
- Acciaio ³⁾				C1 ²⁾		260	550			1		
- Resist CR ⁶⁾	R1672 ³⁾⁶⁾		BNS	C1 ¹⁾	+	270	580					
				C1 ²⁾	+	260	550			-		

- 1) Pattino a sfere senza gabbia guida-sfere.
- 2) Pattino a sfere con gabbia guidasfere.
- 3) Acciaio: Tutte le parti in acciaio in acciaio al carbonio.
- 4) Grandezza Resist NR 15 35: Corpo dei pattini a sfere in acciaio resistente alla corrosione secondo DIN EN 10088.
- 5) Resist NR II: Tutte le parti metalliche in acciaio resistente alla corrosione secondo norme DIN EN 10088.
- 6) Resist CR: Corpo del pattino a sfere in acciaio con rivestimento resistente alla corrosione, con cromatura dura, argento opaco.

Rigidità pattini a sfere

Per via della molteplicità di varianti, è elencato soltanto un tipo. Ulteriori diagrammi di rigidità sono disponibili su richiesta.

Rigidità della guida a sfere su rotaia in caso di precarico

Esempio

Pattino a sfere FNS

Flangiato Normale Altezza standard

Grandezza 35:

- a) Pattino a sfere R1651 31. 20 in caso di precarico C1
- b) Pattino a sfere R1651 32. 20 in caso di precarico C2
- c) Pattino a sfere R1651 33. 20 in caso di precarico C3

Esempio

Pattino a sfere FLS

Flangiato Lungo Altezza standard

Grandezza 35:

- a) Pattino a sfere R1653 31. 20 in caso di precarico C1
- b) Pattino a sfere R1653 32. 20 in caso di precarico C2
- c) Pattino a sfere R1653 33. 20 in caso di precarico C3

Esempio

Pattino a sfere SNS

Stretto Normale Altezza standard

Grandezza 35:

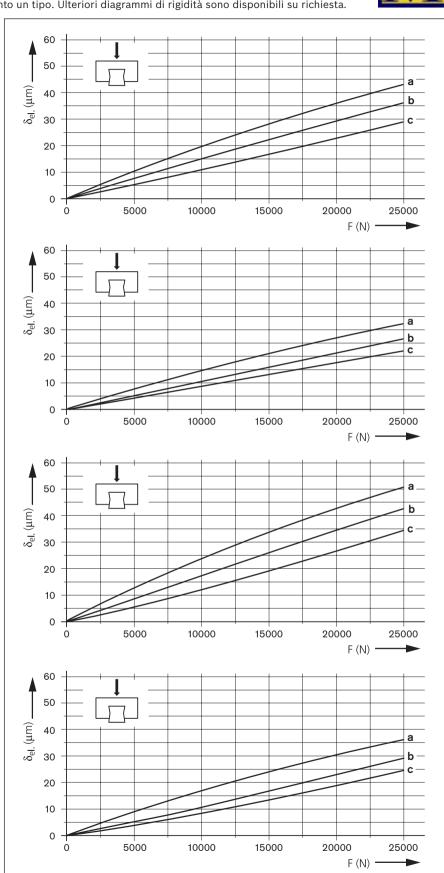
- a) Pattino a sfere R1622 31. 20 in caso di precarico C1
- b) Pattino a sfere R1622 32. 20 in caso di precarico C2
- c) Pattino a sfere R1622 33. 20 in caso di precarico C3

Esempio

Pattino a sfere SLS

Stretto Lungo Altezza standard

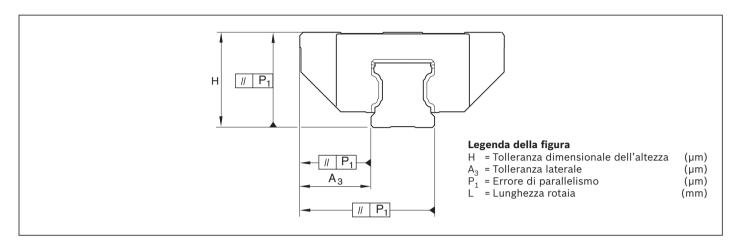
Grandezza 35:


- a) Pattino a sfere R1623 31. 20 in caso di precarico C1
- b) Pattino a sfere R1623 32. 20 in caso di precarico C2
- c) Pattino a sfere R1623 33. 20 in caso di precarico C3

Precarico

C1/C2/C3 = conformemente alla tabella forza di precarico F_{pr}

Legenda


 δ_{el} = Deformazione elastica (µm) F = Carico

Classi di precisione e loro tolleranze

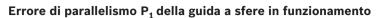
Le guide a sfere su rotaia sono disponibili in sei classi di precisione nei pattini a sfere e cinque nelle rotaie a sfere. Per i pattini a sfere e le rotaie a sfere disponibili, vedere le tabelle con i "numeri di identificazione".

Intercambiabilità senza problemi grazie all'elevata precisione

Da Rexroth la fabbricazione dei pattini e delle rotaie a sfere, specialmente nella zona delle piste di rotolamento delle sfere viene effettuata con tale precisione che ogni singolo componente è perfettamente intercambiabile. Per esempio un pattino a sfere può essere montato su rotaie a sfere differenti di pari grandezza senza problemi. Viceversa, questo vale anche per l'applicazione di pattini a sfere differenti su una rotaia a sfere.

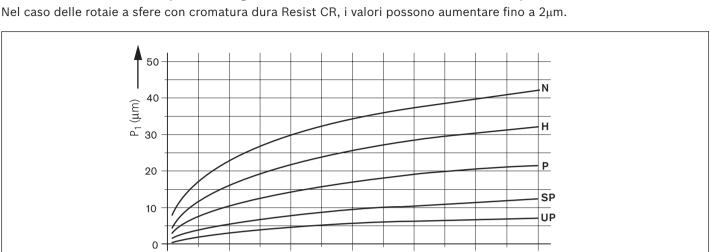
	Н	A ₃	ΔH , ΔA_3
Misurato al centro del pattino	Combinazione qualsiasi di patt complessiva delle rotaie	ini a sfere e rotaie sulla lunghezza	Con pattini a sfere diversi sulla medesima posizione delle rotaie

Guida a sfere su rotaia in acciaio, alluminio, Resist NR e Resist NR II


Classi di precisione	Tolleranze dimensionali (µm)		Differenze mas. delle dimensioni H e A ₃ su una rotaia (µm)			
•	H	A_3	Δ H, Δ A ₃			
N	±100	±40	30			
Н	±40	±20	15			
Р	±20	±10	7			
XP ¹⁾	±11	±8	7			
SP	±10	±7	5			
UP	±5	±5	3			

¹⁾ Pattino a sfere con classe di precisione XP, rotaia a sfere con classe di precisione SP

Guida a sfere su rotaia Resist CR, argento opaco con cromatura dura


duida a siere	duida a siere su rotala nesist on, argento opaco con cromatura dura										
Classi di	Tolleranze dime	ensionali (µm)		Differenze mas. delle dimensioni H e A ₃							
precisione					su una rotaia (µm)						
		Н		A_3			∆ H, ∆ A ₃				
	Pattino a sfere/	Rotaia a sfere	Pattino a sfere/	Rotaia a sfere	Pattino a sfere/	Rotaia a sfere					
	rotaia a sfere		rotaia a sfere		rotaia a sfere						
Н	+47	+44	±23	+19	18		15				
	-38	-39		-24							

Classi di precisione

Valori misurati al centro del pattino con guide a sfere su rotaia senza rivestimento di superficie.

2000

3000

4000

5000

L (mm)

6000

Tolleranze nella combinazione di classi di precisione

1000

Pattin	i a sfere		Rotaie a sfere	9			
			N	Н	P	SP	UP
			(µm)	(µm)	(µm)	(µm)	(µm)
N	Tolleranza dimensione H	(µm)	±100	±48	±32	±23	±19
	Tolleranza dimensione A ₃	(µm)	±40	±28	±22	±20	±19
	Diff. max. Dimensioni H e A ₃ su una rotaia	(µm)	30	30	30	30	30
Н	Tolleranza dimensione H	(µm)	±92	±40	±24	±15	±11
	Tolleranza dimensione A ₃	(µm)	±32	±20	±14	±12	±11
	Diff. max. Dimensioni H e A ₃ su una rotaia	(µm)	15	15	15	15	15
Р	Tolleranza dimensione H	(µm)	±88	±36	±20	±11	±7
	Tolleranza dimensione A ₃	(µm)	±28	±16	±10	±8	±7
	Diff. max. Dimensioni H e A ₃ su una rotaia	(µm)	7	7	7	7	7
XP	Tolleranza dimensione H	(µm)	±88	±36	±20	±11	±7
	Tolleranza dimensione A ₃	(µm)	±28	±16	±10	±8	±7
	Diff. max. Dimensioni H e A ₃ su una rotaia	(µm)	7	7	7	7	7
SP	Tolleranza dimensione H	(µm)	±87	±35	±19	±10	±6
	Tolleranza dimensione A ₃	(µm)	±27	±15	±9	±7	±6
	Diff. max. Dimensioni H e A ₃ su una rotaia	(µm)	5	5	5	5	5
UP	Tolleranza dimensione H	(µm)	±86	±34	±18	±9	±5
	Tolleranza dimensione A ₃	(µm)	±26	±14	±8	±6	±5
	Diff. max. Dimensioni H e A ₃ su una rotaia	(µm)	3	3	3	3	3

Raccomandazioni per la combinazione di classi di precisione

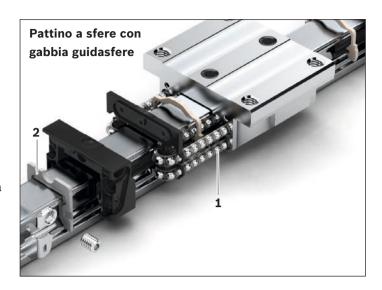
Raccomandazione in caso di distanza rilevante dei pattini a sfere e corse di notevole lunghezza:

rotaia a sfere in una classe di precisione superiore a quella del pattino a sfere.

Raccomandazione in caso di distanza ridotta dei pattini a sfere e corse di ridotta lunghezza:

pattino a sfere in una classe di precisione superiore a quella della rotaia a sfere.

Criterio di scelta precisione di ciclo


Grazie a zone di ingresso e di uscita delle sfere perfezionate nei pattini a sfere e alla suddivisione dei fori di fissaggio ottimizzata nelle rotaie a sfere, si ottiene un'elevatissima precisione di cicli alla minima pulsazione. Particolarmente indicata per lavorazioni ad asportazioni di truciolo ultrafine, tecnica di monitoraggio, scanner ad elevata precisione, elettroerosione ecc. (Vedere il capitolo Descrizione del prodotto pattini a sfere ad alta precisione BSHP in acciaio, esempi di applicazione).

Rexroth consiglia la gabbia guidasfere soprattutto per applicazioni che richiedono una bassa rumorosità.

In via opzionale sono disponibili pattini a sfere con gabbia guidasfere (1). La gabbia guidasfere impedisce che le sfere si scontrino tra di loro e aiuta a ottenere uno scorrimento silenzioso e fluido. Viene ottenuta una rumorosità più bassa. Per via del numero minore di sfere portanti nel pattino a sfere con gabbia guidasfere, possono derivarne fattori di carico e momenti di carico più bassi ("Panoramica dei prodotti con fattori di carico e momenti di carico").

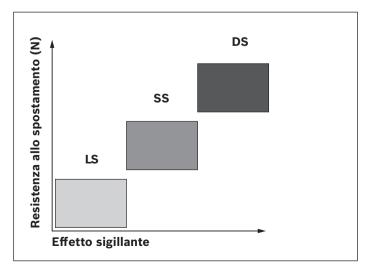
Guarnizioni

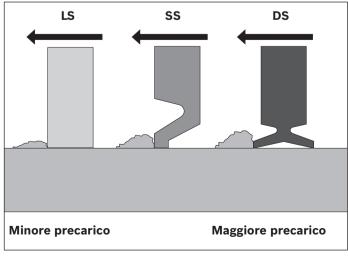
La piastra di tenuta frontale (2) protegge l'interno dei pattini a sfere dalle particelle di sporco, dai trucioli e dai liquidi. Previene inoltre lo scarico del lubrificante. Grazie alla forma ottimizzata dei labbri di tenuta, l'attrito che si verifica viene ridotto al minimo. La piastre di tenuta sono disponibili a scelta con guarnizioni standard nere (SS), guarnizioni a bassa resistenza d'attrito beige (LS) o guarnizioni a doppio labbro verdi (DS).

Guarnizione a bassa resistenza d'attrito (LS) (guarnizione ad attrito molto basso)

Per esigenze molto specifiche con consumi di lubrificante ridotti è stata sviluppata la guarnizione a basso attrito. Essa si compone di un espanso poliuretanico a pori aperti e possiede un effetto raschiante solo limitato.

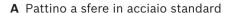
Guarnizione standard (SS) (guarnizione universale con buon effetto sigillante)


La guarnizione standard è adatta per la maggior parte delle applicazioni. Essa possiede un buon effetto raschiante, tuttavia permette lunghi intervalli di rilubrificazione.


Guarnizione a doppio labbro (DS) (guarnizione con ottimo effetto sigillante)

Per applicazioni in cui la guida su rotaia è fortemente esposta al contatto con trucioli, polvere di legno, lubrorefrigeranti ecc., Rexroth consiglia una guarnizione a doppio labbro. Essa possiede un eccellente effetto raschiante, ma un maggiore livello della forza d'attrito e un intervallo di rilubrificazione ridotto.

Effetto sigillante e resistenza allo spostamento


La resistenza allo spostamento viene influenzata dalla geometria e dal materiale. Il diagramma illustra l'effetto di varie varianti di guarnizione sull'effetto sigillante e sulla resistenza allo spostamento.

Materiali

Per le diverse esigenze nelle varie applicazioni, Rexroth offre pattini a sfere realizzati con diversi materiali.

La versione più diffusa è quella in acciaio al carbonio.

Variante economica che tuttavia non offre alcuna protezione contro la corrosione. Tuttavia, generalmente non è sufficiente per l'ingegneria meccanica generale.

B Pattino a sfere ad alta velocità in acciaio

Rispetto ai pattini a sfere in acciaio standard, in questa variante le sfere in acciaio sono sostituite con sfere in ceramica. Poiché la ceramica presenta una densità inferiore a quella dell'acciaio, l'aumento della velocità ammissibile determina la formazione di forze uguali nei rinvii dei ricircoli delle sfere. In tal modo, anche con velocità fino a 10 m/s la durata di vita prevista non viene limitata. I fattori di carico e i momenti di carico sono leggermente ridotti all'esecuzione standard.

Pattini a sfere resistenti alla corrosione in misura limitata

C Pattino a sfere in alluminio

Il corpo del pattino a sfere è realizzato in lega di alluminio. Le sfere, l'inserto in acciaio e le viti di fissaggio frontali sono realizzate in acciaio al carbonio. I pattini a sfere possiedono la stessa capacità di carico presente nell'esecuzione standard. Poiché il limite di snervamento dell'alluminio è inferiore a quello dell'acciaio, la capacità portante massima dei pattini a sfere viene limitata da F_{max} e M_{max} . Alternativa economica con protezione anticorrosione limitata.

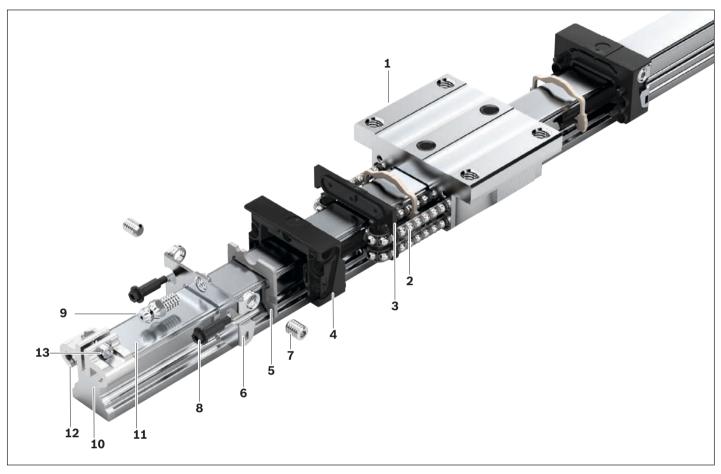
Pattini a sfere resistenti alla corrosione

D Resist NR

Il corpo del pattino a sfere è realizzato in un materiale resistente alla corrosione. Offre una protezione anticorrosione limitata. Le sfere, l'inserto in acciaio e le viti di fissaggio frontali sono realizzate in acciaio al carbonio. I pattini a sfere possiedono gli stessi fattori di carico e momenti di carico presenti nell'esecuzione standard. Rexroth consiglia questa versione, in caso di necessità della protezione dalla corrosione. Consegna in tempi brevi.

E Resist NR II

Tutti i componenti del pattino a sfere sono realizzati in un materiale resistente alla corrosione. Questi pattini a sfere offrono la maggiore protezione anticorrosione possibile con fattori di carico e momenti di carico leggermente ridotti.


F Resist CR

Il corpo del pattino a sfere presenta un rivestimento resistente alla corrosione, argento opaco con cromatura dura. Le sfere, l'inserto in acciaio e le viti di fissaggio frontali sono realizzate in acciaio al carbonio. I pattini a sfere possiedono gli stessi fattori di carico e momenti di carico presenti nell'esecuzione standard.

Alternativa laddove l'esecuzione NR non sia disponibile.

Specifiche del materiale

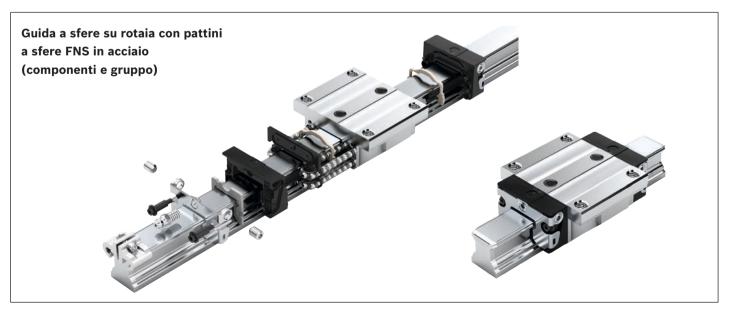
Pos.	Componente	Pattini a sfere	•				
		Α	В	С	D	E	F
		Acciaio	Acciaio	Alluminio	Resist NR	Resist NR II	Resist CR
			(alta velocità)				
1	Corpo pattino a sfere	Acciaio da bonifica	Acciaio da bonifica	Alluminio in lega di alluminio	Acciaio resistente alla corrosione 1.4122	Acciaio resistente alla corrosione 1.4122	Acciaio da bonifica cromato
2	Sfere	Acciaio per cuscinetti	Si ₃ N ₄	Acciaio per cuscinetti	Acciaio per cuscinetti	Acciaio resistente alla corrosione 1.4112	Acciaio per cuscinetti
3	Deflettore	Plastica TEE-E			-		
4	Guida a sfere	Plastica POM	(PA6.6)				
5	Piastra di tenuta	Plastica TEE-E					
6	Lamiera filettata	Acciaio resiste	nte alla corrosion	e 1.4306			
7	Grano filettato	Acciaio resiste	nte alla corrosion	e 1.4301			
8	Viti flangiate	Acciaio al carb	oonio			Acciaio resistente alla corrosione 1.4303	Acciaio al carbonio
9	Nipplo di lubrificazione					Acciaio resistente alla corrosione 1.4305	
Pos.	Componente	Rotaia a sfere					
10	Rotaia a sfere	Acciaio da bor	nifica			Acciaio resistente alla corrosione 1.4116	Acciaio da bonifica
11	Nastro di protezione	Acciaio resiste	nte alla corrosion	e 1.4310		•	
12	Chiusura a nastro	Alluminio anoc	dizzato				
13	Vite d'arresto con dado	Acciaio resiste	nte alla corrosion	e 1.4301			

Descrizione del prodotto

Proprietà eccellenti

- ► Fattori di carico parimenti elevati in tutte e quattro le direzioni principali
- ▶ Bassa rumorosità e straordinario comportamento di scolamento
- I migliori valori dinamici:
 Velocità: v_{max} = 5 m/s
 Accelerazione: a_{max} = 500 m/s²
- ▶ Lubrificazione permanente su più anni possibile
- ► Sistema di lubrificazione minimale con serbatoio integrato con lubrificazione a olio¹)
- ▶ Raccordi di lubrificazione su tutti i lati con filetto metallico¹)
- ► Struttura intercambiabile illimitata attraverso possibilità di combinazione a piacere di tutte le versioni di rotaie a sfere con tutte le varianti di pattini a sfere all'interno di qualsiasi classe di precisione
- Massima rigidità di sistema attraverso disposizione a O precaricata
- Sistema di misurazione integrato, induttivo e esente dall'usura come opzione
- ► Logistica top unica al mondo grazie all'intercambiabilità dei componenti all'interno di una classe di precisione
- ► Sovrastrutture sui pattini a sfere avvitabili dall'alto e dal basso¹)
- Aumento della rigidità in caso di sollecitazione di sollevamento e laterale grazie a ulteriore avvitamento su due fori al centro del pattino a sfere¹⁾
- ► Vasto programma di accessori
- ▶ Filetto di fissaggio frontale per tutte le unità

1) A seconda del tipo



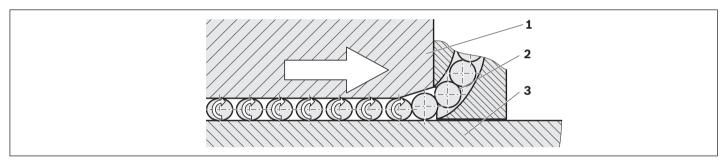
Altre caratteristiche salienti

- ► Elevata rigidità in tutte le direzioni di sollecitazione, pertanto utilizzabile anche come pattino singolo
- ▶ Protezione completa con guarnizioni integrate
- ▶ Elevata resistenza momento torcente
- ► Ridotte oscillazioni delle molle grazie alla geometria di ingresso ideale e all'elevato numero di sfere
- Scorrimento silenzioso e fluido grazie al rinvio progettato in modo ottimale e alla guida delle sfere o alla gabbia guida-sfere
- ► Diverse classi di precarico
- ▶ Prima lubrificazione pattini a sfere in fabbrica¹)
- ▶ Disponibile opzionalmente con catena a sfere¹)

Protezione anti-corrosione (opzionale)1)

- Resist NR:
 Corpo dei pattini a sfere in acciaio resistente alla corrosione secondo DIN EN 10088
- Resist NR II: Corpo del pattino a sfere o della rotaia a sfere così come di tutte le parti in acciaio resistente alla corrosione secondo norma DIN EN 10088
- Resist CR:
 Corpo del pattino a sfere o della rotaia a sfere in acciaio con rivestimento resistente alla corrosione, con cromatura dura, argento opaco

Caratteristiche salienti dei pattini a sfere BSHP


- ▶ Precisione di uscita ulteriormente aumentata fino al fattore sei
- Oscillazioni della forza di attrito chiaramente ridotte e un basso livello di forza d'attrito, in particolare sotto carico esterno
- ▶ Massima precisione
- ▶ Qualità selezionate
- ► Conservazione minima nelle classi di precisione XP; SP; UP. (Grazie al conservante, l'impatto sull'ambiente viene ridotto)
- La zona di ricircolo brevettata aumenta la precisione di ciclo
- ▶ Sono integrati tutti gli altri vantaggi dei pattini a sfere di precisione Rexroth

Confronto

Pattini a sfere convenzionali

Se il pattino a sfere possiede una zona di ricircolo convenzionale, essa può essere progettata soltanto per un determinato punto di carico.

Geometria in ingresso alla zona per pattini a sfere convenzionali

- 1) Pattini a sfere
- 2) Sfera
- 3) Rotaia a sfere

Ingresso delle sfere

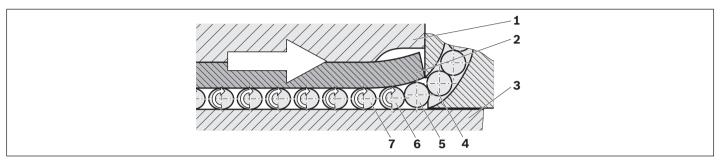
- ▶ Le sfere vengono condotte fino all'inizio della zona di ricircolo dal rinvio delle sfere.
- ▶ Se la distanza tra pattino a sfere (1) e rotaia a sfere (3) è inferiore al diametro delle sfere, la sfera (2) finisce sotto carico impulsivo (precarico).
- ▶ Il precarico viene aumentato nella zona di ricircolo e raggiunge l'apice nella zona portante. Grazie a ciò, la sfera trasmette la forza agente dal pattino a sfere alla rotaia a sfere.
- Si imposta una distanza da sfera a sfera condizionata dai rapporti cinematici e geometrici.

Zona di ricircolo

I pattini a sfere convenzionali possiedono una zona di ricircolo fissa. La profondità della zona di ricircolo deve essere impostata per un carico elevato, poiché anche sotto carichi molto pesanti deve essere garantito un ingresso delle sfere senza disturbi.

- ▶ Da un lato nel pattino a sfere dovrebbero trovarsi più sfere possibili portanti, per raggiungere la portata ottimale.
 ⇒ zona di ricircolo più corta possibile
- ▶ Dall'altro lato, il carico all'ingresso delle sfere dovrebbe aumentare più lentamente e quindi armonicamente possibile, per ottenere il massimo della precisione geometrica della corsa.
 - ⇒ Zona di ricircolo più piatta possibile (lunga)

Si verifica un conflitto di obiettivi tra zona di ricircolo corta e lunga.


Descrizione del prodotto

Pattino a sfere ad alta precisione BSHP

Nuova geometria in ingresso alla zona per pattini a sfere in versione di elevata precisione

I pattini a sfere nella versione di elevata precisione possiedono una zona di ricircolo innovativa. Nella zona finale, gli inserti in acciaio non sono supportati dal pattino a sfere e possono quindi deformarsi in modo elastico. La zona di ricircolo si adatta in modo individuale al carico di lavoro attuale del pattino a sfere. Grazie a ciò, le sfere entrano armonicamente nella zona portante, cioè senza carico impulsivo.

- 1) Pattini a sfere
- 2) Inserto in acciaio
- 3) Rotaia a sfere
- 4) 7) Sfere

Ingresso delle sfere

- ▶ Le sfere (4) vengono condotte fino all'inizio della zona di ricircolo dal rinvio delle sfere.
- ▶ La sfera (5) può entrare senza carico.
- ▶ La sfera (6) deforma l'estremità dell'inserto in acciaio (2) in modo elastico. Questa deformazione deriva dalla cedevolezza complessiva della deformazione della sfera e della deformazione delle estremità libere dell'inserto in acciaio.
- ▶ Se la distanza tra l'inserto in acciaio e la rotaia a sfere (3) è inferiore al diametro delle sfere, la sfera finisce lentamente e uniformemente sotto carico (precarico).
- ▶ Il precarico viene aumentato armonicamente finché la sfera (7) raggiunga il suo precarico massimo.

Soluzione innovativa di Rexroth:

La zona di ricircolo subordinata al carico

Determinanate è la funzionalità della zona di ricircolo. Gli inserti in acciaio sono realizzati precisamente in modo che si comprimano della misura ideale secondo il carico. In questo modo, le sfere possono entrare in modo particolarmente armonioso. Grazie alla realizzazione precisa, gli inserti in acciaio vengono deformati da una sfera in ingresso soltanto fino a quando la sfera successiva non riesce a entrare senza carico. Le sfere non entrano quindi più nella zona di carico mediante una zona di ricircolo fissa impulsiva, ma mediante una linea di flessione armonica che viene trasmessa alla zona portante in modo tangenziale e quindi ideale. L'ingresso armonico delle sfere e la personalizzazione costante della zona di ricircolo al carico rappresentano i vantaggi più notevoli dei pattini a sfere ultraprecisi.

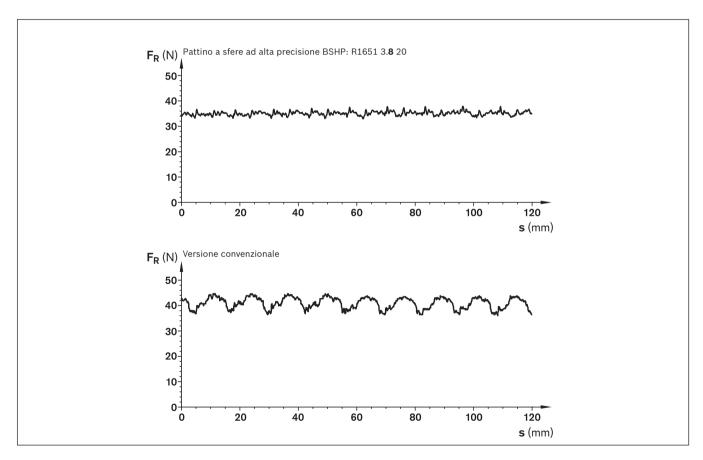
Proprietà eccellenti

- 1 Massima precisione di ciclo
- 2 Oscillazioni minime della forza d'attrito
- 3 Il conflitto di obiettivi è eliminato

Oscillazioni della forza d'attrito

Definizione

La forza di attrito complessiva di un pattino a sfere si compone delle seguenti componenti:


- 1 Attrito delle sfere
- 2 Attrito della guarnizione
- 3 Attrito nei rinvii delle sfere e nei rientri delle sfere

Durante il funzionamento, la variazione della forza d'attrito può manifestarsi come particolarmente dannosa.

Tali variazioni vengono essenzialmente influenzate dall'effetto seguente:

Le sfere devono essere condotte dalla zona libera da carico alla zona portante sottoposta a carico. Grazie alla zona di ricircolo armoniosa e all'innovativo ingresso delle sfere, le variazioni vengono ridotte al minimo, il che permette di migliorare anche la regolazione dell'azionamento lineare.

Confronto della forza d'attrito di pattini a sfere di grandezza 35 con un carico esterno di 10 000 N

- ⇒ Valore della forza d'attrito ridotto
- ⇒ Variazione della forza d'attrito nettamente ridotta

Descrizione del prodotto

T MORO

Precisione di ciclo

Definizione

42

Idealmente, un pattino a sfere si muove in modo translatorio in direzione dell'asse X mediante la rotaia a sfere. In pratica, si verificano tuttavia variazioni in tutti i sei gradi di libertà. Per precisione di ciclo si intende la varianza da tali linearità ideali.

I sei diversi tipi di gradi di libertà 1 Scostamento in altezza (scarto lineare in Z) 2 Errore di imbardata (rotazione attorno a Z) 3 Scostamento laterale (scarto lineare in Y) 4 Beccheggio (rotazione attorno a Y) 5 Traslazione (moto rettilineo in X) 6 Rulli (rotazione attorno a X)

Cause della precisione di ciclo

La precisione di ciclo viene influenzata dai seguenti parametri:

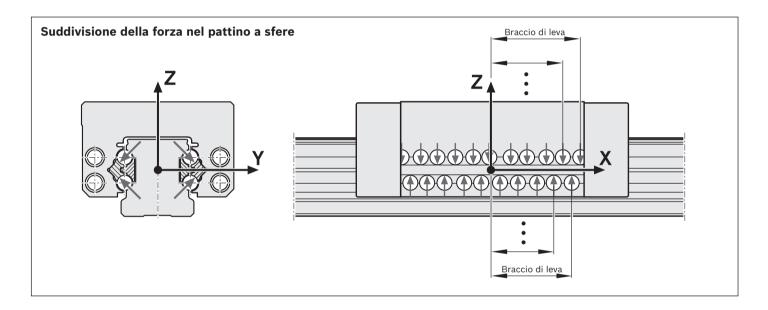
- 1. Struttura portante imprecisa sulla quale viene montata la rotaia a sfere.
- 2. Anomalia di parallelismo tra le superfici di appoggio della rotaia a sfere e le piste.
- 3. Deformazioni elastiche della rotaia a sfere grazie alle viti di fissaggio.
- 4. Variazioni di precisione dovute all'ingresso e all'uscita delle sfere.

Potenziale di ottimizzazione

- da 1.: Realizzare superfici di appoggio della rotaia a sfere più precise possibile (non rientra nella sfera d'influenza di Rexroth).
- 2: Compensare lo scarto grazie alla selezione della classe di precisione della rotaia a sfere.
- 3: ridurre la coppia di serraggio. La coppia di serraggio delle viti di fissaggio ha un'influenza proporzionale. Una riduzione della coppia di serraggio riduce la compressione del materiale delle rotaie.
- ⇒ Minori variazioni geometriche di esecuzione
- 4: La zona di ricircolo brevettata, innovativa dei pattini a sfere ultraprecisi Rexroth riduce al minimo le variazioni di precisione.

▲ Tali misure possono ridurre le forze e dei momenti trasferibili.

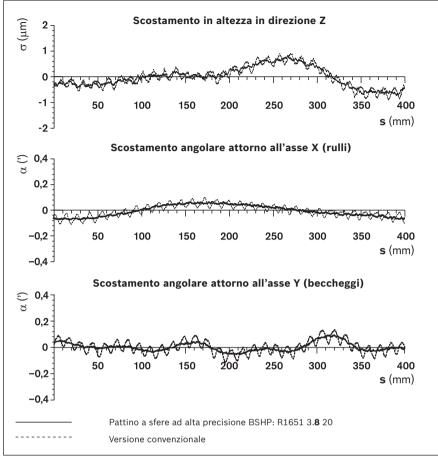
Ulteriori potenziali di miglioramento:


- ► Uso di pattini a sfere lunghi!
- ▶ Montaggio di ulteriori pattini a sfere per ogni rotaia a sfere.

Gli scostamenti misurati hanno le cause seguenti:

In una circolazione delle sfere si trova un numero di sfere portanti sotto carico. Se il pattino a sfere viene mosso in direzione di traslazione, una nuova sfera entra nella zona portante mediante la zona di ricircolo e vengono portate + 1 sfere. Ciò disturba l'equilibrio interno delle quattro file di sfere portanti. Il pattino a sfere effettua un movimento di rotazione, poiché le sfere nella fila di sfere portante possono entrare arbitrariamente. Per ripristinare l'equilibrio, il pattino a sfere si muove in una nuova posizione di equilibrio. Se il pattino a sfere viene ulteriormente mosso, nell'uscita sfere esce una sfera portante dalla zona portante. Ciò disturba nuovamente l'equilibrio interno delle quattro file di sfere portanti e il pattino a sfere effettua un movimento di rotazione. Tale effetto è chiaramente visibile nel diagramma alla pagina successiva.

Come verificato nelle applicazioni pratiche, il periodo di imprecisione a onde corte corrisponde a circa il doppio del diametro delle sfere. Lo scostamento a onde lunghe rimanente viene provocato dalle cause descritte 1, 2 e 3 (struttura portante imprecisa, anomalia di parallelismo e deformazione elastica della rotaia a sfere da parte delle viti di fissaggio).

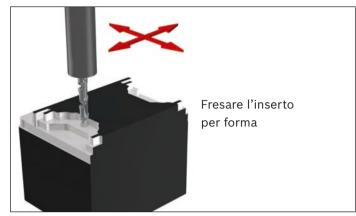


Descrizione del prodotto

Confronto diretto della precisione di ciclo di due pattini a sfere

È evidente che le imprecisioni a onde corte (linea tratteggiata) possono essere notevolmente ridotte grazie ad una nuova configurazione innovativa della zona di ricircolo (linea continua).

i di applicazione


l pattini a sfere ultraprecisi Rexroth sono particolarmente adatti per le seguenti applicazioni:

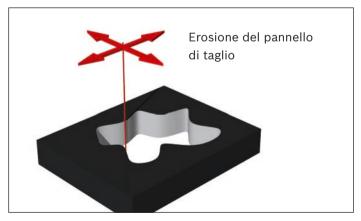
Misurazione

Macchina di misurazione della coordinate in 3D

Fresa

Fresatura dura

Rettificatrice


Rettifica cilindrica interna

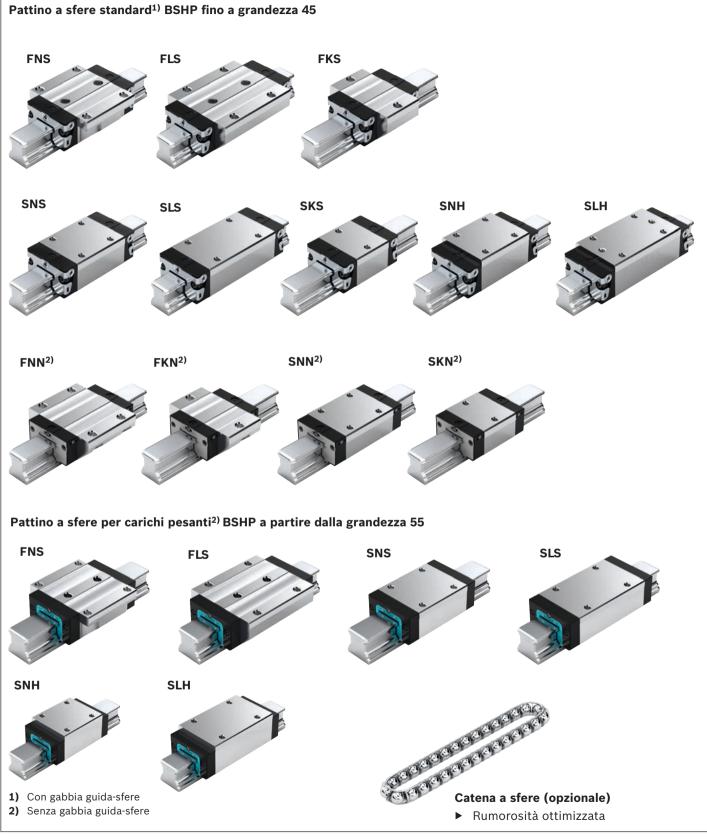
Tornio

Tornitura altamente precisa

Erosione

Erosione del cavo metallico

Microelettronica



Macchine di montaggio per circuiti stampati

Questi sono solo alcuni esempi. Naturalmente sono realizzabili anche altre applicazioni. Contattateci. Abbiamo la soluzione adatta.

Panoramica forme

Ordinazione di pattini a sfere Il codice materiale completo è composto dalle cifre corrispondenti per le singole opzioni. Ogni opzione (in grigio) è codificata in una cifra del codice materiale (su fondo bianco). Il seguente esempio di ordinazione è valido per tutti pattini a sfere.

Spiegazione opzione "Pattini a sfere di grandezza"

La forma costruttiva dei pattini a sfere - in questo esempio pattini a sfere standard FNS - è indicata sulla rispettiva pagina del prodotto.

Codifica del codice materiale: R16517 Modello Grandezza

Esempio di ordinazione

Opzioni: | -;

- ▶ Pattino a sfere FNS
- Grandezza 30
- Classe di precarico C1
- Classe di precisione H
- Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione: R1651 713 20

Opzioni e numeri di identificazione

Gran- dezza	Pattini a sfere I	Classe	di prec	arico		Classe	di pre	cisione				Guarni	zione ttini a s	·fara			
uezza	con grandezza j													iere	1		
	!											senza			con ga		
	'	CO	C1	C2	СЗ	N	н	Р	ХP	SP	UP	guidas SS	tere LS ¹⁾	DS	guidas SS		DS
15	R1651 1	9				4	3	-	-	-	-	20	21	-	22	23	-
			1			4	3	2	8	1	9	20	21	-	22	23	-
				2		-	3	2	8	1	9	20	21	-	22	23	-
					3	-	-	-	8	1	9		21	-	22	23	-
20	R1651 8	9				4	3	-	-	-	-	20	21	-	22	23	-
			1			4	3	2	8	1	9	20	21	2Z	22	23	2Y
				2		-	3	2	8	1	9	20	21	2Z	22	23	2Y
					3	-	-	-	8	1	9		21	2Z	22	23	2Y
25	R1651 2	9				4	3	_	-	-	-	20	21	-	22	23	-
			1			4	3	2	8	1	9		21	2Z	22	23	2Y
				2		-	3	2	8	1	9	20	21	2Z	22	23	2Y
	ļ				3		-	_	8	1	9		21	2Z	22	23	2Y
30	R1651 7	9				4	.3		-	-	-	20	. 21	_	22	23	-
	'		1	i		4	3	2	8	1	9			2Z	22	23	2Y
				2		-	3	2	8	1	9	20	21	2Z	22	23	2Y
					3	-	_	-	8	1	9		21	2Z	22	23	2Y
35	R1651 3	9				4	3	-	-	-	-	20	21	_	22	23	_
			1			4	3	2	8	1	9		21	2Z	22	23	2Y
				2		-	3	2	8	1	9	20	21	2Z	22	23	2Y
					3		-	-	8	1	9	20	21	2Z	22	23	2Y
45	R1651 4	9				4	3	-	-	-	-	20	-	_	22	-	-
			1			4	3	2	8	1	9		-	2Z	22	-	2Y
				2		_	3	2	8	1	9		_	2Z	22	-	2Y
					3	-	-	_	8	1	9		-	2Z	22	-	2Y
Es.:	R1651 7		1				3					20					

Classi di precarico

C0 = Senza precarico (gioco)

C1 = Precarico leggero

C2 = Precarico medio

C3 = Precarico elevato

Guarnizioni

SS = Guarnizione standard

LS = Guarnizione a bassa resistenza d'attrito

DS = Guarnizione a doppio labbro

Legenda

Cifre grigie

= Nessuna variante preferita/ combinazione


(in parte tempi di consegna più lunghi)

Definizione forma pattino a sfere

Criterio	Denominazione	Abbre	viazione (e	esempio)
		F	N	s
Larghezza	Flangia (F)	F		
	Sottile (S)	S		
	Largo (B)	В		
	Compact (C)	С		
Lunghezza	Normale (N)		N	
	Lungo (L)		L	
	Corto (K)		K	
Altezza	Altezza standard (S)			S
	Alto (H)			Н
	Basso (N)			N

FNS - Flangia Normale Altezza standard R1651 ... 2.

Valori dinamici

Velocità: $v_{max} = 5 \text{ m/s}$ Accelerazione: $a_{max} = 500 \text{ m/s}^2$ $(\text{Se F}_{comb} > 2,8 \cdot \text{F}_{pr} : a_{max} = 50 \text{ m/s}^2)$

Nota per la lubrificazione

► Con prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS/SNO. I pattini a sfere di gr. 55 e gr. 65 sono riportati nel capitolo "Pattini a sfere BSHP in acciaio per carichi pesanti" dopo il presente capitolo.

Opzioni e codici materiale

Grandezza	Pattini	Classe	di prec	arico		Classe	di prec	isione				Guarni	zione p	er pat	tini a sfe	ere	
	a sfere di											senza g	gabbia		con gal	bbia	
	grandezza											guida-s	fere		guida-s	fere	
		C0	C1	C2	C3	N	н	Р	XP	SP	UP	SS	LS ¹⁾	DS		LS ¹⁾	DS
15	R1651 1	9				4	3	-	-	-1	-	20	21	_	22	23	_
			1			4	3	2	8	1	9	20	21	2Z	22	23	2Y
				2		-	3	2	8	1	9	20	21	2Z	22	23	2Y
					3	-	-	-	8	1	9	20	21	2Z	22	23	2Y
20	R1651 8	9				4	3	-	-	-	-	20	21	_	22	23	_
			1			4	3	2	8	1	9	20	21	2Z	22	23	2Y
				2		-	3	2	8	1	9	20	21	2Z	22	23	2Y
					3	-	-	-	8	1	9	20	21	2Z	22	23	2Y
25	R1651 2	9				4	3	-	-	-1	-	20	21	_	22	23	_
			1			4	3	2	8	1	9	20	21	2Z	22	23	2Y
				2		-	3	2	8	1	9	20	21	2Z	22	23	2Y
					3	-	-	-	8	1	9	20	21	2Z	22	23	2Y
30	R1651 7	9				4	3	-	-	-	-	20	21	_	22	23	_
			1			4	3	2	8	1	9	20	21	2Z	22	23	2Y
				2		-	3	2	8	1	9	20	21	2Z	22	23	2Y
					3	-	-	-	8	1	9	20	21	2Z	22	23	2Y
35	R1651 3	9				4	3	-	-	-	-	20	21	_	22	23	_
			1			4	3	2	8	1	9	20	21	2Z	22	23	2Y
				2		-	3	2	8	1	9		21	2Z	22	23	2Y
					3	_	-	-	8	1	9	20	21	2Z	22	23	2Y
45	R1651 4	9				4	3	-	-	-	-	20	_	_	22	_	-
			1			4	3	2	8	1	9		-	2Z	22	_	2Y
				2		-	3	2	8	1	9	20	_	2Z	22	_	2Y
					3	-	-	-	8	1	9	20	-	2Z	22	_	2Y
Es.:	R1651 7		1				3					20					

1) Solo per le classi di precisione N e H e per XP nella classe di precarico C1.

Esempio di ordinazione

Opzioni:

▶ Pattino a sfere FNS

► Grandezza 30

► Classe di precarico C1

► Classe di precisione H

► Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione:

R1651 713 20

Classi di precarico

C0 = Senza precarico (gioco)

C1 = Precarico leggero

C2 = Precarico medio

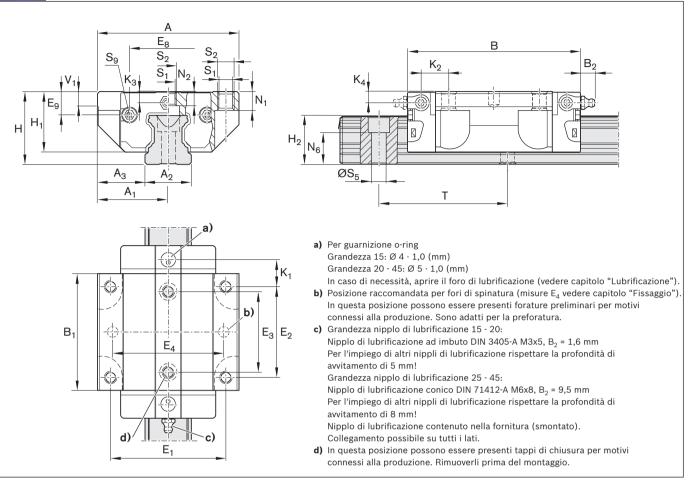
C3 = Precarico elevato

Guarnizioni

SS = Guarnizione standard

LS = Guarnizione a bassa resistenza d'attrito

DS = Guarnizione a doppio labbro


Legenda

Cifre grigie

 Nessuna variante preferita/ combinazione

(in parte tempi di consegna più lunghi)

Grandezza	Dimer	nsioni (mm)																
	Α	A_1	$\mathbf{A_2}$	A_3	B ^{+0,5}	B_1	E_1	$\mathbf{E_2}$	E_3	E ₈	E ₉	Н	H ₁	$H_{2}^{1)}$	$H_2^{2)}$	K_1	K_2	K ₃	K_4
15	47	23,5	15	16,0	58,2	39,2	38	30	26	24,55	6,70	24	19,90	16,30	16,20	8,00	9,6	3,20	3,20
20	63	31,5	20	21,5	75,0	49,6	53	40	35	32,50	7,30	30	25,35	20,75	20,55	11,80	11,8	3,35	3,35
25	70	35,0	23	23,5	86,2	57,8	57	45	40	38,30	11,50	36	29,90	24,45	24,25	12,45	13,6	5,50	5,50
30	90	45,0	28	31,0	97,7	67,4	72	52	44	48,40	14,60	42	35,35	28,55	28,35	14,00	15,7	6,05	6,05
35	100	50,0	34	33,0	110,5	77,0	82	62	52	58,00	17,35	48	40,40	32,15	31,85	14,50	16,0	6,90	6,90
45	120	60,0	45	37,5	137,6	97,0	100	80	60	69,80	20,90	60	50,30	40,15	39,85	17,30	19,3	8,20	8,20

Grandezza	Dime	nsioni ((mm)							Dimensioni	Fattori di	carico ³⁾	Moment	i di cari	co ³⁾ (Nm)	
										(kg)	(N) →	<u>†</u> }_←				
	N ₁	N_2	N ₆ ±0,5	S ₁	S_2	S ₅	S ₉	Т	V_1	m	С	C ₀	M _t	M _{to}	ML	M _{LO}
15	5,2	4,40	10,3	4,3	M5	4,5	M2,5x3,5	60	5,0	0,20	9 860	12700	95	120	68	87
20	7,7	5,20	13,2	5,3	M6	6,0	M3x5	60	6,0	0,45	23400	29800	300	380	200	260
25	9,3	7,00	15,2	6,7	M8	7,0	M3x5	60	7,5	0,65	28600	35900	410	510	290	360
30	11,0	7,90	17,0	8,5	M10	9,0	M3x5	80	7,0	1,10	36500	48100	630	830	440	580
35	12,0	10,15	20,5	8,5	M10	9,0	M3x5	80	8,0	1,60	51800	80900	1 110	1 740	720	1 130
45	15,0	12,40	23,5	10,4	M12	14,0	M4x7	105	10,0	3,00	86400	132000	2 330	3 560	1 540	2 350

- 1) Dimensione H₂ con nastro di protezione
- 2) Dimensione H₂ senza nastro di protezione
- 3) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere. Fattori di carico e momenti di carico per pattini a sfere con gabbia guida-sfere 🗈 12

I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori \mathbf{C} , \mathbf{M}_1 e \mathbf{M}_1 in base a tabella.

FLS - Flangia Lungo Altezza standard R1653 ... 2.

Valori dinamici

Velocità: $v_{max} = 5 \text{ m/s}$ $a_{max} = 500 \text{ m/s}^2$ Accelerazione: (Se $F_{comb} > 2.8 \cdot F_{pr} : a_{max} = 50 \text{ m/s}^2$)

Nota per la lubrificazione

Con prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS/SNO. I pattini a sfere di gr. 55 e gr. 65 sono riportati nel capitolo "Pattini a sfere BSHP in acciaio per carichi pesanti" dopo il presente capitolo.

Opzioni e codici materiale

Grandezza	Pattini	Classe	di prec	arico		Classe	di preci:	sione				Guarniz	zione p	er patt	ini a sfe	re	
	a sfere di grandezza											senza g			con gal		
	g	CO	C1	C2	СЗ	N	н	Р	ХP	SP	UP	guida-s SS	tere LS ¹⁾	DS	guida-s SS	LS ¹⁾	DS
15	R1653 1	9				4	3	-	-	-	-	20	21	-	22	23	_
			1			4	3	2	8	1	9	20	21	2Z	22	23	2Y
				2		-	3	2	8	1	9	20	21	2Z	22	23	2Y
					3	-	-	-	8	1	9	20	21	2Z	22	23	2Y
20	R1653 8	9				4	3	-	-1	-	-	20	21	-	22	23	-
			1			4	3	2	8	1	9	20	21	2Z	22	23	2Y
				2		-	3	2	8	1	9	20	21	2Z	22	23	2Y
					3	-	-	-	8	1	9	20	21	2Z	22	23	2Y
25	R1653 2	9				4	3	-	-	-	-	20	21	-	22	23	_
			1			4	3	2	8	1	9	20	21	2Z	22	23	2Y
				2		-	3	2	8	1	9	20	21	2Z	22	23	2Y
					3	-	-	-	8	1	9	20	21	2Z	22	23	2Y
30	R1653 7	9				4	3	-	-	-	_	20	21	-	22	23	_
			1			4	3	2	8	1	9	20	21	2Z	22	23	2Y
				2		-	3	2	8	1	9	1	21	2Z	22	23	2Y
					3	-	-	-	8	1	9	20	21	2Z	22	23	2Y
35	R1653 3	9				4	3	-	-	-	-	20	21	-	22	23	-
			1			4	3	2	8	1	9	20	21	2Z	22	23	2Y
				2		-	3	2	8	1	9		21	2Z	22	23	2Y
					3	-	-	-	8	1	9	20	21	2Z	22	23	2Y
45	R1653 4	9				4	3	-	-	-		20	-	_	22	-	
			1			4	3	2	8	1	9		_	2Z	22	-	2Y
				2		-	3	2	8	1	9	20	-	2Z	22	-	2Y
					3	-	-	-	8	1	9	20	-	2Z	22	-	2Y
Es.:	R1653 7		1				3					20					

1) Solo per le classi di precisione N e H e per XP nella classe di precarico C1.

Classi di precarico

C1 = Precarico leggero

C2 = Precarico medio

C3 = Precarico elevato

C0 = Senza precarico (gioco)

Esempio di ordinazione

Opzioni:

▶ Pattino a sfere FLS

Grandezza 30

Classe di precarico C1

Classe di precisione H

Con guarnizione standard, senza gabbia guida-sfere

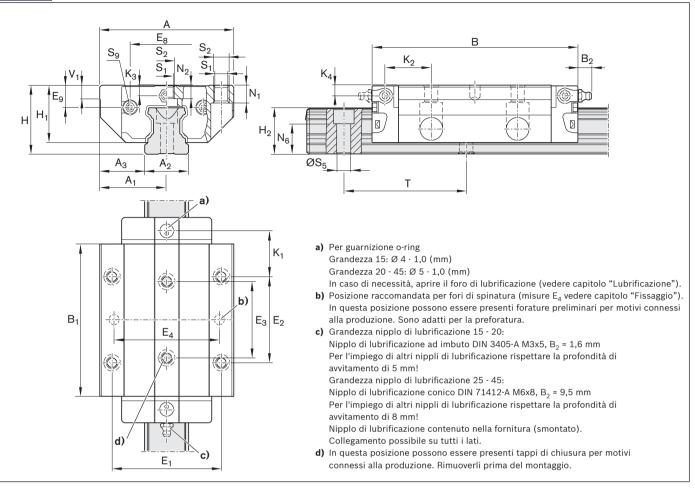
Numero di identificazione:

R1653 713 20

Guarnizioni

SS = Guarnizione standard LS = Guarnizione a bassa

resistenza d'attrito DS = Guarnizione a doppio labbro

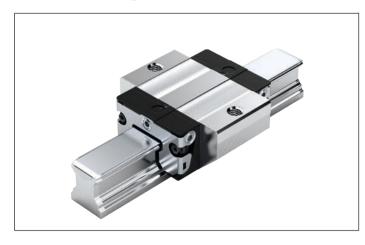

Legenda

Cifre grigie

Nessuna variante preferita/ combinazione

(in parte tempi di consegna più lunghi)

Grandezza	Dimer	sioni	(mm)															
	Α	A_1	A_2	A_3	B ^{+0,5}	B_1	E ₁	$\mathbf{E_2}$	E_3	E ₈	E ₉	Н	H ₁	$H_{2}^{1)}$	$H_2^{(2)}$	K_1	K_2	K ₃	K_4
15	47	23,5	15	16,0	72,6	53,6	38	30	26	24,55	6,70	24	19,90	16,30	16,20	15,20	16,80	3,20	3,20
20	63	31,5	20	21,5	91,0	65,6	53	40	35	32,50	7,30	30	25,35	20,75	20,55	19,80	19,80	3,35	3,35
25	70	35,0	23	23,5	107,9	79,5	57	45	40	38,30	11,50	36	29,90	24,45	24,25	23,30	24,45	5,50	5,50
30	90	45,0	28	31,0	119,7	89,4	72	52	44	48,40	14,60	42	35,35	28,55	28,35	25,00	26,70	6,05	6,05
35	100	50,0	34	33,0	139,0	105,5	82	62	52	58,00	17,35	48	40,40	32,15	31,85	28,75	30,25	6,90	6,90
45	120	60,0	45	37,5	174,1	133,5	100	80	60	69,80	20,90	60	50,30	40,15	39,85	35,50	37,50	8,20	8,20


Grandezza	Dimen	ısioni (n	nm)							Dimensioni	Fattori d	carico ³⁾	Moment	ti di car	rico ³⁾ (Nm)	
										(kg)	(N)					
											→ <u>\</u>	<u>†</u>		<u>_</u>		
	N ₁	N_2	$N_6^{\pm0,5}$	S_1	S_2	S_5	S ₉	Т	V_1	m	С	Co	M _t	M_{t0}	ML	M _{L0}
15	5,2	4,40	10,3	4,3	M5	4,5	M2,5x3,5	60	5,0	0,30	12800	18400	120	180	120	180
20	7,7	5,20	13,2	5,3	M6	6,0	M3x5	60	6,0	0,55	29600	41800	380	540	340	490
25	9,3	7,00	15,2	6,7	M8	7,0	M3x5	60	7,5	0,90	37300	52500	530	750	530	740
30	11,0	7,90	17,0	8,5	M10	9,0	M3x5	80	7,0	1,50	46000	66900	800	1 160	740	1 080
35	12,0	10,15	20,5	8,5	M10	9,0	M3x5	80	8,0	2,25	66700	116000	1 440	2 500	1 290	2 240
45	15,0	12,40	23,5	10,4	M12	14,0	M4x7	105	10,0	4,30	111000	190000	3 010	5 120	2 730	4 660

- 1) Dimensione H₂ con nastro di protezione
- 2) Dimensione H₂ senza nastro di protezione
- 3) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere. Fattori di carico e momenti di carico per pattini a sfere con gabbia guida-sfere 🗈 12

I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori \mathbf{C} , \mathbf{M}_1 e \mathbf{M}_1 in base a tabella.

FKS - Flangiato Corto Altezza standard R1665 ... 2.

Valori dinamici

Velocità: $v_{max} = 5 \text{ m/s}$ Accelerazione: $a_{max} = 500 \text{ m/s}^2$ $(\text{Se F}_{comb} > 2,8 \cdot \text{F}_{pr} : a_{max} = 50 \text{ m/s}^2)$

Nota per la lubrificazione

► Con prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS/SNO.

Opzioni e codici materiale

Grandezza	Pattini a sfere di grandezza	Classe di pred	carico	Classe di pro	ecisione	Guarni	zione pe	er pattir	ii a sfere		
						senza g	•		con gab guida-sf		
		C0	C1	N	Н			DS		LS	DS
15	R1665 1	9		4	3	20	21	_	22	23	_
			1	4	3	20	21	2Z	22	23	2Y
20	R1665 8	9		4	3	20	21	_	22	23	_
			1	4	3	20	21	2Z	22	23	2Y
25	R1665 2	9		4	3	20	21	_	22	23	_
			1	4	3	20	21	2Z	22	23	2Y
30	R1665 7	9		4	3	20	21	_	22	23	_
			1	4	3	20	21	2Z	22	23	2Y
35	R1665 3	9		4	3	20	21	_	22	23	_
			1	4	3	20	21	2Z	22	23	2Y
Es.:	R1665 7		1	İ	3	20					

Esempio di ordinazione

Opzioni:

- ▶ Pattino a sfere FKS
- ► Grandezza 30
- ► Classe di precarico C1
- ► Classe di precisione H
- Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione:

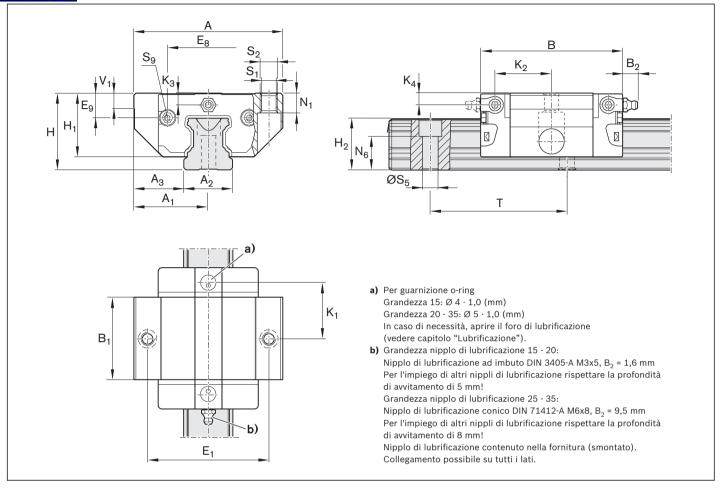
R1665 713 20

Classi di precarico

- C0 = Senza precarico (gioco)
- C1 = Precarico leggero

Guarnizioni

- SS = Guarnizione standard
- LS = Guarnizione a bassa resistenza d'attrito
- DS = Guarnizione a doppio labbro


Legenda

Cifre grigie

 Nessuna variante preferita/ combinazione

(in parte tempi di consegna più lunghi)

Grandezza	Dimen	sioni (n	nm)														
	Α	$\mathbf{A_1}$	A_2	A_3	B ^{+0,5}	B_1	E_1	E ₈	E ₉	Н	H ₁	$H_{2}^{1)}$	$H_2^{2)}$	K_1	K_2	K_3	K_4
15	47	23,5	15	16,0	44,7	25,7	38	24,55	6,70	24	19,90	16,30	16,20	16,25	17,85	3,20	3,20
20	63	31,5	20	21,5	57,3	31,9	53	32,50	7,30	30	25,35	20,75	20,55	22,95	22,95	3,35	3,35
25	70	35,0	23	23,5	67,0	38,6	57	38,30	11,50	36	29,90	24,45	24,25	25,35	26,50	5,50	5,50
30	90	45,0	28	31,0	75,3	45,0	72	48,40	14,60	42	35,35	28,55	28,35	28,80	30,50	6,05	6,05
35	100	50,0	34	33,0	84,9	51,4	82	58,00	17,35	48	40,40	32,15	31,85	32,70	34,20	6,90	6,90


Grandezza	Dimensi	oni (mm)						Dimensioni	Fattori di c	arico ³⁾	Moment	i di car	ico ³⁾ (Nm)	
									(kg)	(N)				_	_
										→ 1	<u>†</u> □ ←	[[
	N ₁	$N_6^{\pm 0,5}$	S_1	S_2	S_5	S ₉	Т	V_1	m	С	C_0	M _t	M_{t0}	ML	M_{LO}
15	5,2	10,3	4,3	M5	4,5	M2,5x3,5	60	5,0	0,15	6 720	7 340	65	71	29	32
20	7,7	13,2	5,3	M6	6,0	М3х5	60	6,0	0,30	15400	16500	200	210	83	89
25	9,3	15,2	6,7	M8	7,0	М3х5	60	7,5	0,50	19800	21200	280	300	130	140
30	11,0	17,0	8,5	M10	9,0	М3х5	80	7,0	0,80	25600	28900	440	500	200	230
35	12,0	20,5	8,5	M10	9,0	М3х5	80	8,0	1,20	36600	49300	790	1 060	340	460

- 1) Dimensione H₂ con nastro di protezione
- 2) Dimensione H₂ senza nastro di protezione
- 3) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere. Fattori di carico e momenti di carico per pattini a sfere con gabbia guida-sfere 🗈 12

I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori \mathbf{C} , \mathbf{M}_{t} e \mathbf{M}_{L} in base a tabella.

SNS - Stretta Normale Altezza standard R1622 ... 2.

Valori dinamici

Velocità: $v_{max} = 5 \text{ m/s}$ Accelerazione: $a_{max} = 500 \text{ m/s}^2$ $(\text{Se F}_{comb} > 2, 8 \cdot \text{F}_{pr} : a_{max} = 50 \text{ m/s}^2)$

Nota per la lubrificazione

► Con prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS/SNO. I pattini a sfere di gr. 55 e gr. 65 sono riportati nel capitolo "Pattini a sfere BSHP in acciaio per carichi pesanti" dopo il presente capitolo.

Opzioni e codici materiale

Grandezza	Pattini a sfere	Classe di	i precar	ico		Classe o	li precis	ione		Guarniz	ione per	r pattini	a sfere		
	di grandezza									senza ga	abbia		con gabl	oia	
										guida-sf	ere		guida-sf	ere	
		C0	C1	C2	C3	N	H	P	XP	SS	LS ¹⁾	DS	SS	LS ¹⁾	DS
15	R1622 1	9				4	3	-1	_	20	21	_	22	23	-
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	-	-	8	20	21	2Z	22	23	2Y
20	R1622 8	9				4	3	-	_	20	21	_	22	23	_
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	-	-	8	20	21	2Z	22	23	2Y
25	R1622 2	9				4	3	-	_	20	21	_	22	23	_
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	-	-	8	20	21	2Z	22	23	2Y
30	R1622 7	9				4	3	-	_	20	21	_	22	23	_
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	-	-	8	20	21	2Z	22	23	2Y
35	R1622 3	9	Ì			4	3	-1	_	20	21	_	22	23	_
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	-	-	8	20	21	2Z	22	23	2Y
45	R1622 4	9				4	3	-	_	20	-	_	22	-	_
			1			4	3	2	8	20	-	2Z	22	-	2Y
				2		-	3	2	8	20	-	2Z	22	-	2Y
					3	-	-	-	8	20	-	2Z	22	-	2Y
Es.:	R1622 7		1			<u> </u>	3	,		20					

1) Solo per le classi di precisione N e H e per XP nella classe di precarico C1.

Classi di precarico

C1 = Precarico leggero

C2 = Precarico medio

C3 = Precarico elevato

C0 = Senza precarico (gioco)

Esempio di ordinazione

Opzioni:

▶ Pattino a sfere SNS

► Grandezza 30

► Classe di precarico C1

► Classe di precisione H

► Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione:

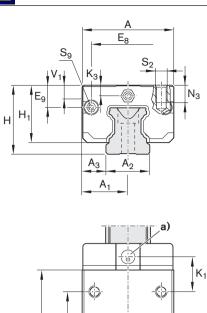
R1622 713 20

Guarnizioni

SS = Guarnizione standard

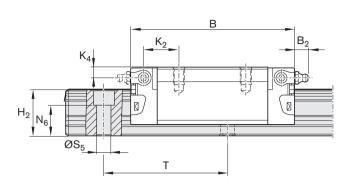
LS = Guarnizione a bassa resistenza d'attrito

DS = Guarnizione a doppio labbro


Legenda

Cifre grigie

 Nessuna variante preferita/ combinazione

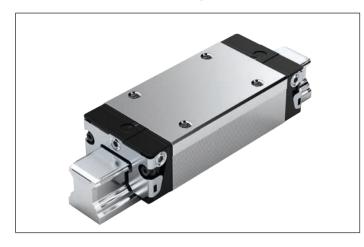

(in parte tempi di consegna più lunghi)

Εı

 B_1

- a) Per guarnizione o-ring Grandezza 15: \varnothing 4 · 1,0 (mm) Grandezza 20 · 45: \varnothing 5 · 1,0 (mm) In caso di necessità, aprire il foro di lubrificazione (vedere capitolo "Lubrificazione").
- b) Grandezza nipplo di lubrificazione 15 20:
 Nipplo di lubrificazione ad imbuto DIN 3405-A M3x5, B₂ = 1,6 mm
 Per l'impiego di altri nippli di lubrificazione rispettare la profondità
 di avvitamento di 5 mm!
 Grandezza nipplo di lubrificazione 25 45:
 Nipplo di lubrificazione conico DIN 71412-A M6x8, B₂ = 9,5 mm
 Per l'impiego di altri nippli di lubrificazione rispettare la profondità
 di avvitamento di 8 mm!
 Nipplo di lubrificazione contenuto nella fornitura (smontato).
 Collegamento possibile su tutti i lati.

Grandezza	Dimer	nsioni	i (mm)														
	Α	A_1	A_2	A_3	B ^{+0,5}	B_1	E_1	$\mathbf{E_2}$	E ₈	E ₉	Н	H ₁	$H_{2}^{1)}$	$H_2^{(2)}$	K_1	K_2	K_3	K_4
15	34	17	15	9,5	58,2	39,2	26	26	24,55	6,70	24	19,90	16,30	16,20	10,00	11,60	3,20	3,20
20	44	22	20	12,0	75,0	49,6	32	36	32,50	7,30	30	25,35	20,75	20,55	13,80	13,80	3,35	3,35
25	48	24	23	12,5	86,2	57,8	35	35	38,30	11,50	36	29,90	24,45	24,25	17,45	18,60	5,50	5,50
30	60	30	28	16,0	97,7	67,4	40	40	48,40	14,60	42	35,35	28,55	28,35	20,00	21,70	6,05	6,05
35	70	35	34	18,0	110,5	77,0	50	50	58,00	17,35	48	40,40	32,15	31,85	20,50	22,00	6,90	6,90
45	86	43	45	20,5	137,6	97,0	60	60	69,80	20,90	60	50,30	40,15	39,85	27,30	29,30	8,20	8,20


Grandezza	Dimensi	oni (mm)					Dimensioni	Fattori di	carico ³⁾	Moment	i di car	ico ³⁾ (Nm)	
								(kg)	(N)					
									→ <u></u>	<u>†</u> ∵ ←				
	N ₃	$N_6^{\pm 0,5}$	S_2	S_5	S ₉	Т	V_1	m	С	C_0	M _t	M_{t0}	ML	M _{LO}
15	6,0	10,3	M4	4,5	M2,5x3,5	60	5,0	0,15	9 860	12700	95	120	68	87
20	7,5	13,2	M5	6,0	M3x5	60	6,0	0,35	23400	29800	300	380	200	260
25	9,0	15,2	M6	7,0	M3x5	60	7,5	0,50	28600	35900	410	510	290	360
30	12,0	17,0	M8	9,0	М3х5	80	7,0	0,85	36500	48100	630	830	440	580
35	13,0	20,5	M8	9,0	M3x5	80	8,0	1,25	51800	80900	1 110	1 740	720	1 130
45	18,0	23,5	M10	14,0	M4x7	105	10,0	2,40	86400	132000	2 330	3 560	1 540	2 350

- 1) Dimensione H₂ con nastro di protezione
- 2) Dimensione H₂ senza nastro di protezione
- 3) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere. Fattori di carico e momenti di carico per pattini a sfere con gabbia guida-sfere 🗈 12

I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori \mathbf{C} , \mathbf{M}_1 e \mathbf{M}_1 in base a tabella.

SLS - Stretto Lungo Altezza standard R1623 ... 2.

Valori dinamici

Velocità: $v_{max} = 5 \text{ m/s}$ Accelerazione: $a_{max} = 500 \text{ m/s}^2$ $(\text{Se F}_{comb} > 2, 8 \cdot \text{F}_{pr} : a_{max} = 50 \text{ m/s}^2)$

Nota per la lubrificazione

► Con prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS/SNO. I pattini a sfere di gr. 55 e gr. 65 sono riportati nel capitolo "Pattini a sfere BSHP in acciaio per carichi pesanti" dopo il presente capitolo.

Opzioni e codici materiale

Grandezza	Pattini a sfere	Classe d	i preca	rico		Classe o	di precis	ione		Guarniz	ione per	pattin	i a sfere		
	di grandezza									senza g	abbia		con gab	bia	
										guida-si	ere		guida-sf	ere	
		C0	C1	C2	C3	N	н	P	XP	SS	LS ¹⁾	DS	SS	LS ¹⁾	DS
15	R1623 1	9				4	3	_	_	20	21	-	22	23	-
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	-	-	8	20	21	2Z	22	23	2Y
20	R1623 8	9				4	3	-	_	20	21	-	22	23	-
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	-	-	8	20	21	2Z	22	23	2Y
25	R1623 2	9				4	3	-	_	20	21	-	22	23	_
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	-	-	8	20	21	2Z	22	23	2Y
30	R1623 7	9				4	3	_	_	20	21	-	22	23	-
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	-	_	8	20	21	2Z	22	23	2Y
35	R1623 3	9				4	3	-	_	20	21	-	22	23	-
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	-	_	8	20	21	2Z	22	23	2Y
45	R1623 4	9		Ì		4	3	_	_	20	-	_	22	-	_
			1			4	3	2	8	20	-	2Z	22	-	2Y
				2		-	3	2	8	20	-	2Z	22	-	2Y
					3	-	-	-	8	20	-	2Z	22	-	2Y
Es.:	R1623 7		1				3			20					

1) Solo per le classi di precisione N e H e per XP nella classe di precarico C1.

Classi di precarico

C1 = Precarico leggero

C2 = Precarico medio

C3 = Precarico elevato

C0 = Senza precarico (gioco)

Esempio di ordinazione

Opzioni:

▶ Pattino a sfere SLS

► Grandezza 30

► Classe di precarico C1

► Classe di precisione H

 Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione:

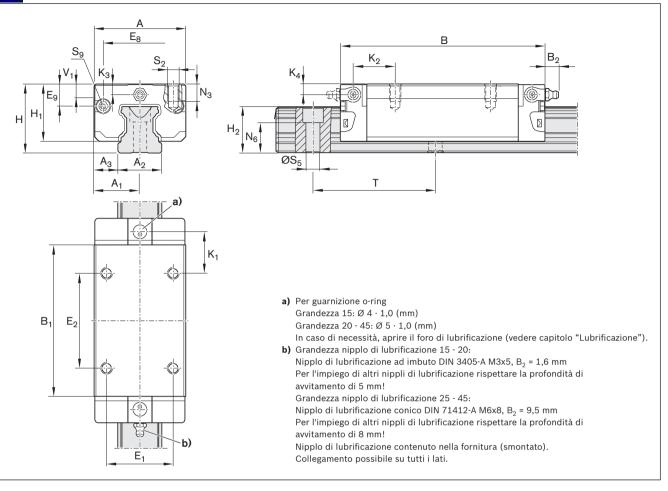
R1623 713 20

Guarnizioni

SS = Guarnizione standard

LS = Guarnizione a bassa resistenza d'attrito

DS = Guarnizione a doppio labbro

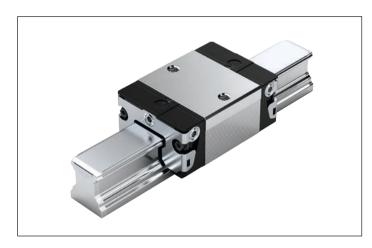

Legenda

Cifre grigie

 Nessuna variante preferita/ combinazione

(in parte tempi di consegna più lunghi)

Grandezza	Dimer	ısioni	i (mm)														
	Α	A_1	$\mathbf{A_2}$	A_3	B ^{+0,5}	B_1	E_1	$\mathbf{E_2}$	E ₈	E ₉	Н	H ₁	$H_{2}^{1)}$	$H_2^{2)}$	K_1	K_2	K_3	K_4
15	34	17	15	9,5	72,6	53,6	26	26	24,55	6,70	24	19,90	16,30	16,20	17,20	18,80	3,20	3,20
20	44	22	20	12,0	91,0	65,6	32	50	32,50	7,30	30	25,35	20,75	20,55	14,80	14,80	3,35	3,35
25	48	24	23	12,5	107,9	79,5	35	50	38,30	11,50	36	29,90	24,45	24,25	20,80	21,95	5,50	5,50
30	60	30	28	16,0	119,7	89,4	40	60	48,40	14,60	42	35,35	28,55	28,35	21,00	22,70	6,05	6,05
35	70	35	34	18,0	139,0	105,5	50	72	58,00	17,35	48	40,40	32,15	31,85	23,75	25,25	6,90	6,90
45	86	43	45	20,5	174,1	133,5	60	80	69,80	20,90	60	50,30	40,15	39,85	35,50	37,50	8,20	8,20


Grandezza	Dimensi	oni (mm)						Dimensioni	Fattori di c	arico ³⁾	Momenti	i di cari	co³⁾ (Nm)	
								(kg)	(N)					
									→	t }_←		\Box		
	N ₃	$N_6^{\pm 0,5}$	S_2	S ₅	S ₉	Т	V_1	m	С	Co	M _t	M_{t0}	M _L	M _{LO}
15	6,0	10,3	M4	4,5	M2,5x3,5	60	5,0	0,20	12800	18400	120	180	120	180
20	7,5	13,2	M5	6,0	M3x5	60	6,0	0,45	29600	41800	380	540	340	490
25	9,0	15,2	M6	7,0	M3x5	60	7,5	0,65	37300	52500	530	750	530	740
30	12,0	17,0	M8	9,0	M3x5	80	7,0	1,10	46000	66900	800	1 160	740	1 080
35	13,0	20,5	M8	9,0	M3x5	80	8,0	1,70	66700	116000	1 440	2 500	1 290	2 240
45	18,0	23,5	M10	14,0	M4x7	105	10,0	3,20	111000	190000	3 010	5 120	2 730	4 660

- 1) Dimensione H_2 con nastro di protezione
- 2) Dimensione H₂ senza nastro di protezione
- 3) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere. Fattori di carico e momenti di carico per pattini a sfere con gabbia guida-sfere 🗈 12

I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori \mathbf{C} , \mathbf{M}_1 e \mathbf{M}_1 in base a tabella.

SKS - Stretto Corto Altezza standard R1666 ... 2.

Valori dinamici

Velocità: $v_{max} = 5 \text{ m/s}$ Accelerazione: $a_{max} = 500 \text{ m/s}^2$ $(\text{Se F}_{comb} > 2,8 \cdot \text{F}_{pr} : a_{max} = 50 \text{ m/s}^2)$

Nota per la lubrificazione

► Con prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS/SNO.

Opzioni e codici materiale

Grandezza	Pattini a sfere di grandezza	Classe di pr	ecarico	Classe di pr	ecisione	Guarniz	ione per	pattini a	sfere		
						senza g	abbia gu	ida-sfere	con gab	bia guida	-sfere
		CO	C1	N	Н	SS	LS	DS	SS	LS	DS
15	R1666 1	9		4	3	20	21	_	22	23	_
			1	4	3	20	21	2Z	22	23	2Y
20	R1666 8	9		4	3	20	21	-	22	23	_
			1	4	3	20	21	2Z	22	23	2Y
25	R1666 2	9		4	3	20	21	-	22	23	_
			1	4	3	20	21	2Z	22	23	2Y
30	R1666 7	9		4	3	20	21	_	22	23	_
			1	4	3	20	21	2Z	22	23	2Y
35	R1666 3	9		4	3	20	21	_	22	23	_
			1	4	3	20	21	2Z	22	23	2Y
Es.:	R1666 7		1		3	20					

Esempio di ordinazione

Opzioni:

- ▶ Pattino a sfere SKS
- ► Grandezza 30
- ► Classe di precarico C1
- Classe di precisione H
- Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione:

R1666 713 20

Classi di precarico

C0 = Senza precarico (gioco)

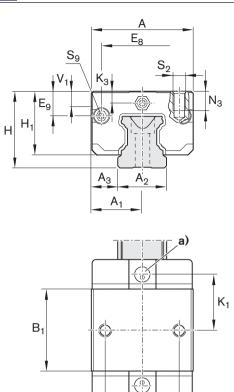
C1 = Precarico leggero

Guarnizioni

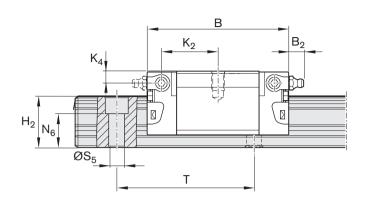
SS = Guarnizione standard

LS = Guarnizione a bassa resistenza d'attrito

DS = Guarnizione a doppio labbro


Legenda

Cifre grigie

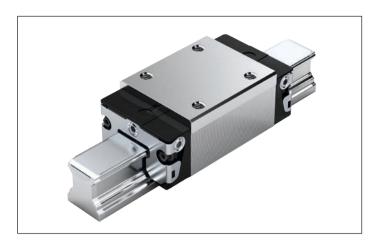

 Nessuna variante preferita/ combinazione

(in parte tempi di consegna più lunghi)

E₁

- a) Per guarnizione o-ring Grandezza 15: Ø 4 · 1,0 (mm)
 - Grandezza 20 35: Ø 5 · 1,0 (mm)
- In caso di necessità, aprire il foro di lubrificazione (vedere capitolo "Lubrificazione"). b) Grandezza nipplo di lubrificazione 15 - 20:
- Nipplo di lubrificazione ad imbuto DIN 3405-A M3x5, B_2 = 1,6 mm Per l'impiego di altri nippli di lubrificazione rispettare la profondità di avvitamento di 5 mm!
 - Grandezza nipplo di lubrificazione 25 35:
 - Nipplo di lubrificazione conico DIN 71412-A M6x8, B₂ = 9,5 mm
- Per l'impiego di altri nippli di lubrificazione rispettare la profondità di avvitamento di 8 mm!
- Nipplo di lubrificazione contenuto nella fornitura (smontato). Collegamento possibile su tutti i lati.

Grandezza	Dimens	ioni (n	nm)														
	Α	A_1	A_2	A_3	B ^{+0,5}	B_1	E ₁	E ₈	E ₉	н	H ₁	$H_{2}^{1)}$	$H_2^{2)}$	K ₁	K_2	K_3	K_4
15	34	17	15	9,5	44,7	25,7	26	24,55	6,70	24	19,90	16,30	16,20	16,25	17,85	3,20	3,20
20	44	22	20	12,0	57,3	31,9	32	32,50	7,30	30	25,35	20,75	20,55	22,95	22,95	3,35	3,35
25	48	24	23	12,5	67,0	38,6	35	38,30	11,50	36	29,90	24,45	24,25	25,35	26,50	5,50	5,50
30	60	30	28	16,0	75,3	45,0	40	48,40	14,60	42	35,35	28,55	28,35	28,80	30,50	6,05	6,05
35	70	35	34	18,0	84,9	51,4	50	58,00	17,35	48	40,40	32,15	31,85	32,70	34,20	6,90	6,90


Grandezza	Dimensio	ni (mm)						Dimensioni	Fattori di ca	arico ³⁾	Momen	ti di car	rico ³⁾ (Nm)	
								(kg)	(N)				ı	
									<u> </u>	<u>t_</u>				
									→ L	; □←				֓֞֞֞֞֞֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓
	N ₃	$N_6^{\pm0,5}$	S_2	S_5	S ₉	Т	V_1	m	С	Co	M _t	M_{t0}	M _L	M_{L0}
15	6,0	10,3	M4	4,5	M2,5x3,5	60	5,0	0,10	6 720	7 340	65	71	29	32
20	7,5	13,2	M5	6,0	M3x5	60	6,0	0,25	15400	16500	200	210	83	89
25	9,0	15,2	M6	7,0	М3х5	60	7,5	0,35	19800	21200	280	300	130	140
30	12,0	17,0	M8	9,0	M3x5	80	7,0	0,60	25600	28900	440	500	200	230
35	13,0	20,5	M8	9,0	M3x5	80	8,0	0,90	36600	49300	790	1 060	340	460

- 1) Dimensione H₂ con nastro di protezione
- 2) Dimensione H₂ senza nastro di protezione
- 3) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere. Fattori di carico e momenti di carico per pattini a sfere con gabbia guida-sfere ☞ 🖹 12

I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori \mathbf{C} , \mathbf{M}_{t} e \mathbf{M}_{L} in base a tabella.

SNH - Stretto Normale Alto R1621 ... 2.

Valori dinamici

 $v_{max} = 5 \text{ m/s}$ Velocità. $a_{max} = 500 \text{ m/s}^2$ Accelerazione: (Se $F_{comb} > 2.8 \cdot F_{pr} : a_{max} = 50 \text{ m/s}^2$)

Nota per la lubrificazione

Con prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS/SNO. I pattini a sfere di gr. 55 sono riportati nel capitolo "Pattini a sfere BSHP in acciaio per carichi pesanti" dopo il presente capitolo.

Onzioni e codici materiale

Grandezza	Pattini a sfere	Class	e di p	recari	СО	Classe d	i precisi	one		Guarnizi	one per	pattini a	sfere		
	di grandezza									senza ga	bbia gui	ida-sfere	con gabb	ia guida	sfere
		CO	C1	C2	C3	N	H	Р	XP	SS	LS ¹⁾	DS	SS	LS ¹⁾	DS
15	R1621 1	9				4	3	_	_	20	21	_	22	23	_
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	-	_	8	20	21	2Z	22	23	2Y
25	R1621 2	9				4	3	_	-	20	21	_	22	23	_
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	_	-	_	8	20	21	2Z	22	23	2Y
30	R1621 7	9				4	3	_	_	20	21	_	22	23	_
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	-	-	8	20	21	2Z	22	23	2Y
35	R1621 3	9				4	3	-	-	20	21	_	22	23	_
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		_	3	2	8	20	21	2Z	22	23	2Y
					3	-	-	-	8	20	21	2Z	22	23	2Y
45	R1621 4	9				4	3	-	_	20	-	-	22	-	_
			1			4	3	2	8		-	2Z	22	-	2Y
				2		_	3	2	8		-	2Z	22	-	2Y
					3	_	-	-	8	20	-	2Z	22	-	2Y
Es.:	R1621 7		1				3	·	·	20					

1) Solo per le classi di precisione N e H e per XP nella classe di precarico C1.

Esempio di ordinazione

Opzioni:

- Pattino a sfere SNH
- Grandezza 30
- Classe di precarico C1
- Classe di precisione H
- ► Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione:

R1621 713 20

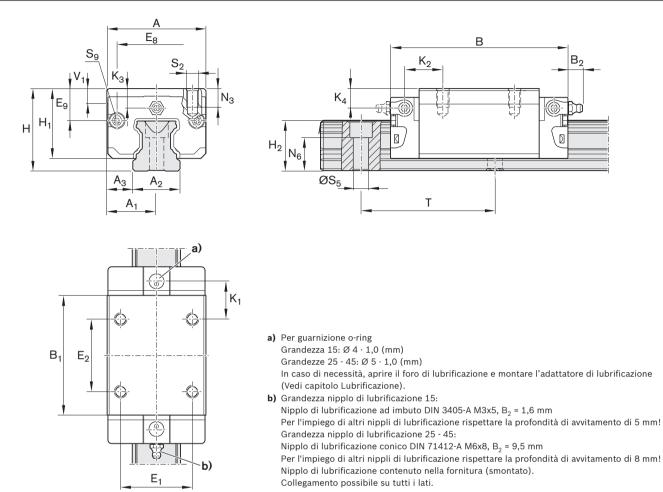
Classi di precarico

- C0 = Senza precarico (gioco)
- C1 = Precarico leggero
- C2 = Precarico medio
- C3 = Precarico elevato

Guarnizioni

- SS = Guarnizione standard
- LS = Guarnizione a bassa resistenza d'attrito
- DS = Guarnizione a doppio

labbro

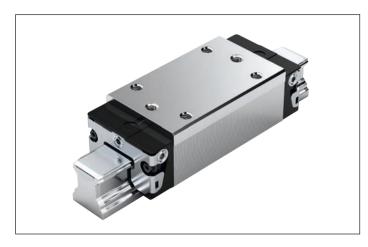

Legenda

Cifre grigie

= Nessuna variante preferita/ combinazione

(in parte tempi di consegna più lunghi)

Grandezza	Dimer	ısioni	i (mm)														
	Α	A_1	$\mathbf{A_2}$	A_3	B ^{+0,5}	B_1	E_1	E_2	E ₈	E ₉	Н	H ₁	$H_{2}^{1)}$	$H_2^{2)}$	K ₁	K_2	K_3	K_4
15	34	17	15	9,5	58,2	39,2	26	26	24,55	10,70	28	23,90	16,30	16,20	10,00	11,60	7,20	7,20
25	48	24	23	12,5	86,2	57,8	35	35	38,30	15,50	40	33,90	24,45	24,25	17,45	18,60	9,50	9,50
30	60	30	28	16,0	97,7	67,4	40	40	48,40	17,60	45	38,35	28,55	28,35	20,00	21,70	9,05	9,05
35	70	35	34	18,0	110,5	77,0	50	50	58,00	24,35	55	47,40	32,15	31,85	20,50	22,00	13,90	13,90
45	86	43	45	20,5	137,6	97,0	60	60	69,80	30,90	70	60,30	40,15	39,85	27,30	29,30	18,20	18,20


Grandezza	Dimens	ioni (mm)					Dimensioni	Fattori di	carico ³⁾	Momenti	di cari	co ³⁾ (Nm)	
								(kg)	(N)				_	
									<u> </u>	<u>t</u>				
									→ L	∐←		<u>ل</u>		
	N ₃	$N_6^{\pm0,5}$	S_2	S_5	S ₉	Т	V_1	m	С	C_0	M _t	M_{t0}	M_L	M _{LO}
15	6,0	10,3	M4	4,5	M2,5x3,5	60	5,0	0,20	9 860	12700	95	120	68	87
25	9,0	15,2	M6	7,0	M3x5	60	7,5	0,60	28600	35900	410	510	290	360
30	12,0	17,0	M8	9,0	M3x5	80	7,0	0,95	36500	48100	630	830	440	580
35	13,0	20,5	M8	9,0	М3х5	80	8,0	1,55	51800	80900	1 110	1 740	720	1 130
45	18,0	23,5	M10	14,0	M4x7	105	10,0	3,00	86400	132000	2 330	3 560	1 540	2 350

- 1) Dimensione H₂ con nastro di protezione
- 2) Dimensione H₂ senza nastro di protezione
- 3) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere. Fattori di carico e momenti di carico per pattini a sfere con gabbia guida-sfere 🖛 12

I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori \mathbf{C} , \mathbf{M}_1 e \mathbf{M}_1 in base a tabella.

SLH - Stretto Lungo Alto R1624 ... 2.

Valori dinamici

Velocità: $v_{max} = 5 \text{ m/s}$ Accelerazione: $a_{max} = 500 \text{ m/s}^2$ $(\text{Se F}_{comb} > 2, 8 \cdot \text{F}_{pr} : a_{max} = 50 \text{ m/s}^2)$

Nota per la lubrificazione

► Con prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS/SNO. I pattini a sfere di gr. 55 sono riportati nel capitolo "Pattini a sfere BSHP in acciaio per carichi pesanti" dopo il presente capitolo.

Opzioni e codici materiale

Grandezza	Pattini a sfere	Classe d	i preca	rico		Classe	di preci	sione		Guarni	zione pe	er pattii	ni a sfere	•	
	di grandezza									senza g	gabbia		con gab	bia	
		CO	C1	C2	СЗ	l N	н	P	ХР	guida-s SS	fere LS ¹⁾	DS	guida-si SS	fere LS ¹⁾	DS
			CI	CZ	CS				٨٢			D3			D3
25	R1624 2	9				4	3	-		20	21	_	22	23	
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	-	-	8	20	21	2Z	22	23	2Y
30	R1624 7	9				4	3	-	_	20	21	_	22	23	-
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	_	-	8	20	21	2Z	22	23	2Y
35	R1624 3	9				4	3	-	_	20	21	_	22	23	-
			1			4	3	2	8	20	21	2Z	22	23	2Y
				2		-	3	2	8	20	21	2Z	22	23	2Y
					3	-	_	-	8	20	21	2Z	22	23	2Y
45	R1624 4	9		ĺ		4	3	-	_	20	_	_	22	-	-
			1			4	3	2	8	20	_	2Z	22	-	2Y
				2		-	3	2	8	20	_	2Z	22	-	2Y
					3	-	_	-	8	20	_	2Z	22	-	2Y
Es.:	R16247		1				3			20				·	

1) Solo per le classi di precisione N e H e per XP nella classe di precarico C1.

Esempio di ordinazione

Opzioni:

- ► Pattino a sfere SLH
- Grandezza 30
- ► Classe di precarico C1
- ► Classe di precisione H
- Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione:

R1624 713 20

Classi di precarico

C0 = Senza precarico (gioco)

C1 = Precarico leggero

C2 = Precarico medio

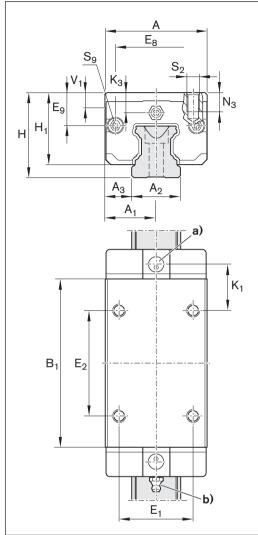
C3 = Precarico elevato

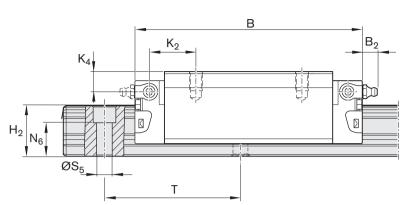
Guarnizioni

SS = Guarnizione standard

LS = Guarnizione a bassa resistenza d'attrito

DS = Guarnizione a doppio labbro


Legenda


Cifre grigie

 Nessuna variante preferita/ combinazione
 (in parte tempi di consegna ni)

(in parte tempi di consegna più lunghi)

- a) Per guarnizione o-ring Grandezza 25 - 45: Ø 5 · 1,0 (mm)
 In caso di necessità, aprire il foro di lubrificazione e montare l'adattatore di lubrificazione (Vedi capitolo Lubrificazione).
- b) Grandezza nipplo di lubrificazione 25 45: Nipplo di lubrificazione conico DIN 71412-A M6x8, B₂ = 9,5 mm Per l'impiego di altri nippli di lubrificazione rispettare la profondità di avvitamento di 8 mm! Nipplo di lubrificazione contenuto nella fornitura (smontato). Collegamento possibile su tutti i lati.

Grandezza	Dimen	sioni (mm)				'											
	Α	A_1	A_2	A_3	B ^{+0,5}	B_1	E ₁	E_2	E ₈	E ₉	Н	H ₁	$H_{2}^{1)}$	$H_{2}^{2)}$	K_1	K_2	K ₃	K_4
25	48	24	23	12,5	107,9	79,5	35	50	38,30	15,50	40	33,90	24,45	24,25	20,80	21,95	9,50	9,50
30	60	30	28	16,0	119,7	89,4	40	60	48,40	17,60	45	38,35	28,55	28,35	21,00	22,70	9,05	9,05
35	70	35	34	18,0	139,0	105,5	50	72	58,00	24,35	55	47,40	32,15	31,85	23,75	25,25	13,90	13,90
45	86	43	45	20,5	174,1	133,5	60	80	69,80	30,90	70	60,30	40,15	39,85	35,50	37,50	18,20	18,20

Grandezza	Dimensio	ni (mm)						Dimensioni	Fattori di	carico ³⁾	Momenti	di cari	co³⁾ (Nm)	
								(kg)	(N)					
									→ <u>[</u>	<u>†</u> ←				
	N ₃	$N_6^{\pm 0,5}$	S_2	S ₅	S ₉	Т	V_1	m	С	Co	M _t	M_{t0}	ML	M_{L0}
25	9,0	15,2	M6	7,0	М3х5	60	7,5	0,80	37300	52500	530	750	530	740
30	12,0	17,0	M8	9,0	М3х5	80	7,0	1,20	46000	66900	800	1 160	740	1 080
35	13,0	20,5	M8	9,0	М3х5	80	8,0	2,10	66700	116000	1 440	2 500	1 290	2 240
45	18,0	23,5	M10	14,0	M4x7	105	10,0	4,10	111000	190000	3 010	5 120	2 730	4 660

- 1) Dimensione H₂ con nastro di protezione
- 2) Dimensione H₂ senza nastro di protezione
- 3) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere. Fattori di carico e momenti di carico per pattini a sfere con gabbia guida-sfere 🕫 12

I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori **C**, **M**, e **M**_I in base a tabella.

FNN - Flangiato Normale Basso R1693 ... 1.

Valori dinamici

Velocità: $v_{max} = 3 \text{ m/s}$ Accelerazione: $a_{max} = 250 \text{ m/s}^2$ $(\text{Se F}_{comb} > 2,8 \cdot \text{F}_{pr}: a_{max} = 50 \text{ m/s}^2)$

Nota per la lubrificazione

► Senza prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS/SNO.

Opzioni e codici materiale

Grandezza	Pattini a sfere di grandezza	Classe di precar	ico	Classe di precisi		Guarnizione per senza gabbia gui	•
		C0	C1	N	н	SS	LS
20	R1693 8	9	1	4	3	10	11
25 ¹⁾	R1693 2	9	1	4	3	10	11
Es.:	R1693 8		1		3	10	

1) Pattino a sfere BSHP

Esempio di ordinazione

Opzioni:

- ► Pattino a sfere FNN
- ► Grandezza 20
- ► Classe di precarico C1
- ► Classe di precisione H
- ► Con guarnizione standard, senza gabbia guida-sfere

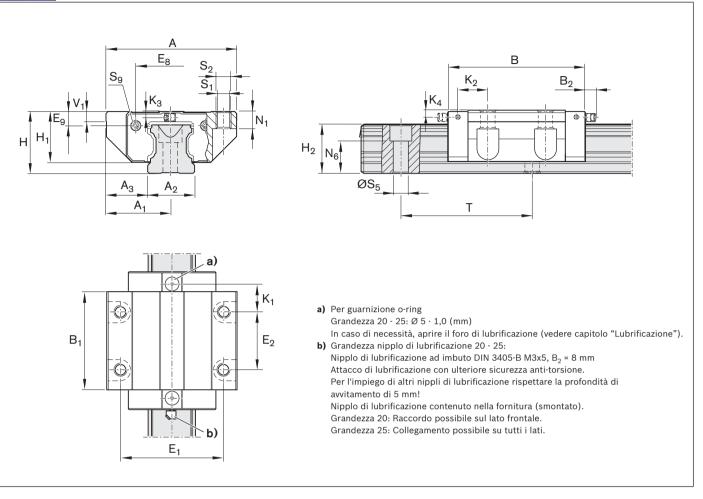
Numero di identificazione:

R1693 813 10

Classi di precarico

C0 = Senza precarico (gioco) C1 = Precarico leggero

Guarnizioni


SS = Guarnizione standard LS = Guarnizione a bassa resistenza d'attrito

Legenda

Cifre grigie

 Nessuna variante preferita/ combinazione
 (in parte tempi di consegna più lunghi)

Grandezza	Dimension	i (mm	1)														
	A A ₁	A_2	A_3	B ^{+0,5}	B_1	E ₁	E_2	E ₈	E ₉	Н	H ₁	$H_{2}^{1)}$	$H_2^{(2)}$	K_1	K_2	K_3	K_4
20	59 29,5	20	19,5	72,5	49,6	49	32	30,5	5,6	28	23,0	20,75	20,55	13,0	-	3,6	
25	73 36,5	23	25,0	81,0	57,8	60	35	38,3	8,5	33	26,5	24,45	24,25	16,6	17,0	4,1	4,1

Grandezza	Dimens	ioni (m	m)						Dimensioni	Fattori di c	arico ³⁾	Moment	i di car	ico ³⁾ (Nm)	
									(kg)	(N)			_	_	
										→	<u>†</u> }□←				
	N ₁	$N_6^{\pm0,5}$	S_1	S_2	S ₅	S ₉	т	V_1	m	С	C _o	M _t	M _{to}	M_L	M _{LO}
20	7,7	13,2	5,3	M6	6,0	М3х5	60	6,0	0,40	14500	24400	190	310	100	165
25	9,3	15,2	6,7	M8	7,0	М3х5	60	7,5	0,60	28600	35900	410	510	290	360

- 1) Dimensione H_2 con nastro di protezione
- 2) Dimensione H₂ senza nastro di protezione
- 3) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere.

 I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori C, M, e M, in base a tabella.

FKN - Flangiato Corto Basso R1663 ... 1.

Valori dinamici

Velocità. $v_{max} = 3 \text{ m/s}$ $a_{max} = 250 \text{ m/s}^2$ Accelerazione: (Se $F_{comb} > 2.8 \cdot F_{pr} : a_{max} = 50 \text{ m/s}^2$)

Nota per la lubrificazione

Senza prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS/SNO.

Opzioni e codici materiale

Grandezza	Pattini a sfere di grandezza	Classe di precar	ico	Classe di precis		Guarnizione per senza gabbia gu	
		C0	C1	N	Н	SS	LS
20	R1663 8	9	1	4	3	10	11
25 ¹⁾	R1663 2	9	1	4	3	10	11
Es.:	R1663 8		1		3	10	

1) Pattino a sfere BSHP

Esempio di ordinazione

Opzioni:

- ► Pattino a sfere FKN
- Grandezza 20
- Classe di precarico C1
- Classe di precisione H
- Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione:

R1663 813 10

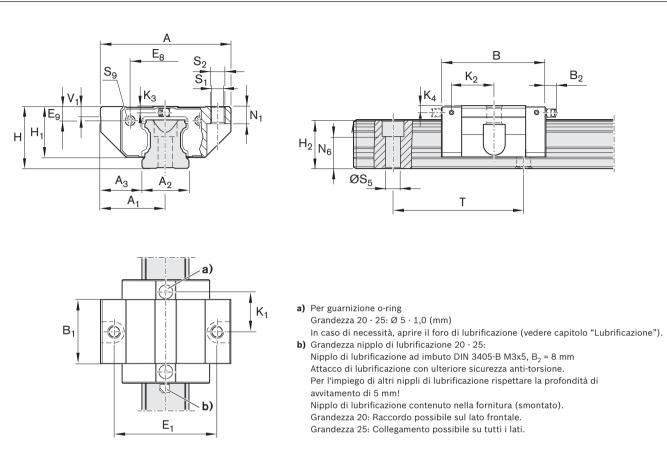
Classi di precarico

C0 = Senza precarico (gioco)

C1 = Precarico leggero

Guarnizioni

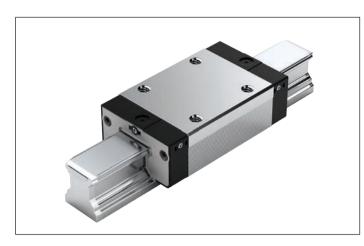
SS = Guarnizione standard


LS = Guarnizione a bassa resistenza d'attrito

Legenda

Cifre grigie

= Nessuna variante preferita/ combinazione (in parte tempi di consegna più lunghi)


Grandezza	Dimensi	i oni (mm	1)														
	Α	A_1	A_2	A_3	B ^{+0,5}	B_1	E_1	E ₈	E ₉	Н	H ₁	$H_{2}^{1)}$	$H_2^{2)}$	K_1	K_2	K_3	K_4
20	59	29,5	20	19,5	55	31,9	49	30,5	5,6	28	23,0	20,75	20,55	20,1	_	3,6	_
25	73	36,5	23	25,0	62	38,6	60	38,3	8,5	33	26,5	24,45	24,25	24,5	25,0	4,1	4,1

Grandezza	Dimen	sioni (n	nm)			ı			Dimensioni	Fattori di c	arico ³⁾	Momenti d	li carico ³) (Nm)	
									(kg)	(N)					
		N N *05 C C C C T							m	→ <u></u>	<u>†</u> }_←				
	N ₁	$N_6^{\pm 0,5}$	S_1	S_2	S_5	S ₉	Т	V ₁		С	C ₀	M _t	M_{t0}	M_L	M _{LO}
20	7,7	13,2	5,3	M6	6,0	М3х5	60	6,0	0,25	9 600	13600	120	170	40	58
25	9,3	15,2	6,7	M8	7,0	М3х5	60	7,5	0,45	19800	21200	280	300	130	140

- 1) Dimensione H_2 con nastro di protezione
- 2) Dimensione H₂ senza nastro di protezione
- 3) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere.
 I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori C, M, e M, in base a tabella.

SNN - Stretto Normale Basso R1694 ... 1.

Valori dinamici

Velocità: $v_{max} = 3 \text{ m/s}$ Accelerazione: $a_{max} = 250 \text{ m/s}^2$ $(\text{Se F}_{comb} > 2,8 \cdot \text{F}_{pr} : a_{max} = 50 \text{ m/s}^2)$

Nota per la lubrificazione

► Senza prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS/SNO.

Opzioni e codici materiale

Grandezza	Pattini a sfere di grandezza	Classe di precari	со	Classe di precisi	one	Guarnizione per	pattini a sfere
						senza gabbia gui	da-sfere
		CO	C1	N	Н	SS	LS
20	R1694 8	9	1	4	3	10	11
25 ¹⁾	R1694 2	9	1	4	3	10	11
Es.:	R1694 8		1		3	10	

1) Pattino a sfere BSHP

Esempio di ordinazione

Opzioni:

- ▶ Pattino a sfere SNN
- ► Grandezza 20
- ► Classe di precarico C1
- ► Classe di precisione H
- Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione:

R1694 813 10

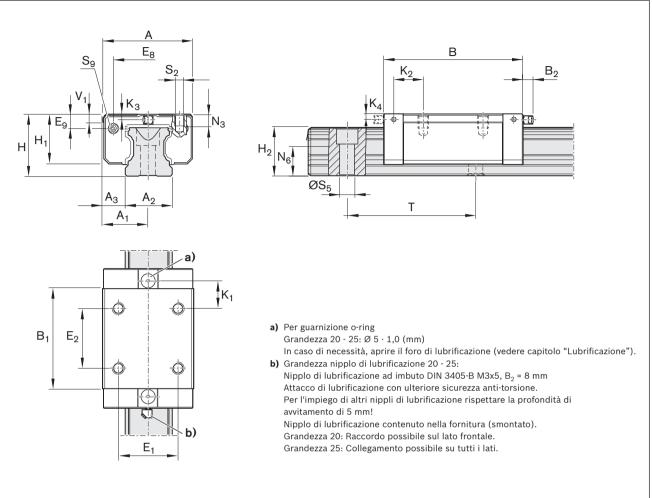
Classi di precarico

C0 = Senza precarico (gioco) C1 = Precarico leggero

Guarnizioni

SS = Guarnizione standard

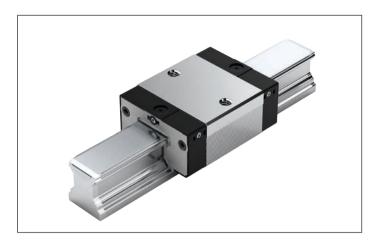
LS = Guarnizione a bassa resistenza d'attrito


Legenda

Cifre grigie

 Nessuna variante preferita/ combinazione
 (in parte tempi di consegna più

(in part lunghi)


Grandezza	Dime	nsion	i (mm)														
	Α	A_1	A_2	A_3	B ^{+0,5}	B_1	E ₁	$\mathbf{E_2}$	E ₈	E ₉	Н	H ₁	H ₂ ¹⁾	H ₂ ²⁾	K ₁	K_2	K ₃	K ₄
20	42	21	20	11,0	72,5	49,6	32	32	30,5	5,6	28	23,0	20,75	20,55	13,0	-	3,6	
25	48	24	23	12,5	81,0	57,8	35	35	38,3	8,5	33	26,5	24,45	24,25	16,6	17,0	4,1	4,1

Grandezza	Dimensio	oni (mm)		,				Dimensioni (kg)		carico ³⁾	Momenti di d	arico ³⁾	(Nm)	
									→	<u>†</u> -				
	N ₃	$N_6^{\pm 0,5}$	S_2	S_5	S ₉	Т	V_1	m	С	Co	M _t	M_{t0}	M_L	M_{LO}
20	6,3	13,2	M5	6,0	М3х5	60	6,0	0,30	14500	24400	190	310	100	165
25	7,0	15,2	M6	7,0	М3х5	60	7,5	0,45	28600	35900	410	510	290	360

- Dimensione H₂ con nastro di protezione
 Dimensione H₂ senza nastro di protezione
- 3) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere. I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori \mathbf{C} , \mathbf{M}_{t} e \mathbf{M}_{L} in base a tabella.

SKN - Stretto Corto Basso R1664 ... 1.

Valori dinamici

Velocità: $v_{max} = 3 \text{ m/s}$ Accelerazione: $a_{max} = 250 \text{ m/s}^2$ $(\text{Se F}_{\text{comb}} > 2,8 \cdot \text{F}_{\text{pr}} : a_{max} = 50 \text{ m/s}^2)$

Nota per la lubrificazione

► Senza prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS/SNO.

Opzioni e codici materiale

Grandezza	Pattini a sfere di grandezza	Classe di precario	co	Classe di precision		Guarnizione per pattini a sfere senza gabbia guida-sfere		
		CO	C1	N	Н	SS	LS	
20	R1664 8	9	1	4	3	10	11	
25 ¹⁾	R1664 2	9	1	4	3	10	11	
Es.:	R1664 8		1		3	10		

1) Pattino a sfere BSHP

Esempio di ordinazione

Opzioni:

- ► Pattino a sfere SKN
- ► Grandezza 20
- ► Classe di precarico C1
- ► Classe di precisione H
- ► Con guarnizione standard senza gabbia guida-sfere

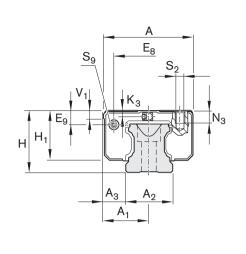
Numero di identificazione:

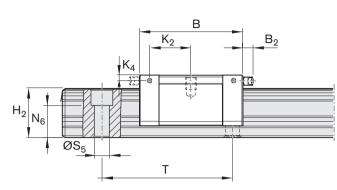
R1664 813 10

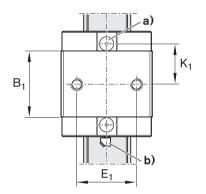
Classi di precarico

C0 = Senza precarico (gioco) C1 = Precarico leggero

Guarnizioni


SS = Guarnizione standard LS = Guarnizione a bassa resistenza d'attrito


Legenda


Cifre grigie

 Nessuna variante preferita/ combinazione
 (in parte tempi di consegna più lunghi)

- a) Per guarnizione o-ring Grandezza 20 25: Ø 5 \cdot 1,0 (mm) In caso di necessità, aprire il foro di lubrificazione (vedere capitolo "Lubrificazione").
- b) Grandezza nipplo di lubrificazione 20 25:
 Nipplo di lubrificazione ad imbuto DIN 3405-B M3x5, B₂ = 8 mm
 Attacco di lubrificazione con ulteriore sicurezza anti-torsione.
 Per l'impiego di altri nippli di lubrificazione rispettare la profondità di avvitamento di 5 mm!
 Nipplo di lubrificazione contenuto nella fornitura (smontato).
 Grandezza 20: Raccordo possibile sul lato frontale.

Grandezza 25: Collegamento possibile su tutti i lati.

Grandezza	Dimensio	oni (mm	1)														
	Α	$\mathbf{A_1}$	A_2	A_3	B ^{+0,5}	B_1	E ₁	E ₈	E ₉	Н	H ₁	$H_{2}^{1)}$	$H_2^{(2)}$	K_1	K_2	K_3	K_4
20	42	21	20	11,0	55	31,9	32	30,5	5,6	28	23,0	20,75	20,55	20,1	_	3,6	
25	48	24	23	12,5	62	38,6	35	38,3	8,5	33	26,5	24,45	24,25	24,5	25,0	4,1	4,1

Grandezza	Dimen	sioni (mr	n)					Dimensioni	Fattori di c	arico ³⁾	Momenti di car	rico ³⁾ (N	m)	
								(kg)	(N)				i	
									<u> </u>	<u>t_</u>				
									→ L	∐←				
	N ₃	$N_6^{\pm 0,5}$	S_2	S_5	S ₉	Т	V_1	m	С	Co	M _t	M_{to}	M_L	M_{L0}
20	6,3	13,2	M5	6,0	M3x5	60	6,0	0,20	9 600	13600	120	170	40	58
25	7,0	15,2	M6	7,0	M3x5	60	7,5	0,30	19800	21200	280	300	130	140

- 1) Dimensione H_2 con nastro di protezione
- 2) Dimensione H₂ senza nastro di protezione
- 3) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere.

 I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori C, M_t e M_L in base a tabella.

FNS - Flangiato Normale Altezza standard, R1651 ... 1.

Valori dinamici

Velocità: $v_{max} = 3 \text{ m/s}$ Accelerazione: $a_{max} = 250 \text{ m/s}^2$ $(\text{Se F}_{comb} > 2,8 \cdot \text{F}_{pr} : a_{max} = 50 \text{ m/s}^2)$

Nota per la lubrificazione

► Senza prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS.

Opzioni e codici materiale

Grandezza	Pattini a sfere di grandezza	Classe o	Class	e di pr	ecisio	ne		Guarnizione per pattini a sfere senza gabbia guida-sfere			
		CO	C1	C2	С3	N	н	Р	SP	UP	ss
55	R1651 5	9				4	3	_	_	_	10
			1			4	3	2	1	9	10
				2		-	3	2	1	9	10
					3	-	_	2	1	9	10
65	R1651 6	9				4	3	_	-	-	10
			1			4	3	2	1	9	10
				2		-	3	2	1	9	10
					3	-	-	2	1	9	10
Es.:	R1651 5		1				3				10

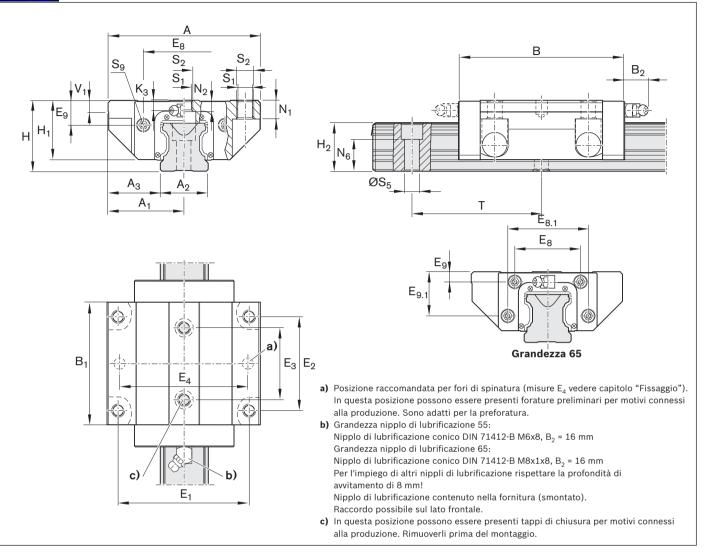
Esempio di ordinazione

Opzioni:

- ► Pattino a sfere FNS
- ► Grandezza 55
- ► Classe di precarico C1
- Classe di precisione H
- ► Con guarnizione standard senza gabbia guida-sfere

Numero di identificazione:

R1651 513 10

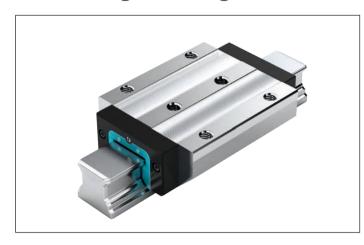

Classi di precarico

- C0 = Senza precarico (gioco)
- C1 = Precarico leggero
- C2 = Precarico medio
- C3 = Precarico elevato

Guarnizioni

SS = Guarnizione standard

Grandezza	Dimens	ioni (r	nm)														
	Α	A_1	A_2	A_3	B ^{+0,5}	B_1	E ₁	E_2	E_3	E ₈	E _{8.1}	E ₉	E _{9.1}	Н	H ₁	$H_2^{1)}$	$H_{2}^{2)}$
55	140	70	53	43,5	159	115,5	116	95	70	80		22,3	-	70	57	48,15	47,85
65	170	85	63	53,5	188	139,6	142	110	82	76	100	11,0	53,5	90	76	60,15	59,85


Grandezza	Dime	nsio	ni (mn	n)							Dimensioni	Fattori di d	carico ³⁾	Momen	ti di car	ico ³⁾ (Nm)	
											(kg)	(N)					
												→ <u></u>	<u>†</u> } ←				
	K ₃	N_1	N_2	$N_6^{\pm 0,5}$	S_1	S_2	S_5	S ₉	Т	V_1	m	С	C_0	M _t	M_{t0}	M_L	M_{L0}
55	9	18	13,5	29,0	12,4	M14	16	M5x8	120	12	5,20	109000	174000	3 480	5 550	2 320	3 690
65	16	23	14,0	38,5	14,6	M16	18	M4x7	150	15	10,25	172000	280000	6 810	11100	4 560	7 400

- 1) Dimensione H₂ con nastro di copertura.
- 2) Dimensione H₂ senza nastro di copertura.
- 3) Fattori di carico e momenti di carico per pattini a sfere **senza** gabbia guida-sfere.

 I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori **C**, **M**, e **M**₁ in base a tabella.

FLS - Flangiato Lungo Altezza standard, R1653 ... 1.

Valori dinamici

Velocità: $v_{max} = 3 \text{ m/s}$ Accelerazione: $a_{max} = 250 \text{ m/s}^2$ $(\text{Se F}_{comb} > 2,8 \cdot \text{F}_{pr} : a_{max} = 50 \text{ m/s}^2)$

Nota per la lubrificazione

► Senza prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS.

Opzioni e codici materiale

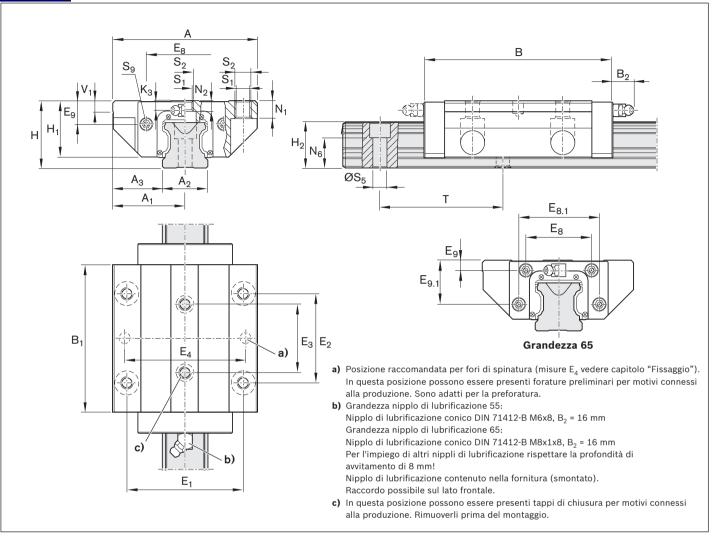
Grandezza	Pattini a sfere di grandezza	Classe di I	precarico)		Classe	di pre	cisione			Guarnizione per pattini a sfere senza gabbia guida-sfere
55		CO	C1	C2	СЗ	N N	н	Р	SP	UP	SS
55	R1653 5	9	Ì			4	3	_	_	-	10
			1			4	3	2	1	9	10
				2		-	3	2	1	9	10
					3	-	_	2	1	9	10
65	R1653 6	9				4	3	_	-	-	10
			1			4	3	2	1	9	10
				2		-	3	2	1	9	10
					3	-	-	2	1	9	10
Es.:	R1653 5		1				3				10

Esempio di ordinazione

Opzioni:

- ▶ Pattino a sfere FLS
- ► Grandezza 55
- ► Classe di precarico C1
- Classe di precisione H
- ► Con guarnizione standard senza gabbia guida-sfere

Numero di identificazione:

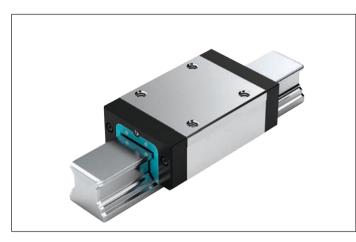

R1653 513 10

Classi di precarico

- C0 = Senza precarico (gioco)
- C1 = Precarico leggero
- C2 = Precarico medio
- C3 = Precarico elevato

Guarnizioni

Grandezza	Dimensio	ni (mm))														
	Α	A_1	A_2	A ₃	B ^{+0,5}	B_1	E ₁	E ₂	E ₃	E ₈	E _{8.1}	E ₉	E _{9.1}	Н	H ₁	H ₂ ¹⁾	H ₂ ²⁾
55	140	70	53	43,5	199	155,5	116	95	70	80	_	22,3	_	70	57	48,15	47,85
65	170	85	63	53,5	243	194,6	142	110	82	76	100	11,0	53,5	90	76	60,15	59,85


													. 2)			2) (2)	
Grandezza	Dime	nsio	ni (mn	n)							Dimensioni	Fattori di	carico ³⁾	Momenti	di caric	(Nm) (So	
											(kg)	(N)					
												ţ	t				
												→	<u></u>	L _Z			
	K ₃	N_1	N_2	$N_6^{\pm0,5}$	S_1	S_2	S_5	S ₉	Т	V_1	m	С	Co	M _t	M_{to}	M_L	M_{L0}
55	9	18	13,5	29,0	12,4	M14	16	M5x8	120	12	7,50	139000	245000	4 410	7 780	3 960	6 990
65	16	23	14,0	38,5	14,6	M16	18	M4x7	150	15	14,15	223000	404000	8 810	16000	8 160	14800

- 1) Dimensione H₂ con nastro di protezione
- 2) Dimensione H₂ senza nastro di protezione
- 3) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere.
 I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori C, M, e M, in base a tabella.

76

SNS - Stretta Normale Altezza standard, R1622 ... 1.

Valori dinamici

Velocità: $v_{max} = 3 \text{ m/s}$ Accelerazione: $a_{max} = 250 \text{ m/s}^2$ $(\text{Se F}_{comb} > 2,8 \cdot \text{F}_{pr} : a_{max} = 50 \text{ m/s}^2)$

Nota per la lubrificazione

Senza prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS.

Opzioni e codici materiale

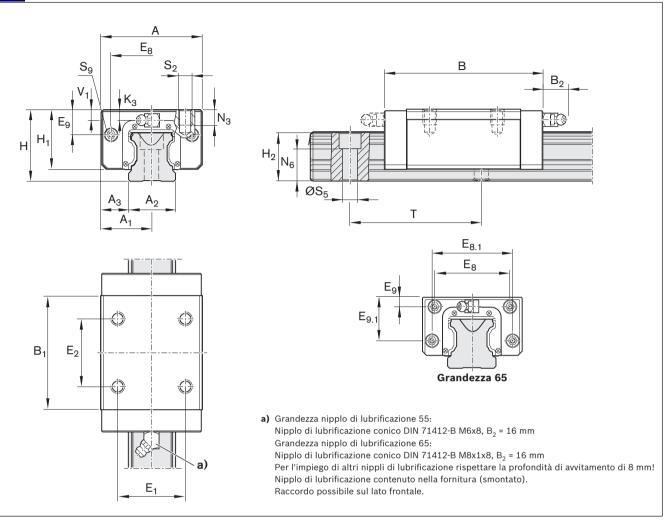
Grandezza	Pattini a sfere di grandezza	Classe di p	recarico			Classe di p	recisione		Guarnizione per pattini a sfere senza gabbia guida-sfere
		C0	C1	C2	C3	N	Н	Р	SS
55	R1622 5	9				4	3	_	10
			1			4	3	2	10
				2		-	3	2	10
					3	-	_	2	10
65	R1622 6	9				4	3	_	10
			1			4	3	2	10
				2		-	3	2	10
					3	-	_	2	10
Es.:	R1622 5		1				3		10

Esempio di ordinazione

Opzioni:

- ▶ Pattino a sfere SNS
- ► Grandezza 55
- ► Classe di precarico C1
- Classe di precisione H
- ► Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione:


R1622 513 10

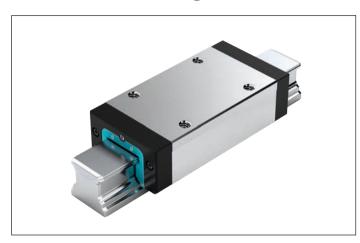
Classi di precarico

- C0 = Senza precarico (gioco)
- C1 = Precarico leggero
- C2 = Precarico medio
- C3 = Precarico elevato

Guarnizioni

Grandezza	Dimensio	ni (mm)														
	Α	$\mathbf{A_1}$	$\mathbf{A_2}$	A_3	B ^{+0,5}	B_1	E_1	$\mathbf{E_2}$	E ₈	E _{8.1}	E ₉	E _{9.1}	Н	H ₁	$H_{2}^{1)}$	$H_2^{2)}$
55	100	50	53	23,5	159	115,5	75	75	80		22,3		70	57	48,15	47,85
65	126	63	63	31,5	188	139,6	76	70	76	100	11,0	53,5	90	76	60,15	59,85

Grandezza	Dimensi	i oni (r	nm)						Dimensioni	Fattori di c	arico ³⁾ (N)	Momen	ti di car	rico ³⁾ (Nm)	
									(kg)						
										→	<u>†</u> ;□←				
	K ₃	N_3	$N_6^{\pm0,5}$	S_2	S_5	S ₉	Т	V ₁	m	С	C_0	M _t	M_{t0}	M _L	M_{L0}
55	9	19	29,0	M12	16	M5x8	120	12	3,80	109000	174000	3 480	5 550	2 320	3 690
65	16	21	38,5	M16	18	M4x7	150	15	6,90	172000	280000	6 810	11100	4 560	7 400


- 1) Dimensione ${\rm H_2}$ con nastro di protezione
- 2) Dimensione H₂ senza nastro di protezione
- 3) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere.

 I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori C, M, e M, in base a tabella.

78

SLS - Stretto Lungo Altezza standard, R1623 ...1.

Valori dinamici

Velocità: $v_{max} = 3 \text{ m/s}$ Accelerazione: $a_{max} = 250 \text{ m/s}^2$ $(\text{Se F}_{comb} > 2,8 \cdot \text{F}_{pr} : a_{max} = 50 \text{ m/s}^2)$

Nota per la lubrificazione

► Senza prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS.

Opzioni e codici materiale

Grandezza	Pattini a sfere di grandezza	Classe d	i precari	СО		Classe di	precisione		Guarnizione per pattini a sfere senza gabbia guida-sfere
		C0	C1	C2	C3	N	H	P	SS
55	R1623 5	9				4	3	_	10
			1			4	3	2	10
				2		-	3	2	10
					3	_	_	2	10
65	R1623 6	9				4	3	_	10
			1			4	3	2	10
				2		_	3	2	10
					3	_	_	2	10
Es.:	R1623 5		1				3	•	10

Esempio di ordinazione

Opzioni:

- ▶ Pattino a sfere SLS
- ► Grandezza 55
- ► Classe di precarico C1
- Classe di precisione H
- ► Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione:

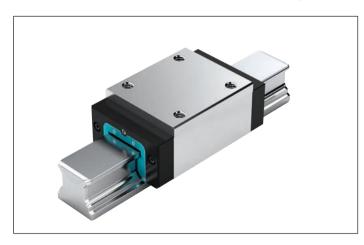

R1623 513 10

Classi di precarico

- C0 = Senza precarico (gioco)
- C1 = Precarico leggero
- C2 = Precarico medio
- C3 = Precarico elevato

Guarnizioni

Grandezza	Dimensio	ni (mm)														
	Α	$\mathbf{A_1}$	A_2	A_3	B ^{+0,5}	B_1	E ₁	E_2	E ₈	E _{8.1}	E ₉	E _{9.1}	Н	H ₁	$H_{2}^{1)}$	$H_{2}^{2)}$
55	100	50	53	23,5	199	155,5	75	95	80		22,3	_	70	57	48,15	47,85
65	126	63	63	31,5	243	194,6	76	120	76	100	11,0	53,5	90	76	60,15	59,85


Grandezza	Dimen	sioni	(mm)						Dimensioni	Fattori di ca	arico ³⁾ (N)	Momenti	di carico	³⁾ (Nm)	
									(kg)						
										→	<u>†</u> }_←				
	K ₃	N_3	$N_6^{\pm0,5}$	S_2	S_5	S_9	Т	V ₁	m	С	Co	M _t	M_{t0}	M_L	M _{L0}
55	9	19	29,0	M12	16	M5x8	120	12	4,8	139000	245000	4 410	7 780	3 960	6 990
65	16	21	38,5	M16	18	M4x7	150	15	9,8	223000	404000	8 810	16000	8 160	14800

- 1) Dimensione ${\rm H_2}$ con nastro di protezione
- 2) Dimensione H₂ senza nastro di protezione
- 3) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere.

 I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori C, M_t e M_L in base a tabella.

SNH - Stretto Normale Alto, R1621 ... 1.

Valori dinamici

Velocità: $v_{max} = 3 \text{ m/s}$ Accelerazione: $a_{max} = 250 \text{ m/s}^2$ $(\text{Se F}_{comb} > 2,8 \cdot \text{F}_{pr} : a_{max} = 50 \text{ m/s}^2)$

Nota per la lubrificazione

Senza prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS.

Opzioni e codici materiale

Grandezza	Pattini a sfere di grandezza	Classe di	precarico	•		Classe di	precision		Guarnizione per pattini a sfere senza gabbia guida-sfere
		C0	C1	C2	C3	N	H	P	SS
55	R1621 5	9				4	3	_	10
			1			4	3	2	10
				2		_	3	2	10
					3	_	_	2	10
Es.:	R1621 5		1				3		10

Esempio di ordinazione

Opzioni:

► Pattino a sfere SNH

► Grandezza 55

► Classe di precarico C1

Classe di precisione H

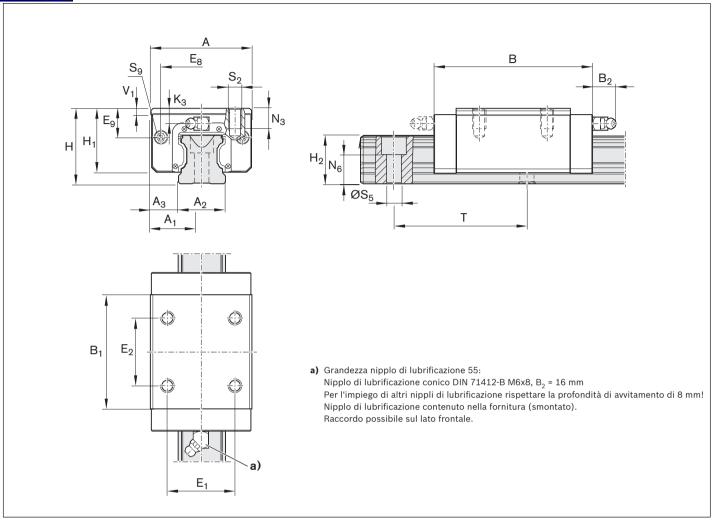
► Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione:

R1621 513 10

Classi di precarico

C0 = Senza precarico (gioco)


C1 = Precarico leggero

C2 = Precarico medio

C3 = Precarico elevato

Guarnizioni

Grandezza	Dimensioni	(mm)												
	Α	A_1	A_2	A_3	B ^{+0,5}	B_1	E_1	E_2	E ₈	E ₉	Н	H ₁	$H_{2}^{1)}$	$H_2^{(2)}$
55	100	50	53	23,5	159	115,5	75	75	80	32,3	80	67	48,15	47,85

Grandezza	Dimens	ioni (mm)						Dimensioni	Fattori di ca	arico ³⁾ (N)	Momenti	di caric	o ³⁾ (Nm)	
									(kg)						
											<u>†</u>				
										→	→		,		d b
	K ₃	N ₃	N ₆ ±0,5	S ₂	S ₅	S	т	V,	m	С	Co	M,	M _{to}	М,	M _{LO}
55	19	19	29	M12		M5x8	120	12	4,70	109000	174000		5 550		3 690

- 1) Dimensione H_2 con nastro di protezione
- 2) Dimensione H₂ senza nastro di protezione
- 3) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere.

 I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori C, M, e M, in base a tabella.

82

SLH - Stretto Lungo Alto, R1624 ... 1.

Valori dinamici

Velocità: $v_{max} = 3 \text{ m/s}$ Accelerazione: $a_{max} = 250 \text{ m/s}^2$ $(\text{Se F}_{comb} > 2,8 \cdot \text{F}_{pr} : a_{max} = 50 \text{ m/s}^2)$

Nota per la lubrificazione

► Senza prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS.

Opzioni e codici materiale

Grandezza	Pattini a sfere di grandezza	Classe di	precarico			Classe di	precisione		Guarnizione per pattini a sfere senza gabbia guida-sfere
		C0	C1	C2	C3	N	Н	P	SS
55	R1624 5	9				4	3	-	10
			1			4	3	2	10
				2		-	3	2	10
					3	-	-	2	10
Es.:	R1624 5		1				3		10

Esempio di ordinazione

Opzioni:

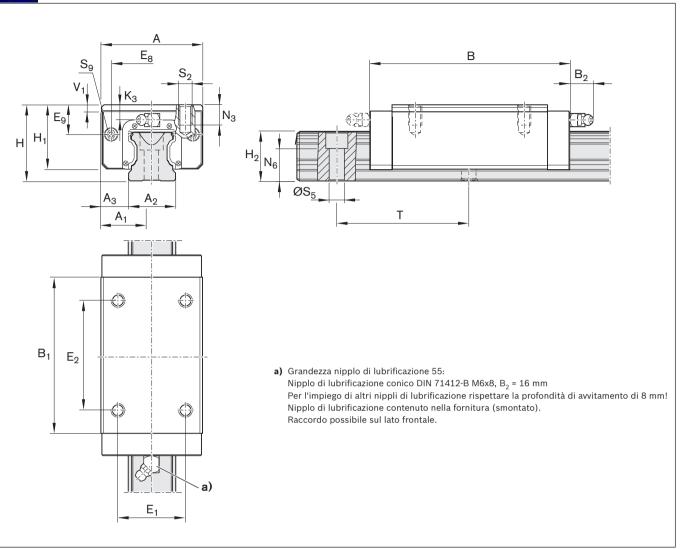
- ▶ Pattino a sfere SLH
- ► Grandezza 55
- ► Classe di precarico C1
- ► Classe di precisione H
- ► Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione:

R1624 513 10

Classi di precarico

C0 = Senza precarico (gioco)


C1 = Precarico leggero

C2 = Precarico medio

C3 = Precarico elevato

Guarnizioni

Grandezza	Dimensioni	(mm)												
	Α	A_1	A_2	A_3	B ^{+0,5}	B_1	E ₁	E_2	E ₈	E ₉	Н	H ₁	$H_{2}^{1)}$	$H_2^{(2)}$
55	100	50	53	23,5	199	155,5	75	95	80	32,3	80	67	48,15	47,85

Grandezza	Dimen	sioni	(mm)						Dimensioni	Fattori di c	arico ³⁾ (N)	Momenti d	li carico	³⁾ (Nm)	
									(kg)					1	
											<u>†</u>				
										→] ←				1 1
	K ₃	N_3	$N_6^{\pm 0,5}$	S_2	S ₅	S ₉	Т	V_1	m	С	c _o	M _t	M _{to}	M_L	M _{LO}
55	19	19	29	M12	16	M5x8	120	12	6,00	139000	245000	4 410	7 780	3 960	6 990

- 1) Dimensione H₂ con nastro di protezione
- 2) Dimensione H₂ senza nastro di protezione
- 3) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere.

 I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori C, M_t e M_L in base a tabella.

Proprietà eccellenti

- I migliori valori dinamici: Velocità: $v_{max} = 10 \text{ m/s}$ Accelerazione: $a_{max} = 500 \text{ m/s}^2$
- Fattori di carico parimenti elevati in tutte e quattro le direzioni principali
- Lubrificazione permanente su più anni possibile
- Sistema di lubrificazione minima con serbatoio integrato con lubrificazione a olio
- ▶ Raccordi di lubrificazione su tutti i lati con filetto metallico
- ▶ Struttura intercambiabile illimitata attraverso possibilità di combinazione a piacere di tutte le versioni di rotaie a sfere con tutte le varianti di pattini a sfere all'interno di qualsiasi classe di precisione
- Massima rigidità di sistema attraverso disposizione a O precaricata
- Isolamento elettrico realizzato con sfere in ceramica
- Assortimento di accessori esistente completamente
- Logistica unica nel suo genere e ai massimi livelli mondiali

Altre caratteristiche salienti:

- Elevata velocità grazie alla massa ridotta delle sfere in
- Sovrastrutture sui pattini a sfere avvitabili dall'alto e dal
- ▶ Aumento della rigidità in caso di sollecitazione di sollevamento e laterale grazie a ulteriore avvitamento su due fori al centro del pattino a sfere
- Filetto di fissaggio frontale per tutte le unità
- Elevata rigidità in tutte le direzioni di sollecitazione, pertanto utilizzabile anche come pattino singolo
- ▶ Protezione completa con guarnizioni integrate
- Elevata resistenza momento torcente
- ▶ Ridotte oscillazioni delle molle grazie alla geometria di ingresso ideale e all'elevato numero di sfere
- ► Scorrimento silenzioso e fluido grazie al rinvio progettato in modo ottimale e alla guida delle sfere
- Disponibili in cinque grandezze correnti
- Prima lubrificazione pattini a sfere in fabbrica

1) A seconda del tipo

Sfere in ceramica

► Consentono velocità massime

Definizione forma pattino a sfere

Criterio	Denominazione	Abbre	viazione (e:	sempio)
		F	N	S
Larghezza	Flangia (F)	F	'	
	Sottile (S)	S		
	Largo (B)	В		,
	Compact (C)	С		
Lunghezza	Normale (N)		N	,
	Lungo (L)		L	
	Corto (K)		K	·
Altezza	Altezza standard (S)			S
	Alto (H)			Н
	Basso (N)			N

Avvertenza

Adatti a tutte le rotaie a sfere SNS/SNO.

Panoramica forme

_S, SNS, SLS

Mo- dello	Gran- dezza	Pattini a sfere di grandezza	Classe di	Class di pre		Guarnizione pattini a sfe-	Fattori di c	arico ¹⁾	Momenti o	di carico ¹⁾	(Nm)		Dimen-
dello	uezza	ui gi aliuezza	precarico	sione		re senza gabbia gui- da-sfere	→ <u></u>	<u>†</u> }_←]			(kg)
			C2	H	P	SS	С	C_0	M _t	M_{t0}	M _L	M _{L0}	m
FNS	15	R2001 1	2	3	2	90	6 880	8 860	66	85	47	61	0,20
	20	R2001 8	2	3	2	90	16300	20800	210	270	140	180	0,45
	25	R2001 2	2	3	2	90	20000	25100	280	360	200	250	0,60
	30	R2001 7	2	3	2	90	25500	33500	440	580	310	400	1,05
	35	R2001 3	2	3	2	90	36200	56500	780	1 210	510	790	1,50
	Es.:	R2001 7	2	3		90							
FLS	15	R2002 1	2	3	2	90	8 930	12800	86	120	85	120	0,30
	20	R2002 8	2	3	2	90	20700	29200	260	370	240	340	0,55
	25	R2002 2	2	3	2	90	26000	36600	370	520	370	520	0,80
	30	R2002 7	2	3	2	90	32100	46700	560	810	520	750	1,45
	35	R2002 3	2	3	2	90	46600	81100	1 000	1 740	900	1 560	2,15
		•	•										
SNS	15	R2011 1	2	3	2	90	6 880	8 860	66	85	47	61	0,15
	20	R2011 8	2	3	2	90	16300	20800	210	270	140	180	0,35
	25	R2011 2	2	3	2	90	20000	25100	280	360	200	250	0,45
	30	R2011 7	2	3	2	90	25500	33500	440	580	310	400	0,80
	35	R2011 3	2	3	2	90	36200	56500	780	1 210	510	790	1,15
SLS	15	R2012 1	2		2	90	8 930	12800	86	120	85		
	20	R2012 8	2	3	2	90	20700	29200	260	370	240		0,45
	25	R2012 2	2	3	2	90	26000	36600	370	520	370		0,60
	30	R2012 7	2	3	2	90	32100	46700	560	810	520		,
	35	R2012 3	2	3	2	90	46600	81100	1 000	1 740	900	1 560	1,60

¹⁾ Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere. I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori C, M₁ e M₁ in base a tabella.

Avvertenza

Per le misure, il disegno quotato, i fattori di carico, la rigidezza e i momenti vedere Pattino a sfere standard BSHP

Esempio di ordinazione FNS

Classi di precarico C2 = Precarico medio Guarnizioni

SS = Guarnizione standard

Opzioni:

- ▶ Pattino a sfere FNS
- ► Grandezza 30
- Classe di precarico C2
- Classe di precisione H
- Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione:

R2001 723 90

Proprietà eccellenti

- Compensa autonomamente errori di allineamento (con differenze fino a 10' in 2 livelli)
- ► Struttura particolarmente compatta
- ► Fattori di carico parimenti elevati in tutte e quattro le direzioni principali
- ► Differenze di parallelismo e altezza superiori delle superfici di montaggio ammissibili
- ► Classi di precisione H ed N
- Classi di precarico:
 C0 (senza precarico, gioco)
 C1 (precarico leggero)
- ► Funzionamento silenzioso grazie alla struttura ottimale di deviazione e ingresso
- Bassa rumorosità e straordinario comportamento di scolamento
- ► I migliori valori dinamici:

Velocità: $v_{max} = 5 \text{ m/s}$

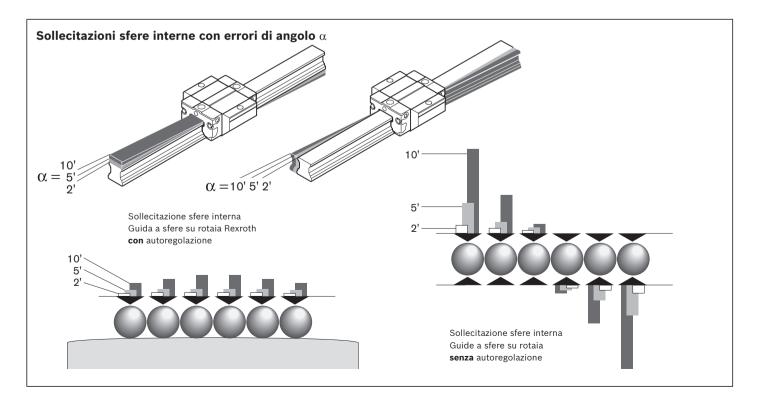
Accelerazione: $a_{max} = 500 \text{ m/s}^2$

- ► Sistema di lubrificazione minima con serbatoio integrato con lubrificazione a olio
- ▶ Raccordi di lubrificazione su tutti i lati con filetto metallico
- ▶ Prima lubrificazione pattini a sfere in fabbrica
- ► Struttura intercambiabile illimitata attraverso possibilità di combinazione a piacere di tutte le versioni di rotaie a sfere con tutte le varianti di pattini a sfere all'interno di qualsiasi classe di precisione

Autoregolazione

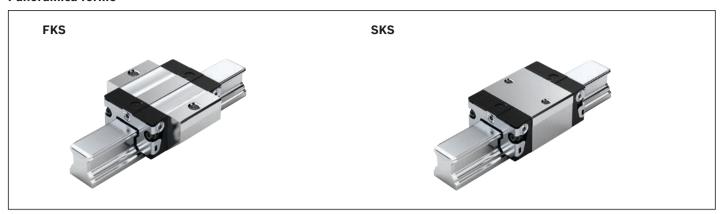
I pattini a sfere super Rexroth con autoregolazione compensano autonomamente gli errori di allineamento fino a 10'. Non vi è alcuna riduzione del fattore di carico mediante compressione bordi.

La zona di appoggio intermedia degli inserti in acciaio serve come punto di rotazione per un effetto-oscillazione. Di conseguenza, gli errori di allineamento tra pattini a sfere e rotaie a sfere non rappresentano un problema, perché imprecisioni nella lavorazione, errori di montaggio oppure piegature delle rotaie vengono compensati autonomamente.


L'autoregolazione consente un ingresso perfetto delle sfere nella zona sollecitata e una distribuzione uniforme del carico sull'intera fila di sfere.

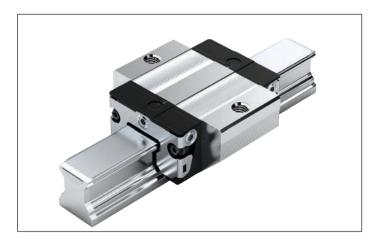
Risultato:

funzionamento molto più silenzioso e vita utile molto più lunga.


Con due pattini a sfere super su una rotaia a sfere si possono produrre anche in questo sistema guide a sfere su rotaia altamente portanti e anti-ribaltamento, soprattutto per il settore della movimentazione.

Devono essere montati sempre due pattini su una rotaia.

Panoramica forme



Definizione forma pattino a sfere

Criterio	Denominazione	Abbre	viazione (e:	sempio)
		F	K	S
Larghezza	Flangia (F)	F		'
	Sottile (S)	S		
	Largo (B)	В		
	Compact (C)	С		
Lunghezza	Normale (N)		N	
	Lungo (L)		L	
	Corto (K)		K	
Altezza	Altezza standard (S)			S
	Alto (H)			Н
	Basso (N)			N

FKS - Flangiato Corto Altezza standard

R1661 ... 2.

Valori dinamici

Velocità: $v_{max} = 5 \text{ m/s}$ Accelerazione: $a_{max} = 500 \text{ m/s}^2$ $(Se F_{comb} > 2.8 \cdot F_{pr} : a_{max} = 50 \text{ m/s}^2)$

Nota per la lubrificazione

► Con prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS.

Opzioni e codici materiale

Grandezza	Pattini a sfere di grandezza	Classe di precari	co	Classe di precisi		Guarnizione per	•
		СО	C1	N	н	senza gabbia gui SS	da-stere LS
15	R1661 1	9	1	4	3	20	21
20	R1661 8	9	1	4	3	20	21
25	R1661 2	9	1	4	3	20	21
30	R1661 7	9	1	4	3	20	21
35	R1661 3	9	1	4	3	20	21
Es.:	R1661 7		1		3	20	

Esempio di ordinazione

Opzioni:

- ▶ Pattino a sfere FKS
- ► Grandezza 30
- ► Classe di precarico C1
- ► Classe di precisione H
- ► Con guarnizione standard, senza gabbia guida-sfere

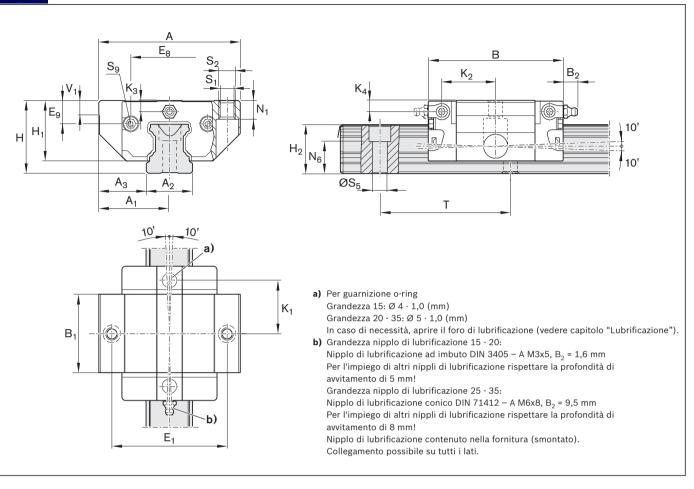
Numero di identificazione:

R1661 713 20

Classi di precarico

C0 = Senza precarico (gioco) C1 = Precarico leggero

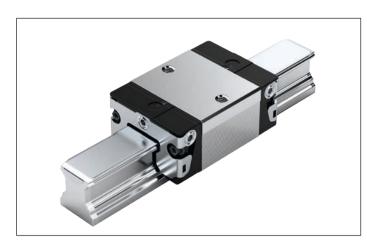
Guarnizioni


SS = Guarnizione standard LS = Guarnizione a bassa resistenza d'attrito

Legenda

Cifre grigie

 Nessuna variante preferita/ combinazione
 (in parte tempi di consegna più lunghi)


Grandezza	Dimensi	oni (mm)								-						
	Α	A_1	$\mathbf{A_2}$	A_3	B ^{+0,5}	B_1	E ₁	E ₈	E ₉	Н	H ₁	$H_{2}^{1)}$	$H_2^{(2)}$	K_1	K_2	K ₃	K_4
15	47	23,5	15	16,0	44,7	25,7	38	24,55	6,70	24	19,90	16,30	16,20	16,25	17,85	3,20	3,20
20	63	31,5	20	21,5	57,3	31,9	53	32,50	7,30	30	25,35	20,75	20,55	22,95	22,95	3,35	3,35
25	70	35,0	23	23,5	67,0	38,6	57	38,30	11,50	36	29,90	24,45	24,25	25,35	26,50	5,50	5,50
30	90	45,0	28	31,0	75,3	45,0	72	48,40	14,60	42	35,35	28,55	28,35	28,80	30,50	6,05	6,05
35	100	50,0	34	33,0	84,9	51,4	82	58,00	17,35	48	40,40	32,15	31,85	32,70	34,20	6,90	6,90

Grandezza	Dimens	ioni (mn	n)						Peso	Fattori di carico ³⁾	Carico	Momenti d	i carico ³⁾
									(kg)	(N)	consentito (N)		(Nm)
										↓ ↑ → □ ←			
	N ₁	N ₆ ±0,5	S ₁	S ₂	S ₅	S ₉	т	V ₁		С	F _{max}	M _t	M _{t max}
15	5,2	10,3	4,3	M5	4,5	M2,5x3,5	60	5,0	0,15	3 900	1 500	39	15
20	7,7	13,2	5,3	M6	6,0	M3x5	60	6,0	0,30	10100	3 900	130	50
25	9,3	15,2	6,7	M8	7,0	M3x5	60	7,5	0,50	11400	4 400	170	65
30	11,0	17,0	8,5	M10	9,0	М3х5	80	7,0	0,80	15800	6 100	270	105
35	12,0	20,5	8,5	M10	9,0	M3x5	80	8,0	1,20	21100	8 100	450	175

- 1) Dimensione H_2 con nastro di protezione
- 2) Dimensione H₂ senza nastro di protezione
- 3) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere.
 I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori C e M, in base a tabella.

SKS - Stretto Corto Altezza standard

R1662 ... 2.

Valori dinamici

Velocità: $v_{max} = 5 \text{ m/s}$ Accelerazione: $a_{max} = 500 \text{ m/s}^2$ $(Se F_{comb} > 2.8 \cdot F_{pr} : a_{max} = 50 \text{ m/s}^2)$

Nota per la lubrificazione

► Con prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS.

Opzioni e codici materiale

Grandezza	Pattini a sfere di grandezza	Classe	di precarico	Classe	di precisione	Guarnizione per pa	attini a sfere
						senza gabbia guida	a-sfere
		C0	C1	N	Н	SS	LS
15	R1662 1	9	1	4	3	20	21
20	R1662 8	9	1	4	3	20	21
25	R1662 2	9	1	4	3	20	21
30	R1662 7	9	1	4	3	20	21
35	R1662 3	9	1	4	3	20	21
Es.:	R1662 7		1		3	20	

Esempio di ordinazione

Opzioni:

- ▶ Pattino a sfere SKS
- ► Grandezza 30
- Classe di precarico C1
- ► Classe di precisione H
- ► Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione:

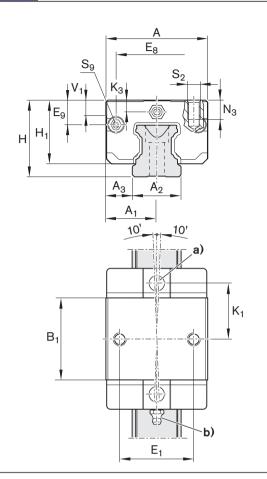
R1662 713 20

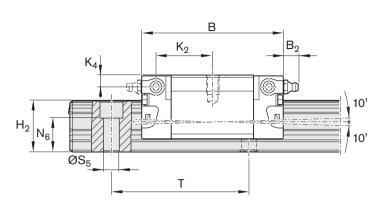
Classi di precarico

C0 = Senza precarico (gioco) C1 = Precarico leggero

Guarnizioni

SS = Guarnizione standard LS = Guarnizione a bassa


resistenza d'attrito


Legenda

Cifre grigie

 Nessuna variante preferita/ combinazione
 (in parte tempi di consegna più lunghi)

- a) Per guarnizione o-ring Grandezza 15: \emptyset 4 · 1,0 (mm) Grandezza 20 - 35: \emptyset 5 · 1,0 (mm) In caso di necessità, aprire il foro di lubrificazione (vedere capitolo "Lubrificazione").
- b) Grandezza nipplo di lubrificazione 15 20:
 Nipplo di lubrificazione ad imbuto DIN 3405 A M3x5, B₂ = 1,6 mm
 Per l'impiego di altri nippli di lubrificazione rispettare la profondità di avvitamento di 5 mm!
 Grandezza nipplo di lubrificazione 25 35:
 Nipplo di lubrificazione conico DIN 71412 A M6x8, B₂ = 9,5 mm
 Per l'impiego di altri nippli di lubrificazione rispettare la profondità di avvitamento di 8 mm!
 Nipplo di lubrificazione contenuto nella fornitura (smontato).

Collegamento possibile su tutti i lati.

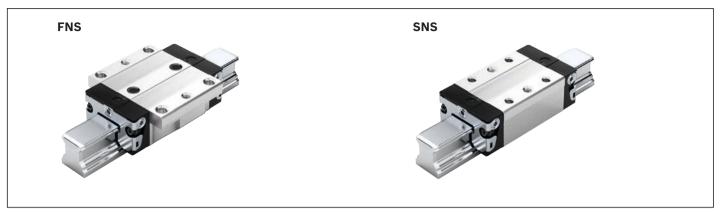
Grandezza	Dimensio	ni (mm))														
	Α	A_1	A_2	A_3	B ^{+0,5}	B_1	E ₁	E ₈	E ₉	н	H ₁	$H_{2}^{1)}$	$H_2^{(2)}$	K_1	K_2	K_3	K_4
15	34	17	15	9,5	44,7	25,7	26	24,55	6,70	24	19,90	16,30	16,20	16,25	17,85	3,20	3,20
20	44	22	20	12,0	57,3	31,9	32	32,50	7,30	30	25,35	20,75	20,55	22,95	22,95	3,35	3,35
25	48	24	23	12,5	67,0	38,6	35	38,30	11,50	36	29,90	24,45	24,25	25,35	26,50	5,50	5,50
30	60	30	28	16,0	75,3	45,0	40	48,40	14,60	42	35,35	28,55	28,35	28,80	30,50	6,05	6,05
35	70	35	34	18,0	84,9	51,4	50	58,00	17,35	48	40,40	32,15	31,85	32,70	34,20	6,90	6,90

Grandezza	Dimens	ioni (mm)					Dimensioni	Fattori di carico ³⁾	Carico	Momenti d	di carico ³⁾
								(kg)	(N)	consentito (N)		(Nm)
									↓ ↑ → □ ←			
	N ₃	$N_6^{\pm 0,5}$	S_2	S_5	S ₉	Т	V_1		С	F_{max}	M _t	$M_{t max}$
15	6,0	10,3	M4	4,5	M2,5x3,5	60	5,0	0,10	3900			15
20	7,5	13,2	M5	6,0	M3x5	60	6,0	0,25	10100	3900	130	50
25	9,0	15,2	M6	7,0	M3x5	60	7,5	0,35	11400	4400	170	65
30	12,0	17,0	M8	9,0	M3x5	80	7,0	0,60	15800	6100	270	105
35	13,0	20,5	M8	9,0	M3x5	80	8,0	0,90	21 100	8100	450	175

- 1) Dimensione H₂ con nastro di protezione
- 2) Dimensione H₂ senza nastro di protezione
- 3) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere.
 I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori C e M, in base a tabella.

Proprietà eccellenti

Le guide a sfere su rotaia Rexroth con pattini a sfere in alluminio sono progettate appositamente per i robot industriali e per la produzione generale di macchine che richiedono guide longitudinali su cuscinetti a sfere in diverse classi di precisione con portata elevata e peso ridotto. Le unità guida estremamente piccole e leggere in cinque misure per la commercializzazione hanno capacità di carico uguali in tutte e quattro le direzioni del carico principale.


Caratteristiche

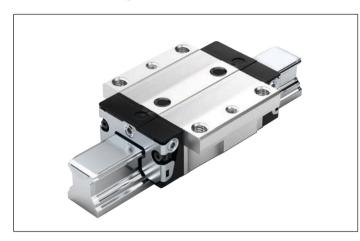
- Elevata resistenza momento torcente
- ► Ridotte oscillazioni delle molle grazie alla geometria di ingresso ideale e all'elevato numero di sfere
- Struttura particolarmente compatta: peso ridotto del 60 % rispetto alla versione in acciaio
- Struttura intercambiabile illimitata attraverso possibilità di combinazione a piacere di tutte le versioni di rotaie a sfere con tutte le varianti di pattini a sfere all'interno di qualsiasi classe di precisione

Altre caratteristiche salienti

- Bassa rumorosità e straordinario comportamento di scolamento
- ► I migliori valori dinamici: Velocità: v_{max} = 5 m/s Accelerazione: a_{max} = 500 m/s²
- Lubrificazione permanente su più anni possibile
- ► Lubrificazione minima con deposito integrato con lubrificazione a olio
- ▶ Differenze di parallelismo e altezza superiori delle superfici di montaggio ammissibili
- Classi di precisione H ed N combinabili con tutte le guide su rotaia di ogni classe di precisione
- Raccordo di lubrificazione su tutti i lati con filetto metallico
- ▶ Filetto di fissaggio frontale per tutte le unità
- ► Rotaie a sfere della classe di precisione H, disponibile anche con protezione della superficie Resist CR (con cromatura dura, argento opaco)
- Scorrimento silenzioso e fluido grazie al rinvio progettato in modo ottimale e alla guida delle sfere o alla gabbia guida-sfere
- Aumento della rigidità in caso di sollecitazione di sollevamento e laterale grazie a ulteriore avvitamento su due fori al centro del pattino a sfere¹⁾
- Sovrastrutture sui pattini a sfere avvitabili dall'alto e dal basso¹⁾
- ► Fori pre-lavorati sul pattino a sfere per la spinatura
- ▶ Disponibile opzionalmente con catena a sfere
- ▶ Prima lubrificazione pattini a sfere in fabbrica
- 1) A seconda del tipo

Definizione forma pattino a sfere

Criterio	Denominazione	Abbre	viazione (e	sempio)
		F	N	S
Larghezza	Flangia (F)	F		
	Sottile (S)	S		
	Largo (B)	В		
	Compact (C)	С		
Lunghezza	Normale (N)		N	
	Lungo (L)		L	
	Corto (K)		K	
Altezza	Altezza standard (S)			S
	Alto (H)			Н
	Basso (N)			N


Catena a sfere (opzionale)

► Rumorosità ottimizzata

94

FNS - Flangiato Normale Altezza standard, R1631 ... 2.

R1631 ... 2.

Valori dinamici

Velocità: $v_{max} = 5 \text{ m/s}$ Accelerazione: $a_{max} = 500 \text{ m/s}^2$ $(Se F_{comb} > 2.8 \cdot F_{pr} : a_{max} = 50 \text{ m/s}^2)$

Nota per la lubrificazione

► Con prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS.

Opzioni / Codici materiale / Dati tecnici

Grandezza	Pattini a sfere di	Classe di prec	arico	Classe di prec	isione	Guarnizio	ne per pat	tini a sfere	
	grandezza					senza gab guida-sfer		con gabbia	
		CO	C1	N	Н	SS	LS		LS
15	R1631 1	9	1	4	3	20	21	22	23
20	R1631 8	9	1	4	3	20	21	22	23
25	R1631 2	9	1	4	3	20	21	22	23
30	R1631 7	9	1	4	3	20	21	22	23
35	R1631 3	9	1	4	3	20	21	22	23
Es.:	R1631 7		1		3	20			

Grandezza	Fattori di carico ¹⁾ (N)	Carico consentito (N)	Momenti di caric	o ¹⁾ (Nm)		
	↓ ↑ → □ ←					
	С	F _{max}	M _t	M _{t max}	M _L	M _{L max}
15	9 860	3 000	95	29	68	16
20	23400	7 200	300	92	200	50
25	28600	8 800	410	125	290	70
30	36500	12200	630	210	440	110
35	51800	16200	1 110	345	720	170

1) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere. Fattori di carico e momenti di carico per pattini a sfere con gabbia guida-sfere 13 I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori C, M₁ e M₁ in base a tabella.

Esempio di ordinazione

Opzioni:

- ▶ Pattino a sfere FNS
- ► Grandezza 30
- ► Classe di precarico C1
- Classe di precisione H
- Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione:

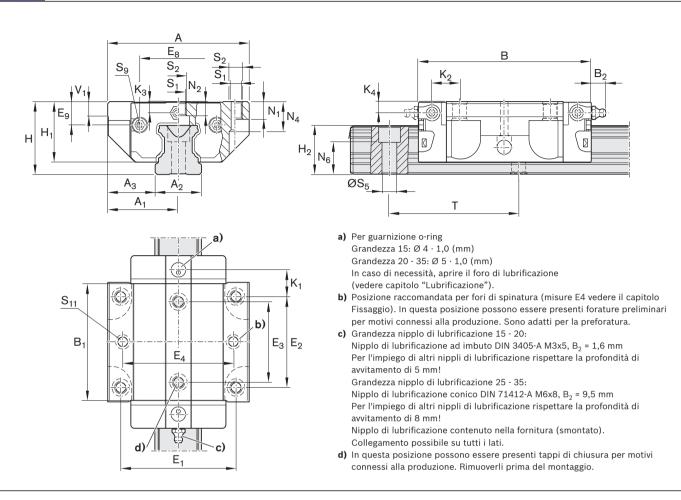
R1631 713 20

Classi di precarico

C0 = Senza precarico (gioco) C1 = Precarico leggero

Guarnizioni

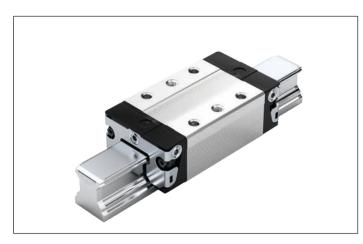
SS = Guarnizione standard LS = Guarnizione a bassa resistenza d'attrito


Legenda

Cifre grigie

 Nessuna variante preferita/ combinazione
 (in parte tempi di consegna più

lunghi)


Grandezza	Dimens	ioni (m	nm)																
	Α	$\mathbf{A_1}$	A_2	A_3	B ^{+0,5}	B_1	E ₁	$\mathbf{E_2}$	E_3	E ₈	E ₉	Н	H ₁	$H_{2}^{1)}$	$H_{2}^{2)}$	K ₁	K_2	K_3	K_4
15	47	23,5	15	16,0	58,2	39,2	38	30	26	24,55	6,70	24	19,90	16,30	16,20	8,00	9,6	3,20	3,20
20	63	31,5	20	21,5	75,0	49,6	53	40	35	32,50	7,30	30	25,35	20,75	20,55	11,80	11,8	3,35	3,35
25	70	35,0	23	23,5	86,2	57,8	57	45	40	38,30	11,50	36	29,90	24,45	24,25	12,45	13,6	5,50	5,50
30	90	45,0	28	31,0	97,7	67,4	72	52	44	48,40	14,60	42	35,35	28,55	28,35	14,00	15,7	6,05	6,05
35	100	50,0	34	33,0	110,5	77,0	82	62	52	58,00	17,35	48	40,40	32,15	31,85	14,50	16,0	6,90	6,90

Grandezza	Dimensioni	(mm)			1			1		1		Dimensioni
	N ₁	N_2	N_4	$N_6^{\pm 0,5}$	S_1	S_2	S ₅	S ₉	S ₁₁	Т	V ₁	(kg)
15	5,2	4,40	10,3	10,3	4,3	M5	4,5	M2,5x3,5	3,7	60	5,0	0,10
20	7,7	5,20	13,5	13,2	5,3	M6	6,0	M3x5	4,7	60	6,0	0,24
25	9,3	7,00	17,8	15,2	6,7	M8	7,0	M3x5	5,7	60	7,5	0,30
30	11,0	7,90	20,5	17,0	8,5	M10	9,0	M3x5	7,7	80	7,0	0,55
35	12,0	10,15	24,0	20,5	8,5	M10	9,0	M3x5	7,7	80	8,0	0,75

- 1) Dimensione H₂ con nastro di protezione
- 2) Dimensione H₂ senza nastro di protezione

SNS - Stretta Normale Altezza standard, R1632 ... 2.

R1632 ... 2.

Valori dinamici

Velocità: $v_{max} = 5 \text{ m/s}$ Accelerazione: $a_{max} = 500 \text{ m/s}^2$ $(Se F_{comb} > 2.8 \cdot F_{pr} : a_{max} = 50 \text{ m/s}^2)$

Nota per la lubrificazione

► Con prima lubrificazione

Avvertenza

Adatti a tutte le rotaie a sfere SNS.

Opzioni / Codici materiale / Dati tecnici

Grandezza	Pattini a sfere di grandezza	Classe di pre	carico	Classe di pre	cisione	Guarnizione			
					i	senza gabbia		con gabbia gu	
		C0	C1	N	Н	SS	LS	SS	LS
15	R1632 1	9	1	4	3	20	21	22	23
20	R1632 8	9	1	4	3	20	21	22	23
25	R1632 2	9	1	4	3	20	21	22	23
30	R1632 7	9	1	4	3	20	21	22	23
35	R1632 3	9	1	4	3	20	21	22	23
Es.:	R1632 7		1		3	20			

Grandezza	Fattori di carico ¹⁾ (N)	Carico consentito (N)	Momenti di carico	1) (Nm)		
	↓ ↑ → □ ←			3		
	С	F _{max}	M _t	$M_{t max}$	M_L	$M_{L max}$
15	9 860	3 000	95	29	68	16
20	23400	7 200	300	92	200	50
25	28600	8 800	410	125	290	70
30	36500	12200	630	210	440	110
35	51800	16200	1 110	345	720	170

1) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere.
Fattori di carico e momenti di carico per pattini a sfere con gabbia guida-sfere ☞ 13
I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori C, M, e M₁ in base a tabella.

Esempio di ordinazione

Opzioni:

- Pattino a sfere SNS
- ► Grandezza 30
- ► Classe di precarico C1
- Classe di precisione H
- ► Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione:

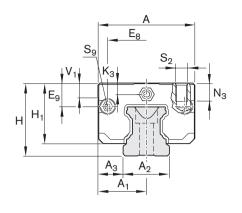
R1632 713 20

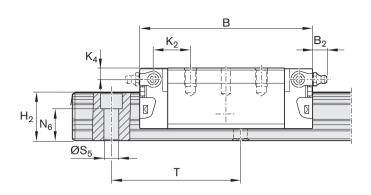
Classi di precarico

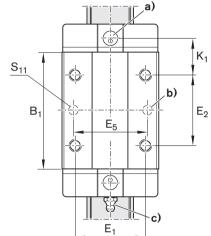
C0 = Senza precarico (gioco) C1 = Precarico leggero

Guarnizioni

SS = Guarnizione standard LS = Guarnizione a bassa resistenza d'attrito


Legenda


lunghi)


Cifre grigie

 Nessuna variante preferita/ combinazione
 (in parte tempi di consegna più

- a) Per guarnizione o-ring Grandezza 15: Ø 4 · 1,0 (mm) Grandezza 20 · 35: Ø 5 · 1,0 (mm)
- In caso di necessità, aprire il foro di lubrificazione (vedere capitolo "Lubrificazione").
- b) Posizione raccomandata per fori di spinatura (misure E4 vedere il capitolo Fissaggio). In questa posizione possono essere presenti forature preliminari per motivi connessi alla produzione. Sono adatti per la preforatura.
- c) Grandezza nipplo di lubrificazione 15 20: Nipplo di lubrificazione ad imbuto DIN 3405-A M3x5, B₂ = 1,6 mm Per l'impiego di altri nippli di lubrificazione rispettare la profondità di avvitamento di 5 mm!

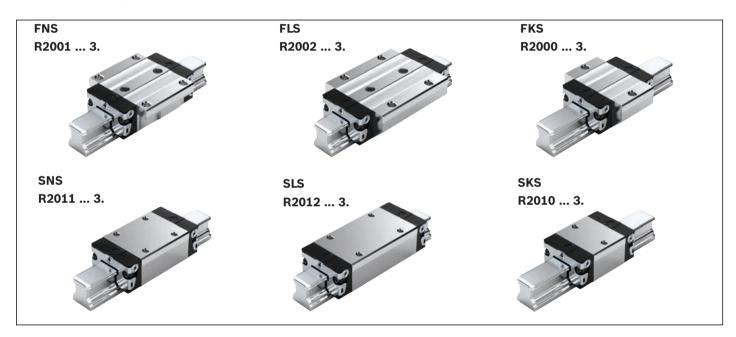
Grandezza nipplo di lubrificazione 25 - 35:

Nipplo di lubrificazione conico DIN 71412-A M6x8, $\rm B_2$ = 9,5 mm Per l'impiego di altri nippli di lubrificazione rispettare la profondità di avvitamento di 8 mm!

Nipplo di lubrificazione contenuto nella fornitura (smontato). Collegamento possibile su tutti i lati.

Grandezza	Dimer	ısioni	(mm)														
	Α	A_1	A_2	A_3	B ^{+0,5}	B_1	E_1	$\mathbf{E_2}$	E ₈	E ₉	Н	H ₁	$H_{2}^{1)}$	$H_2^{(2)}$	K_1	K_2	K_3	K_4
15	34	17	15	9,5	58,2	39,2	26	26	24,55	6,70	24	19,90	16,30	16,20	10,00	11,60	3,20	3,20
20	44	22	20	12,0	75,0	49,6	32	36	32,50	7,30	30	25,35	20,75	20,55	13,80	13,80	3,35	3,35
25	48	24	23	12,5	86,2	57,8	35	35	38,30	11,50	36	29,90	24,45	24,25	17,45	18,60	5,50	5,50
30	60	30	28	16,0	97,7	67,4	40	40	48,40	14,60	42	35,35	28,55	28,35	20,00	21,70	6,05	6,05
35	70	35	34	18,0	110,5	77,0	50	50	58,00	17,35	48	40,40	32,15	31,85	20,50	22,00	6,90	6,90

Dimensioni (mm)								Dimensioni
N ₃	$N_6^{\pm 0,5}$	S_2	S ₅	S ₉	S ₁₁	Т	V ₁	(kg)
6,0	10,3	M4	4,5	M2,5x3,5	3,7	60	5,0	0,10
7,5	13,2	M5	6,0	M3x5	4,7	60	6,0	0,20
9,0	15,2	M6	7,0	M3x5	5,7	60	7,5	0,35
12,0	17,0	M8	9,0	M3x5	7,7	80	7,0	0,45
13,0	20,5	M8	9,0	M3x5	7,7	80	8,0	0,65
	N ₃ 6,0 7,5 9,0 12,0	N ₃ N ₆ ±0,5 6,0 10,3 7,5 13,2 9,0 15,2 12,0 17,0	N ₃ N ₆ ±0,5 S ₂ 6,0 10,3 M4 7,5 13,2 M5 9,0 15,2 M6 12,0 17,0 M8	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N ₃ N ₆ ±0,5 S ₂ S ₅ S ₉ 6,0 10,3 M4 4,5 M2,5x3,5 7,5 13,2 M5 6,0 M3x5 9,0 15,2 M6 7,0 M3x5 12,0 17,0 M8 9,0 M3x5	N ₃ N ₆ ±0,5 S ₂ S ₅ S ₉ S ₁₁ 6,0 10,3 M4 4,5 M2,5x3,5 3,7 7,5 13,2 M5 6,0 M3x5 4,7 9,0 15,2 M6 7,0 M3x5 5,7 12,0 17,0 M8 9,0 M3x5 7,7	N ₃ N ₆ ±0,5 S ₂ S ₅ S ₉ S ₁₁ T 6,0 10,3 M4 4,5 M2,5x3,5 3,7 60 7,5 13,2 M5 6,0 M3x5 4,7 60 9,0 15,2 M6 7,0 M3x5 5,7 60 12,0 17,0 M8 9,0 M3x5 7,7 80	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


- 1) Dimensione ${\rm H_2}$ con nastro di protezione
- $\textbf{2)} \ \ \mathsf{Dimensione} \ \mathsf{H}_2 \ \mathsf{senza} \ \mathsf{nastro} \ \mathsf{di} \ \mathsf{protezione}$

Avvertenze generali su pattini a sfere Resist NR resistenti alla corrosione

- ▶ Poiché Resist NR non è un rivestimento, tutte le misure e le tolleranze, i valori dinamici, i fattori di carico, le rigidezze e i momenti sono identici a quelli dell'esecuzione in acciaio standard.
 - Per i numeri di identificazione vedere le pagine seguenti.
- ▶ Adatti a tutte le rotaie a sfere SNS/SNO.
- ► Corpo del pattino a sfere in acciaio resistente alla corrosione conforme DIN EN 10088. Versione consigliata da Rexroth, in caso di necessità della protezione dalla corrosione. Consegna in tempi brevi.
- ► Con prima lubrificazione

Panoramica forme

Definizione forma pattino a sfere

Criterio	Denominazione	Abbre	viazione (e	sempio)
		F	N	S
Larghezza	Flangia (F)	F		
	Sottile (S)	S		
	Largo (B)	В		
	Compact (C)	С		
Lunghezza	Normale (N)		N	
	Lungo (L)		L	
	Corto (K)		K	
Altezza	Altezza standard (S)			S
	Alto (H)			Н
	Basso (N)			N

Catena a sfere (opzionale)

► Rumorosità ottimizzata

LS, FKS, SNS, SLS, SKS

Modello	Grandezza	Pattini	Classe di pr	ecarico	Classe di precisione	Guarnizione per pattini a sfere							
		a sfere di				1				oia guida-s	fere		
		grandezza	CO	C1	н	SS	LS	DS	SS	LS	DS		
FNS	15	R2001 1	9	_	3	30	31	-	32	33	_		
	20	R2001 8	9	_	3	30	31	-	32	33	_		
	25	R2001 2	9	_	3	30	31	_	32	33	_		
	30	R2001 7	9		3		31	_	32	33	_		
				1	3	1	31	3Z	32	33	3Y		
	35	R2001 3	9		3		31	_	32	33			
		1120010		1	3	1	31	3Z	32	33	3Y		
	Es.:	D0001 F		1	3	1	31	52	32	33	- 01		
	ES.:	R2001 7			<u> </u>	30							
FLS	15	R2002 1	9	_	3	30	31	_	32	33			
	20	R2002 8	9	_	3	30	31	_	32	33			
	25	R2002 2	9	_	3	30	31	_	32	33			
	30	R2002 7	9		3	30	31	_	32	33			
				1	3		31	3Z	32	33	3Y		
	35	R2002 3	9		3	30	31	_	32	33	_		
				1	3	30	31	3Z	32	33	3Y		
	1												
FKS	15	R2000 1	9	_	3		31	_	32	33			
	20 25	R2000 8 R2000 2	9	_	3 3	30	31 31	_	32 32	33			
	30	R2000 2	9	_	3		31	_	32	33			
	30	R2000 7	9	1	3		31	3Z	32	33	3Y		
	35	R2000 3	9		3	30	31	-	32	33			
	33	112000 3	5	1	3		31	3Z	32	33	3Y		
	'	•	'		•						-		
SNS	15	R2011 1	9	_	3	30	31	_	32	33	_		
	20	R2011 8	9	_	3		31	_	32	33	_		
	25	R2011 2	9	-	3		31	_	32	33			
	30	R2011 7	9		3		31	_	32	33			
				1	3		31	3Z	32	33	3Y		
	35	R2011 3	9		3	1	31	_	32	33	_		
				1	3	30	31	3Z	32	33	3Y		
SLS	15	R2012 1	9		3	30	31	I -	32	33			
3L3	20	R2012 1	9		3		31	_	32	33			
	25	R2012 2	9		3	30	31	_	32	33			
	30	R2012 7	9		3	30	31		32	33			
	30	11/2012 /	3	1	3		31	3Z	32	33	3Y		
	35	R2012 3	9		3		31	-	32	33			
		11.2012 0		1	3		31	3Z	32	33	3Y		
SKS	15	R2010 1	9	_	3			_	32	33	_		
	20	R2010 8	9	_	3		31	_	32	33			
	25	R2010 2	9	-	3		31	_	32	33			
	30	R2010 7	9		3		31	_	32	33	_		
				1	3		31	3Z	32	33	3Y		
	35	R2010 3	9		3		31	-	32	33	-		
				1	3	30	31	3Z	32	33	3Y		

Esempio di ordinazione FNS

Opzioni:

- ▶ Pattini a sfere BSHP Resist NR, FNS
- ► Grandezza 30
- ► Classe di precarico C1
- ► Classe di precisione H
- ► Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione: R2001 713 30

Avvertenza

Per le misure, il disegno quotato, i fattori di carico, la rigidezza e i momenti vedere Pattino a sfere standard BSHP

Classi di precarico

C0 = Senza precarico (gioco)

C1 = Precarico leggero

Guarnizioni

SS = Guarnizione standard

LS = Guarnizione a bassa resistenza d'attrito

DS = Guarnizione a doppio labbro

Legenda

Cifre grigie

 Nessuna variante preferita/ combinazione
 (in parte tempi di consegna più lunghi)

Proprietà eccellenti

Le guide a sfere su rotaia Resist NR II in acciaio resistente alla corrosione¹⁾ sono utilizzate in particolare in presenza di mezzi acquosi, acidi molto diluiti, soluzioni alcaline o soluzioni saline. Queste guide sono straordinarie anche per l'utilizzo con un'umidita relativa superiore al 70 % e temperature superiori ai 30 °C.

Queste condizioni sono presenti soprattutto in impianti di pulizia, impianti di galvanizzazione e di decappaggio, impianti di sgrassatura a vapore e macchine frigorifere.

Poiché non è necessaria una protezione aggiuntiva contro la corrosione, le guide a sfere su rotaia Resist NR II sono perfette per l'impiego in camere bianche e in generale nella produzione di circuiti stampati. Ulteriori impieghi sono possibili in generale nell'industria degli imballaggi.

Avvertenze generali sui pattini a sfere Resist NR II

- ▶ Adatto per tutte le rotaie a sfere SNS, non sottoposto a prima lubrificazione, non protetto
- ▶ Per le misure vedere Pattino a sfere in acciaio

Caratteristiche

- ▶ Tutte le parti metalliche sono realizzate in acciaio anti-corrosione
- ▶ Disponibili in cinque grandezze correnti
- ► I migliori valori dinamici:

Velocità: $v_{max} = 5 \text{ m/s}$

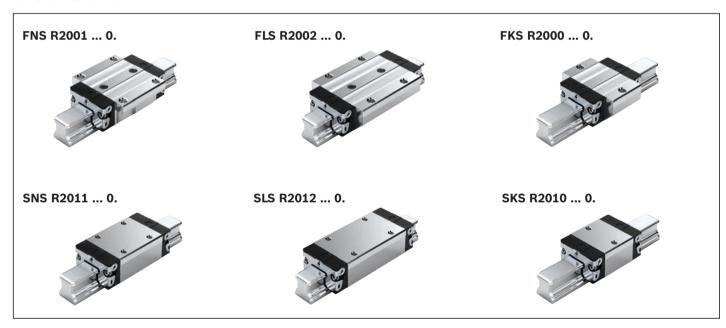
Accelerazione: $a_{max} = 500 \text{ m/s}^2$

- ► Fattori di carico parimenti elevati in tutte e quattro le direzioni principali
- ▶ Disponibile nelle classi di precisione N, H e P, fino alla classe di precarico C2
- ▶ Lubrificazione permanente su più anni possibile
- Sistema di lubrificazione minima con serbatoio integrato con lubrificazione a olio
- ▶ Raccordi di lubrificazione su tutti i lati con filetto metallico
- disponibile opzionalmente con catena a sfere

1) Resist NR II:

Corpo del pattino a sfere o della rotaia a sfere così come di tutte le parti in acciaio resistente alla corrosione secondo norma DIN EN 10088

Avvertenze generali


- ▶ Per guide a sfere su rotaia per settori dell'industria alimentare vedi catalogo Guide a sfere su rotaia NRFG R310DE2226 (2011.04).
- ► Combinazione di differenti classi di precisione Quando si combinano rotaie e pattini di diverse classi di precisione, si modificano le tolleranze per le dimensioni H e A3. Vedi "Classi di precisione e loro tolleranze".
- ► Combinazione di differenti materiali nella combinazione di guide e pattini a sfere di diversi materiali, cambiano fattori di carico, sollecitazioni ammissibili e momenti. È necessario utilizzare il valore più basso.

- ▶ Smontaggio illimitato grazie alle svariate possibilità di combinazione di tutte le guide su rotaia a sfere con tutte le varianti di pattini a sfere all'interno di ogni classe di precisione (anche in acciaio, alluminio, Resist NR o Resist CR)
- Massima rigidità di sistema attraverso disposizione a O precaricata
- Assortimento di accessori esistente completamente utilizzabile
- ► Sovrastrutture sui pattini a sfere avvitabili dall'alto e dal basso²⁾
- ▶ Aumento della rigidità in caso di sollecitazione di sollevamento e laterale grazie a ulteriore avvitamento su due fori al centro del pattino a sfere²⁾
- ▶ Filetto di fissaggio frontale per tutte le unità
- ▶ Elevata rigidità in tutte le direzioni di sollecitazione, pertanto utilizzabile anche come pattino singolo
- ▶ Protezione completa con guarnizioni integrate
- Ridotte oscillazioni delle molle grazie alla geometria di ingresso ideale e all'elevato numero di sfere
- ▶ Scorrimento silenzioso e fluido grazie al rinvio progettato in modo ottimale e alla guida delle sfere o alla gabbia guida-sfere
- Rotaie a sfere Resist NR II disponibile con o senza nastro di protezione nonché avvitabile dall'alto o dal basso
- Pattino a sfere disponibile anche con rotaie a sfere cromate

2) A seconda del tipo

Panoramica forme

Definizione forma pattino a sfere

Criterio	Denominazione	Abbre	viazione (e	sempio)
		F	N	S
Larghezza	Flangia (F)	F		
	Sottile (S)	S		
	Largo (B)	В		,
	Compact (C)	С		
Lunghezza	Normale (N)		N	
	Lungo (L)		L	'
	Corto (K)		K	
Altezza	Altezza standard (S)			S
	Alto (H)			Н
	Basso (N)			N

Catena a sfere (opzionale)

▶ Rumorosità ottimizzata

FNS, FLS, FKS, SNS, SLS, SKS

Gran-	Pattini	I	se d		l	se d		Guari	nizione	per p	attini a	sfere					Mome	nti di c	arico ²⁾ (Nn	1)
dezza	a sfere di grandezza	pred	caric	0	pred	isior	1e		gabbia	ı	con ga			sioni (kg)	(N) →	<u></u>	Į	<u>,</u>		
		CO	C1	C2	N	н	Р	guida SS	-sfere LS ¹⁾	DS	guida- SS		DS	m	С	_ c _o	M,	M _{t0}	M,	M _{LO}
FNS																		to		
15	R2001 1	9			4	3	_	04	05	_	06	07	_	0,20	5 100	9 300	63	90	34	49
			1		4	3	2	04	05	OX	06	07	OW							
				2	_	3	2	04	-	0X	06	-	OW							
20	R2001 8	9			4	3		04	05		06	07	_	0,45	12300	16900	205	215	110	115
			1		4	3	2	04	05	0X	06	07	OW							
	D0001.0			2	-	3	2	04	-	0X	06	-	OW	0.05	15000	01000	070	005	450	105
25	R2001 2	9	1		4	3	-	04	05 05		06 06	07	-	0,65	15000	21000	270	295	150	165
			1	2	4	3	2	04	05	0X 0X	06	07	0W 0W							
30	R2001 7	9			4	3		04	05	-	06	07	0 0 0	1,10	20800	28700	460	500	245	265
30	11/2001 /	-	1		4	3	2	04	05	OX	06	07	OW	1,10	20000	20700	400	300	243	203
				2	-	3	2	04	-	0X	06	-	OW							
35	R2001 3	9			4	3		04	05	_	06	07		1,60	27600	37500	760	805	375	390
			1		4	3	2	04	05	0X	06	07	OW	_,-,						
				2	-	3	2	04	-	OX	06	-	OW							
FLS																				
15	R2002 1	9			4	3	_	04	05	-	06	07	-	0,30	8 500	14000	82	132	64	104
			1		4	3	2	04	05	0X	06	07	OW							
				2	-	3	2	04	-	0X	06	-	OW							
20	R2002 8	9			4	3	-	04	05	-	06	07	-	0,55	16000	24400	265	310	190	230
			1		4	3	2	04	05	0X	06	07	OW							
				2	_	3	2	04	-	0X	06	-	OW							
25	R2002 2	9			4	3	_	04	05	-	06	07	-	0,90	20000	31600	365	450	290	350
			1		4	3	2	04	05	0X	06	07	OW							
30	R2002 7	9		2	-	3	2	04	05	0X	06 06	- 07	OW	1.50	26300	40100	590	695	420	495
30	R2002 /	9	1		4	3	2	04	05		06	07	OW	1,50	26300	40100	590	695	420	495
			1	2	4	3	2	04	- 05	0X	06	07	OW							
35	R2002 3	9			4	3		04	05	-	06	07	-	2,25	36500	56200	1 025	1 210	710	840
33	11/2002 3		1		4	3	2	04	05	OX	06	07	OW	2,20	30300	30200	1 025	1 210	710	040
				2	-	3	2	04	-	OX	06	-	OW							
FKS	l																			
15	R2000 1	9			4	3	_	04	05	_	06	07	_	0,15	4 500	5 600	44	55	16	19
			1		4	3	_	04	05	OX	06	07	OW	,						
				_	-	_	_	-	-	_	-	-	_							
20	R2000 8	9			4	3	_	04	05	_	06	07	_	0,30	8 200	9 400	125	115	45	40
			1		4	3	_	04	05	0X	06	07	OW							
				_	_	-	_	-	-	-	-	-	-							
25	R2000 2	9			4	3	_	04	05	-	06	07	_	0,50	10500	12600	195	180	70	65
			1		4	3	_	04	05	0X	06	07	OW							
				_	-	-	_	-	-	_	-	-	_							
30	R2000 7	9			4	3	_	04	05	-	06	07	-	0,80	14500	17200	320	295	110	105
			1		4	3	_	04	05	0X	06	07	OW							
25	D2000 2	_			-	-		-	- 0E		-	-		1.00	10000	22400	F 4 F	405	170	150
35	R2000 3	9	- 1		4	3		04	05		06	07	-	1,20	19300	22400	545	485	170	150
		<u> </u>	1		4	3		04	05	0X	06	07	OW							
					_			_	-		_	-								

Esempio di ordinazione

Opzioni:

- ▶ Pattini a sfere BSHP Resist NR II, SKS
- Grandezza 30
- Classe di precarico C1
- Classe di precisione H
- Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione: R2010 713 04

Classi di precarico

C0 = Senza precarico (gioco)

C1 = Precarico leggero

C2 = Precarico medio

Guarnizioni

SS = Guarnizione standard

LS = Guarnizione a bassa resistenza d'attrito

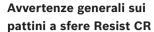
DS = Guarnizione a doppio labbro

Legenda

Cifre grigie

Nessuna variante preferita/ combinazione (in parte tempi di consegna più lunghi)

Gran-	Pattini	Clas	se d	-	Clas	se di	_	Guarr	iziono	norn	attini	a sfere		Dimon	Eattori d	i carica ²	Momo	nti di a	arico ²⁾ (N	m)
dezza	a sfere di	pred			1	se ai		Guari	lizione	per p	attiiii	a Siere	,	sioni	I	t carico-	Wionie		arico-/ (N	····)
uczza	grandezza	piec	aric	•	prec	.131011	١		gabbi	a	con g			(kg)		<u>'</u> -	G	7	r h	d h
	8	Ι.			l ,			guida			guida							_		ч,
		C0	C1	C2	N	Н	Р	SS	LS ¹⁾	DS	SS	LS ¹⁾	DS	m	С	C ₀	M _t	M _{t0}	M _L	M _{L0}
SNS	D0044.4				1 4			0.4	0.5.1		00	0.7		0.45	F 400	0.000			0.4	40
15	R2011 1	9	1		4	3	-	04	05 05		06 06	07	- OW	0,15	5 100	9 300	63	90	34	49
			1	2	4	3	2	04	05	0X	06		OW							
20	R2011 8	9			4	3		04	05	0.7	06	07	0 0 0	0,35	12300	16900	205	215	110	115
20	N2011 0	- 9	1		4	3	2	04	05	0X	06	07	OW	0,33	12300	10900	203	215	110	113
				2	-	3	2	04	-	0X	06	-	OW							
25	R2011 2	9			4	3		04	05	-	06	07	-	0,50	15000	21000	270	295	150	165
			1		4	3	2	04	05	OX	06	07	OW	- 3,33					100	200
				2	-	3	2	04	-	OX	06	-	OW							
30	R2011 7	9			4	3	\equiv	04	05	_	06	07	_	0,85	20800	28700	460	500	245	265
			1		4	3	2	04	05	OX	06	07	OW	1						
				2	-	3	2	04	-	OX	06	_	OW							
35	R2011 3	9			4	3	-	04	05	_	06	07	-	1,25	27600	37500	760	805	375	390
			1		4	3	2	04	05	0X	06	07	OW	1						
				2	-	3	2	04	-	OX	06	_	OW							
SLS																				
15	R2012 1	9			4	3	-	04	05	-	06	07	-	0,20	8 500	14000	82	132	64	104
			1		4	3	2	04	05	OX	06	07	OW							
				2	_	3	2	04	-	OX	06	-	OW							
20	R2012 8	9			4	3	_	04	05	_	06	07		0,45	16000	24400	265	310	190	230
			1		4	3	2	04	05	0X	06	07	OW							
	D00400			2	-	3	2	04	-	OX	06	-	OW	0.05	00000	01000	005	450	200	
25	R2012 2	9	- 1		4	3	_ 2	04	05 05	OX	06 06	07	- OW	0,65	20000	31600	365	450	290	350
			1	2	4	3	2	04	-	0X	06	-	OW							
30	R2012 7	9			4	3		04	05	- 0	06	07	0 0 0	1,10	26300	40100	590	695	420	495
30	112012 1	- 3	1		4	3	2	04	05	OX	06	07	OW	1,10	20300	40100	330	033	420	433
				2	_	3	2	04	-	0X	06	-	OW							
35	R2012 3	9			4	3		04	05	-	06	07	-	1,70	36500	56200	1 025	1 210	710	840
			1		4	3	2	04	05	OX	06	07	OW	-,		00200	- 020			0.0
				2	-	3	2	04	_	OX	06	-	OW							
SKS																				
15	R2010 1	9			4	3	-	04	05	_	06	07	_	0,10	4 500	5 600	44	55	16	19
			1		4	3	-	04	05	OX	06	07	OW]						
				_	-	-	-	_	-	_	_	-	_							
20	R2010 8	9			4	3	_	04	05	_	06	07	_	0,25	8 200	9 400	125	115	45	40
			1		4	3	-	04	05	0X	06	07	OW							
					-	-	_	-	-	_	-	-	_							
25	R2010 2	9			4	3	_	04	05	-	06	07	-	0,35	10500	12600	195	180	70	65
			1		4	3	_	04	05	OX	06	07	OW							
20	D2010.7				-	-	_	- 0.4	_ OF		-	07		0.60	1.4500	17200	220	205	110	105
30	R2010 7	9	- 1		4	3	_	04	05		06	07	O\\/	0,60	14500	17200	320	295	110	105
		$\vdash\vdash$	1		4	3	_	04	05	0X	06	07	OW_							
35	R2010 3	9			4	3		04	05		06	07		0,90	19300	22400	545	485	170	150
55	112010 3		1		4	3		04	05	OX	06	07	OW	. 0,30	13300	22400	343	+03	110	130
		\vdash		_	-	_	_	-	-	-	-	-	-							
Es.:	R2010 7		1			3		04												
_3	1.12010 /		_			ŭ														


¹⁾ Solo perle classi di precisione N e H

Avvertenza

Per le misure, il disegno quotato vedere Pattino a sfere standard BSHP

²⁾ Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere. Fattori di carico e momenti di carico per pattini a sfere con gabbia guida-sfere ☞ 🖹 14

I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori C, M_t e M_1 in base a tabella.

- ▶ Per i numeri di identificazione vedere le pagine seguenti.
- ▶ Per le misure, il disegno quotato, i valori dinamici, i fattori di carico, le rigidezze e i momenti vedere Pattino a sfere in acciaio
- ► Corpo del pattino a sfere in acciaio con rivestimento resistente alla corrosione, con cromatura dura, argento opaco.
- ► Con prima lubrificazione

Con i pattini a sfere e le rotaie a sfere Resist CR, argento opaco con cromatura dura, osservare tolleranze diverse delle misure H e A₃ (vedere "Classi di precisione e relative tolleranze")

Pattini a sfere consigliati per le rotaie a sfere Resist CR della classe di precisione H e della classe di precarico C0 e C1

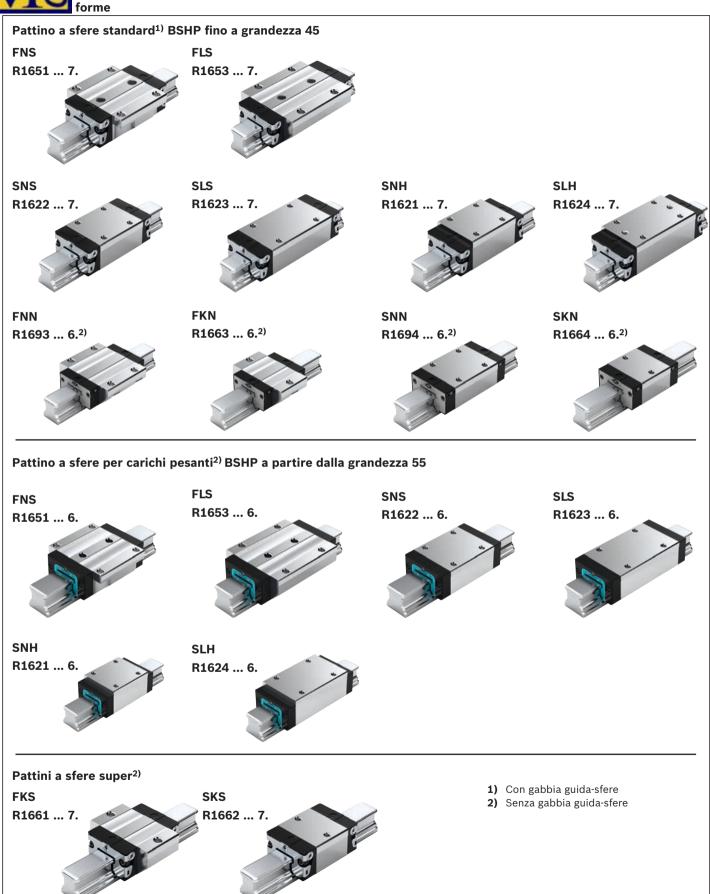
Pattini a sfere consigliati Grandezza 15 - 65

- ► Classe di precisione H
- ► Classe di precarico C0

Pattini a sfere consigliati Grandezza 30 - 65

- ► Classe di precisione H
- ► Classe di precarico C1

Definizione forma pattino a sfere


Criterio	Denominazione	Abbrev	iazione (e	sempio)
		F	N	s
Larghezza	Flangia (F)	F		
	Sottile (S)	S		
	Largo (B)	В		
	Compact (C)	С		
Lunghezza	Normale (N)		N	
	Lungo (L)		L	
	Corto (K)		K	
Altezza	Altezza standard (S)			S
	Alto (H)			Н
	Basso (N)			N

Catena a sfere (opzionale)

▶ Rumorosità ottimizzata

FNS, FLS, SNS, SLS, SNH, SLH, FNN, FKN, SNN, SKN, FKS,

Pattino a sfere standard BSHP

Modello	Grandezza	Pattini a sfere di grandezza	Classe	di precarico	Classe di precisione	Guarnizione per pattini a sfere							
						senza gab	bia guid	a-sfere	con gabl	oia guida-s	fere		
			CO	C1	н		LS	DS	_	LS	DS		
FNS	45	R1651 4	9		3	70	_	_	72	-	_		
				1	3	70	_	7Z	72	_	7Y		
	Es.:	R1651 4		1	3	70			•				
FLS	45	R1653 4	9		3	70	_	_	72	-	_		
				1	3	70	_	7Z	1	-	7Y		
SNS	45	R1622 4	9		3	70	_	_	72	-	_		
				1	3	70	_	7Z	72	_	7Y		
SLS	45	R1623 4	9		3	70	_	_	72	-	_		
				1	3	70	-	7Z	72	_	7Y		
SNH	15	R1621 1	9	_	3		71	_	72	73			
	25	R1621 2	9	_	3		71	_	72	73	_		
	30	R1621 7	9		3	70	71	_	72	73	_		
				1		70	71	7Z	72	73	7Y		
	35	R1621 3	9		3		71	_	72	73	_		
				1		70	71	7Z	72	73	7Y		
	45	R1621 4	9		3		_	_	72	-	_		
				1		70	_	7Z	72	-	7Y		
SLH	25	R1624 2	9	_	3	70	71	_	72	73	_		
	30	R1624 7	9		3	1	71	_	72	73	_		
				1		70	71	7Z	72	73	7Y		
	35	R1624 3	9		3	70	71	_	72	73			
				1		70	71	7Z	1	73	7Y		
	45	R1624 4	9		3		_	_	72	_	_		
				1		70	_	7Z	72	_	7Y		
FNN	20	R1693 8	9	_	3	60	_	_	_	-	_		
	25	R1693 2	9	-	3	60	_	_	_	-	_		
FKN	20	R1663 8	9	_	3	60	-	_	_	-	_		
	25	R1663 2	9	-	3	60	_	_	_	-	_		
SNN	20	R1694 8	9	_	3	1	_	_	_	-			
	25	R1694 2	9	-	3	60	_	-	_	_	_		
SKN	20	R1664 8	9	_	3	60	_	_	_	-	_		
	25	R1664 2	9	_	3	60	_	_	_	-	_		

Esempio di ordinazione

Opzioni:

- Pattini a sfere BSHP Resist CR, FNS
- Grandezza 45
- Classe di precarico C1
- Classe di precisione H
- ► Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione: R1651 413 70

Classi di precarico

C0 = Senza precarico (gioco) C1 = Precarico leggero

Guarnizioni

SS = Guarnizione standard

LS = Guarnizione a bassa resistenza d'attrito

DS = Guarnizione a doppio labbro

Legenda

Cifre grigie

= Nessuna variante preferita/ combinazione

(in parte tempi di consegna più lunghi)

Pattino a sfera BSHP per carichi pesanti

Modello	Grandezza	Pattini a sfere di grandezza	Classe di precar	ico	Classe di precisione	Guarnizione per pattini a sfere senza gabbia guida-sfere
			C0	C1	H	ss
FNS	55	R1651 5	9	1	3	60
	65	R1651 6	9	1	3	60
FLS	55	R1653 5	9	1	3	60
	65	R1653 6	9	1	3	60
	•					
SNS	55	R1622 5	9	1	3	60
	65	R1622 6	9	1	3	60
SLS	55	R1623 5	9	1	3	60
	65	R1623 6	9	1	3	60
SNH	55	R1621 5	9	1	3	60
SLH	55	R1624 5	9	1	3	60

Pattini a sfere super

Modello	Grandezza	Pattini a sfere di grandezza	Classe di preca	ico	Classe di precisione	Guarnizione per pattini a sfere senza gabbia guida-sfere				
			C0	C1	н	SS	LS	DS		
FKS	15	R1661 1	9	-	3	70	71	_		
	20	R1661 8	9	_	3	70	71			
	25	R1661 2	9	_	3	70	71	_		
	30	R1661 7	9		3	70	71	_		
				1	3	70	71	7Z		
	35	R1661 3	9		3	70	71	_		
				1	3	70	71	7Z		
SKS	15	R1662 1	9	_	3	70	71			
	20	R1662 8	9	_	3	70	71			
	25	R1662 2	9	_	3	70	71			
	30	R1662 7	9		3	70	71			
				1	3	70	71	7Z		
	35	R1662 3	9		3	70	71	_		
				1	3	70	71	7Z		

Avvertenza

Per le misure, il disegno quotato, i fattori di carico, la rigidezza e i momenti vedere Pattino a sfere standard/per carichi pesanti BSHP e Pattino a sfere super.

Proprietà eccellenti

- ► Elevata rigidezza in tutte le direzioni di carico
- ► Elevata resistenza momento torcente

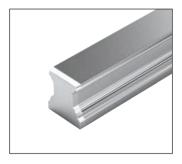
Nastro di copertura garantito per i fori di fissaggio della rotaia a sfere

- ► Una copertura per tutti i fori consente di risparmiare tempi e costi
- ► In acciaio per molle resistente alla corrosione secondo DIN EN 10088
- ► Semplice e sicuro nel montaggio
- ► Aggancio e fissaggio

Rotaie a sfere con nastro di copertura e chiusure a nastro in alluminio

Senza fori filettati anteriori (non necessari)

Rotaie a sfere con nastro di copertura e cappellotti di protezione avvitati in plastica


► Con fori filettati anteriori

Rotaie a sfere con tappi di chiusura fori in plastica

Rotaie a sfere con tappi di chiusura fori in acciaio

Rotaie a sfere avvitabili dal basso

Definizione forma rotaie a sfere

Criterio	Denominazione	Abbrevia	empio)	
		s	N	S
Larghezza	Sottile (S)	S		
	Largo (B)	В		
Lunghezza	Normale (N)		N	
Altezza	Altezza standard (S)			S
	Senza scanalatura nel fondo (O)			0

zione di rotaie di guida con lunghezze delle rotaie consigliate

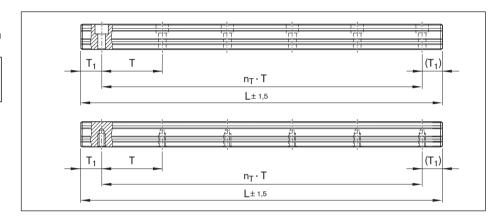
Ordinazione di rotaie a sfere con lunghezze delle rotaie consigliate

Il rilevamento dei seguenti esempi di ordinazione è valido per tutte le rotaie a sfere. Le lunghezze rotaia consigliata sono più economiche.

Gran- dezza	Rotaia con grandezza	Class	Classe di precisione		Numero dei Lunghezza re (mm),	,		Lunghezza rotaia raccomandata secondo la formula L = n _B · T – 4 mm		
		N	н	Р	SP	UP	Monopezzo	In più tratti		Numero massimo dei fori n _B
15	R1605 13	4	3	2	1	9	31,	3.,	60	64
20	R1605 83	4	3	2	1	9	31,	3.,	60	64
25	R1605 23	4	3	2	1	9	31,	3.,	60	64
30	R1605 73	4	3	2	1	9	31,	3.,	80	48
35	R1605 33	4	3	2	1	9	61,	6.,	80	48
45	R1605 43	4	3	2	1	9	61,	6.,	105	36
55	R1605 53	4	3	2	1	9	61,	6.,	120	32
65	R1605 63	4	3	2	1	9	61,	6.,	150	25
Es.:	R1605 73		3				31, 1676			

Estratto dalla tabella con codici materiale e lunghezze rotaia consigliate per esempio d'ordine

Dalla lunghezza desiderata della rotaia alla lunghezza rotaia consigliata


$$L = \left(\frac{L_W}{T}\right)^* \cdot T - 4$$

Esempio di calcolo

$$L = \left(\frac{1660}{80 \text{ mm}}\right) \cdot 80 \text{ mm} - 4 \text{ mm}$$

 $L = 21 \cdot 80 \text{ mm} - 4 \text{ mm}$

 $L = 1676 \, \text{mm}$

Base: Numero dei fori

$$L = n_B \cdot T - 4 \text{ mm}$$

Base: Numero delle divisioni

$$L = n_{T} \cdot T + 2 \cdot T_{1S}$$

L = Lunghezza rotaia consigliata (mm)

L_W = Lunghezza desiderata rotaia (mm)

= Divisione (mm)

 T_{1S} = Quota preferenziale (mm)

 n_B = Numero dei fori (-)

= Numero delle divisioni (-)

Avvertenze sugli esempi di ordinazione

Se la quota preferenziale T_{1S} non può essere utilizzata:

- Selezionare la distanza definitiva
 T₁ tra T_{1S} e T_{1 min}
- In alternativa è possibile selezionare la distanza definitiva T₁ fino a T_{1 max}

Esempio di ordinazione 1 (fino a L_{max}):

- Rotaia a sfere SNS gr. 30 con nastro di copertura e serranastri
- ► Classe di precisione H
- Lunghezza rotaia calcolata 1676 mm, (20 · T, quota preferenziale
 T_{1S} = 38 mm;
 Numero dei fori n_B = 21)

Esempio di ordinazione 2 (oltre L_{max})

- ► Rotaia a sfere SNS gr. 30 con nastro di copertura e serranastri
- Classe di precisione H
- ► Lunghezza rotaia calcolata 5116 mm, 2 tratti (63 · T, quota preferenziale T_{1S} = 38 mm; numero dei fori n_B = 64)

Indicazioni per l'ordine

Codice materiale, lunghezza rotaia (mm) $\rm T_1 \ / \ n_T \cdot T \ / \ T_1 \ (mm)$

R1605 733 31, 1676 mm 38 / 20 · 80 / 38 mm

Indicazioni per l'ordine

Codice materiale con numero di tratti, lunghezza rotaia (mm) $T_1 \ / \ n_T \cdot T \ / \ T_1 \ (mm)$

R1605 733 32, 5116 mm 38 / 63 · 80 / 38 mm

Con una lunghezza delle rotaie oltre $L_{\rm max}$ vengono assemblati da Rexroth determinati pezzi.

^{*} Arrotondare il quoziente L_W/T al numero intero!

SNS/SNO con nastro di copertura e serranastri

R1605 .3. ../ R1605 .B. ..

Avvitabili dall'alto, con nastro di protezione in acciaio per molla resistente alla corrosione secondo DIN EN 10088 e chiusure a nastro in alluminio (senza fori filettati frontali)

Avvertenze

- Fissare il nastro di protezione!
- Serranastri compresi nella dotazione.
- Osservare le istruzioni di montaggio! Richiedere il "Manuale di montaggio per guide su rotaia a sfere" e il "Manuale di montaggio per nastro di copertura".
- ▶ Rotaia a sfere disponibile anche in più tratti.

Disponibili ulteriori rotaie a sfere SNS/SNO e accessori.

Nastro di copertura, cappuccio di protezione (vedi Accessori per rotaie a sfere)

Rotaie a sfere SNO R1605 .B. .. con superficie di fondo liscia per superfici di montaggio di componenti in ghisa

Disponibile nelle dimensioni 25-45 e classe di precisione P e SP.

Opzioni e codici materiale

Grandezza	Rotaia a sfere con grandezza	Class	e di p	orecis	ione		Numero di tratti ., Lunghezza rotaia L (mm),			Lunghezza rotaia consigliata secondo la formula L = n _B · T - 4 mm
		N	Н	Р	SP	UP	Monopezzo	In più tratti		Numero massimo di fori n _B
15	R1605 13	4	3	2	1	9	31,	3.,	60	64
20	R1605 83	4	3	2	1	9	31,	3.,	60	64
25	R1605 23	4	3	2	1	9	31,	3.,	60	64
30	R1605 73	4	3	2	1	9	31,	3.,	80	48
35	R1605 33	4	3	2	1	9	61,	6.,	80	48
45	R1605 43	4	3	2	1	9	61,	6.,	105	36
55	R1605 53	4	3	2	1	9	61,	6.,	120	32
65	R1605 63	4	3	2	1	9	61,	6.,	150	25
Es.:	R1605 73	T '	3				31, 1676			1

Esempio di ordinazione 1 (fino a L_{max}):

Opzioni:

- ► Rotaia a sfere SNS
- ► Grandezza 30
- Classe di precisione H
- ▶ Monopezzo
- ► Lunghezza rotaia L = 1676 mm

Numero di identificazione: R1605 733 31, 1676 mm

Esempio di ordinazione 2 (oltre L_{max})

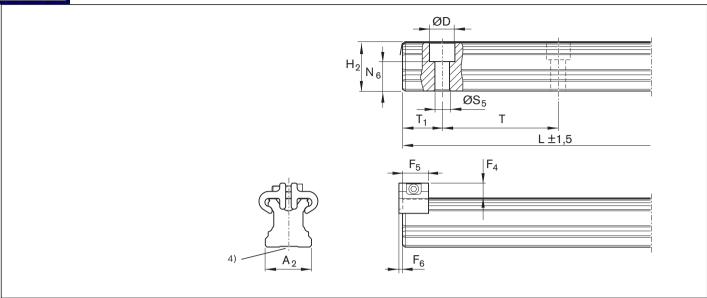
Opzioni:

- ► Rotaia a sfere SNS
- Grandezza 30
- ► Classe di precisione H
- ▶ 2 tratti
- ► Lunghezza rotaia L = 5116 mm

Numero di identificazione: R1605 733 32, 5116 mm

Esempio di ordinazione 3

(fino a L_{max} , con superficie di fondo liscia)


Opzioni:

- ► Rotaia a sfere SNO
- ► Grandezza 30
- ► Classe di precisione H
- ▶ Monopezzo
- ► Lunghezza rotaia

L = 1676 mm

Numero di identificazione: R1605 7B3 31, 1676 mm

Grandezza	Dimensio	ni (mm)										,	Ĩ	Dimensioni m
	A ₂	D	$F_4^{2)}$	F ₅	F_6	$H_{2}^{1)}$	L_{max}	$N_6^{\pm0,5}$	S ₅	Т	T _{1 min}	T _{1S} 3)	T _{1 max}	(kg/m)
15	15	7,4	7,3	12	2,0	16,30	3 836	10,3	4,5	60	12	28,0	50	1,4
20	20	9,4	7,1	12	2,0	20,75	5 816	13,2	6,0	60	13	28,0	50	2,4
25	23	11,0	8,2	13	2,0	24,45	5 816	15,2	7,0	60	13	28,0	50	3,2
30	28	15,0	8,7	13	2,0	28,55	5 836	17,0	9,0	80	16	38,0	68	5,0
35	34	15,0	11,7	16	2,2	32,15	5 836	20,5	9,0	80	16	38,0	68	6,8
45	45	20,0	12,5	18	2,2	40,15	5 771	23,5	14,0	105	18	50,5	89	10,5
55	53	24,0	14,0	17	3,2	48,15	3 836	29,0	16,0	120	20	58,0	102	16,2
65	63	26,0	15,0	17	3,2	60,15	3 746	38,5	18,0	150	21	73,0	130	22,4

- 1) Dimensione H₂ con nastro di protezione Grandezza 15 con nastro di copertura 0,1 mm Grandezza 20 - 30 con nastro di copertura 0,2 mm Grandezza 35 - 65 con nastro di copertura 0,3 mm
- 2) Dimensione H₄ con nastro di copertura
- 3) Quota preferenziale consigliata T_{1S} con tolleranze ± 0,75.
 4) Rotaie a sfere SNO con superficie di fondo liscia (senza scanalatura sul fondo).

SNS/SNO con nastro di copertura e cappucci di protezione

R1605 .6. ../ R1605 .D. ..

Avvitabili dall'alto, con nastro di copertura in acciaio resistente alla corrosione per molle secondo DIN EN 10088 e cappucci di protezione avvitati in plastica (con foro filettato frontale)

Avvertenze

- ► Fissare il nastro di protezione!
- ► Cappucci di protezione con viti e rondelle nel contenuto della fornitura.
- ▶ Osservare le istruzioni di montaggio! Richiedere il "Manuale di montaggio per guide su rotaia a sfere" e il "Manuale di montaggio per nastro di copertura".
- ► Rotaia a sfere disponibile anche in più tratti.

Ulteriori rotaie a sfere SNS/SNO e accessori

Nastro di copertura, cappuccio di protezione (vedi Accessori per rotaie a sfere)

Rotaie a sfere SNO R1605 .D. .. con superficie di fondo liscia per superfici di montaggio di componenti in ghisa minerale

Disponibile nelle dimensioni 25-45 e classe di precisione P e SP.

Opzioni e codici materiale

Grandezza	Rotaia a sfere con grandezza	1	se di p	recis	ione		Numero di tra Lunghezza ro	atti ., taia L (mm),	Divisione T (mm)	Lunghezza rotaia consigliata secondo la formula L = n _B · T – 4 mm
		N	н	Р	SP	UP	Monopezzo	In più tratti		Numero massimo di fori n _B
15	R1605 16	4	3	2	1	9	31,	3.,	60	64
20	R1605 86	4	3	2	1	9	31,	3.,	60	64
25	R1605 26	4	3	2	1	9	31,	3.,	60	64
30	R1605 76	4	3	2	1	9	31,	3.,	80	48
35	R1605 36	4	3	2	1	9	61,	6.,	80	48
45	R1605 46	4	3	2	1	9	61,	6.,	105	36
55	R1605 56	4	3	2	1	9	61,	6.,	120	32
65	R1605 66	4	3	2	1	9	61,	6.,	150	25
Es.:	R1605.76		3				31 1676			

Esempio di ordinazione 1 (fino a L_{max}):

Opzioni:

- ▶ Rotaia a sfere SNS
- ► Grandezza 30
- ► Classe di precisione H
- ▶ Monopezzo
- ► Lunghezza rotaia

L = 1676 mm

Numero di identificazione: R1605 763 31, 1676 mm

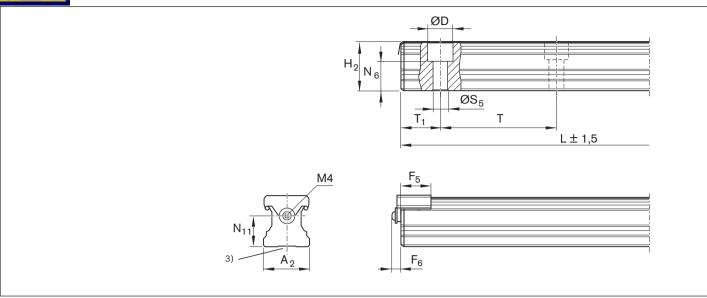
Esempio di ordinazione 2 (oltre L_{max})

Opzioni:

- Rotaia a sfere SNS
- ► Grandezza 30
- ► Classe di precisione H
- ▶ 2 tratti
- ► Lunghezza rotaia L = 5116 mm

Numero di identificazione: R1605 763 32, 5116 mm

Esempio di ordinazione 3 (fino a L_{max}, con superficie di fondo liscia)


Opzioni:

- ▶ Rotaia a sfere SNO
- ► Grandezza 30
- ► Classe di precisione H
- ► Monopezzo
- ► Lunghezza rotaia

L = 1676 mm

Numero di identificazione: R1605 7**D**3 31, 1676 mm

Grandezza	Dimension	ni (mm)						ı						Dimensioni m
	A ₂	D	F_5	F_6	H ₂ ¹⁾	\mathbf{L}_{\max}	$N_6^{\pm0,5}$	N ₁₁	S ₅	Т	T _{1 min} ²⁾	T _{1S} 4)	T _{1 max}	(kg/m)
15	15	7,4	14,0	6,5	16,30	3 836	10,3	9,8	4,5	60	12	28,0	50	1,4
20	20	9,4	14,0	6,5	20,75	5 816	13,2	13,0	6,0	60	13	28,0	50	2,4
25	23	11,0	15,2	6,5	24,45	5 816	15,2	15,0	7,0	60	13	28,0	50	3,2
30	28	15,0	15,2	7,0	28,55	5 836	17,0	18,0	9,0	80	16	38,0	68	5,0
35	34	15,0	18,0	7,0	32,15	5 836	20,5	22,0	9,0	80	16	38,0	68	6,8
45	45	20,0	20,0	7,0	40,15	5 771	23,5	30,0	14,0	105	18	50,5	89	10,5
55	53	24,0	20,0	7,0	48,15	3 836	29,0	30,0	16,0	120	20	58,0	102	16,2
65	63	26,0	20,0	7,0	60,15	3 746	38,5	40,0	18,0	150	21	73,0	130	22,4

- 1) Dimensione H₂ con nastro di protezione Grandezza 15 con nastro di copertura 0,1 mm Grandezza 20 - 30 con nastro di copertura 0,2 mm Grandezza 35 - 65 con nastro di copertura 0,3 mm
- 2) In caso di valore inferiore a $T_{1\,min}$ non sono possibili fori filettati frontali. Fissare il nastro di protezione.
- 3) Rotaie a sfere SNO con superficie di fondo liscia (senza scanalatura sul fondo).
- **4)** Quota preferenziale consigliata T1S con tolleranze ± 0,75.

SNS/SNO con tappi di chiusura fori in plastica

R1605 .0. ../ R1605 .C. ..

Avvitabili dall'alto, con tappi di chiusura fori in plastica

Avvertenze

- I tappi di chiusura fori in plastica fanno parte della fornitura.
- Osservare le istruzioni di montaggio!
 Richiedere il "Manuale di montaggio per guide a sfere su rotaia".
- ▶ Rotaia a sfere disponibile anche in più tratti.

Ulteriori rotaie a sfere SNS e accessori

- Rotaie a sfere resistenti alla corrosione Resist NR, Resist CR
- ► Tappi di copertura in plastica vedi accessori per rotaie a sfere

Rotaie a sfere SNO R1605 .C. .. con superficie di fondo liscia per superfici di montaggio di componenti in ghisa minerale

Disponibile nelle dimensioni 25-45 e classe di precisione P e SP.

Opzioni e codici materiale

Grandezza	Rotaia a sfere con grandezza		e di p	recis	ione		Numero di tratti ., Lunghezza rotaia L (mm),		Divisione T (mm)	Lunghezza rotaia consigliata secondo la formula L = n _B · T – 4 mm
		N	Н	Р	SP	UP	Monopezzo	In più tratti		Numero massimo di fori n _B
15	R1605 10	4	3	2	1	9	31,	3.,	60	64
20	R1605 80	4	3	2	1	9	31,	3.,	60	64
25	R1605 20	4	3	2	1	9	31,	3.,	60	64
30	R1605 70	4	3	2	1	9	31,	3.,	80	48
35	R1605 30	4	3	2	1	9	31,	3.,	80	48
45	R1605 40	4	3	2	1	9	31,	3.,	105	36
55	R1605 50	4	3	2	1	9	31,	3.,	120	32
65	R1605 60	4	3	2	1	9	31,	3.,	150	25
Es.:	R1605 70		3				31, 1676			

Esempio di ordinazione 1 (fino a L_{max}):

Opzioni:

- ► Rotaia a sfere SNS
- ► Grandezza 30
- ► Classe di precisione H
- ▶ Monopezzo
- ► Lunghezza rotaia

L = 1676 mm

Numero di identificazione: R1605 703 31, 1676 mm

Esempio di ordinazione 2 (oltre L_{max})

Opzioni:

- ► Rotaia a sfere SNS
- ▶ Grandezza 30
- ► Classe di precisione H
- ▶ 2 tratti
- ► Lunghezza rotaia

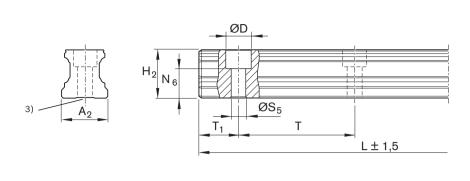
L = 5116 mm

Numero di identificazione: R1605 703 3**2**, 5116 mm

Esempio di ordinazione 3

(fino a L_{max} , con superficie di fondo liscia)

Opzioni:


- ► Rotaia a sfere SNO
- ► Grandezza 30
- ► Classe di precisione H
- Monopezzo
- ► Lunghezza rotaia

L = 1676 mm

Numero di identificazione:

R1605 7**C**3 31, 1676 mm

Grandezza	Dimensioni (n	nm)									Dimensioni m
	A ₂	D	H ₂ ¹⁾	L_{max}	$N_6^{\pm 0,5}$	S_5	T	T _{1 min}	$T_{1S}^{2)}$	T _{1 max}	(kg/m)
15	15	7,4	16,20	3 836	10,3	4,5	60	10	28,0	50	1,4
20	20	9,4	20,55	5 816	13,2	6,0	60	10	28,0	50	2,4
25	23	11,0	24,25	5 816	15,2	7,0	60	10	28,0	50	3,2
30	28	15,0	28,35	5 836	17,0	9,0	80	12	38,0	68	5,0
35	34	15,0	31,85	5 836	20,5	9,0	80	12	38,0	68	6,8
45	45	20,0	39,85	5 771	23,5	14,0	105	16	50,5	89	10,5
55	53	24,0	47,85	3 836	29,0	16,0	120	18	58,0	102	16,2
65	63	26,0	59,85	3 746	38,5	18,0	150	20	73,0	130	22,4

- 1) Dimensione H₂ senza nastro di protezione
- Quota preferenziale consigliata T_{1S} con tolleranze ± 0,75.
 Rotaie a sfere SNO con superficie di fondo liscia (senza scanalatura sul fondo).

SNS con tappi di chiusura in acciaio

R1606 .5. ..

Avvitabile dall'alto, per tappi di chiusura fori in acciaio

Avvertenze

- ► Tappi di chiusura fori in acciaio non compresi nella
- Osservare le istruzioni di montaggio! Richiedere il "Manuale di montaggio per guide a sfere su rotaia".
- ▶ Rotaia a sfere disponibile anche in più tratti.

Ulteriori rotaie a sfere SNS e accessori

▶ Per i tappi di chiusura fori in acciaio, il dispositivo di montaggio per tappi di chiusura fori in acciaio, vedi Accessori per rotaie a sfere

Opzioni e codici materiale

Grandezza	Rotaia a sfere con grandezza	Class	se di p	recis	ione	Numero di tratti ., Lunghezza rotaia L (mm),			Lunghezza rotaia consigliata secondo la formula L = n _B · T – 4 mm
		N	н	Р	SP	Monopezzo	In più tratti		Numero massimo di fori n _B
25	R1606 25	4	3	2	1	31,	3.,	60	64
30	R1606 75	4	3	2	1	31,	3.,	80	48
35	R1606 35	4	3	2	1	31,	3.,	80	48
45	R1606 45	4	3	2	1	31,	3.,	105	36
55	R1606 55	4	3	2	1	31,	3.,	120	32
65	R1606 65	4	3	2	1	31,	3.,	150	25
Es.:	R1606 75		3			31, 1676			

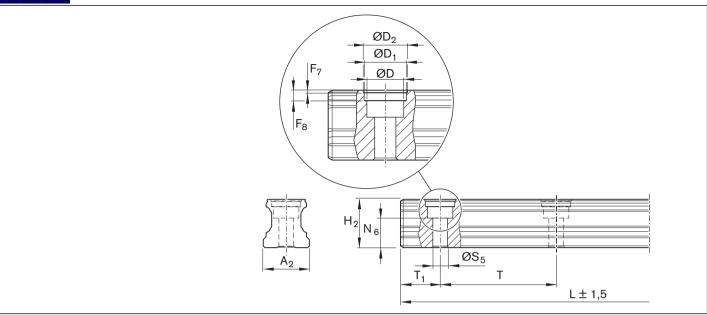
Esempio di ordinazione 1 (fino a L_{max}):

Opzioni:

- ► Rotaia a sfere SNS
- Grandezza 30
- ► Classe di precisione H
- Monopezzo
- Lunghezza rotaia L = 1676 mm

Numero di identificazione: R1606 753 31, 1676 mm

Esempio di ordinazione 2 (oltre L_{max})


Opzioni:

- ► Rotaia a sfere SNS
- ► Grandezza 30
- ► Classe di precisione H
- ▶ 2 tratti
- ► Lunghezza rotaia

L = 5116 mm

Numero di identificazione: R1606 753 32, 5116 mm

Grandezza	Dimensio	ni (mm)												Dimensioni m
	A ₂	D	D_1	D_2	F ₇	F ₈	$H_{2}^{1)}$	L_{max}	$N_6^{\pm0,5}$	S ₅	Т	T _{1 min}	$T_{1S}^{2)}$	T _{1 max}	(kg/m)
25	23	11,0	12,55	13,0	0,90	3,7	24,25	5 816	15,2	7,0	60	13	28,0	50	3,2
30	28	15,0	17,55	18,0	0,90	3,6	28,35	5 836	17,0	9,0	80	16	38,0	68	5,0
35	34	15,0	17,55	18,0	0,90	3,6	31,85	5 836	20,5	9,0	80	16	38,0	68	6,8
45	45	20,0	22,55	23,0	1,45	8,0	39,85	5 771	23,5	14,0	105	18	50,5	89	10,5
55	53	24,0	27,55	28,0	1,45	8,0	47,85	3 836	29,0	16,0	120	20	58,0	102	16,2
65	63	26,0	29,55	30,0	1,45	8,0	59,85	3 746	38,5	18,0	150	21	73,0	130	22,4

- Dimensione H₂ senza nastro di protezione
 Quota preferenziale consigliata T_{1S} con tolleranze ± 0,75.

SNS avvitabili dal basso

R1607 .0. ..

Avvitabile dal basso

Avvertenze

- ► Osservare le istruzioni di montaggio! Richiedere il "Manuale di montaggio per guide a sfere su rotaia".
- ► Rotaia a sfere disponibile anche in più tratti.

Ulteriori rotaie a sfere SNS e accessori

▶ Rotaie a sfere resistenti alla corrosione Resist NR, Resist CR

Opzioni e codici materiale

Grandezza	Rotaia a sfere con grandezza	Class	e di p	orecis	ione		Numero di tr Lunghezza ro	ratti ., otaia L (mm),	Divisione T (mm)	Lunghezza rotaia consigliata secondo la formula L = n _B · T - 4 mm
		N	н	Р	SP	UP	Monopezzo	In più tratti		Numero massimo di fori n _B
15	R1607 10	4	3	2	1	9	31,	3.,	60	64
20	R1607 80	4	3	2	1	9	31,	3.,	60	64
25	R1607 20	4	3	2	1	9	31,	3.,	60	64
30	R1607 70	4	3	2	1	9	31,	3.,	80	48
35	R1607 30	4	3	2	1	9	31,	3.,	80	48
45	R1607 40	4	3	2	1	9	31,	3.,	105	36
55	R1607 50	4	3	2	1	9	31,	3.,	120	32
65	R1607 60	4	3	2	1	9	31,	3.,	150	25
Fs.	R1607 70		3				31 1676			1

Esempio di ordinazione 1 (fino a L_{max}):

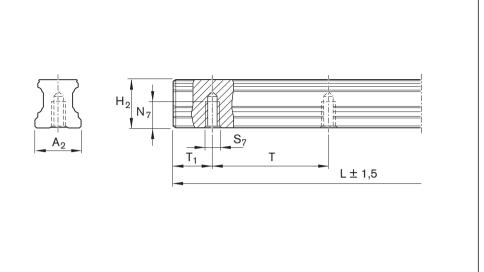
Opzioni:

- ► Rotaia a sfere SNS
- ► Grandezza 30
- ► Classe di precisione H
- ▶ Monopezzo
- ► Lunghezza rotaia

L = 1676 mm

Numero di identificazione: R1607 703 31, 1676 mm

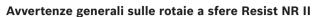
Esempio di ordinazione 2 (oltre L_{max})

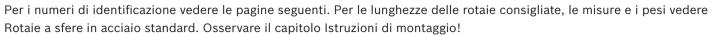

Opzioni:

- ► Rotaia a sfere SNS
- ► Grandezza 30
- ► Classe di precisione H
- ▶ 2 tratti
- ► Lunghezza rotaia

L = 5116 mm

Numero di identificazione: R1607 703 32, 5116 mm





Grandezza	Dimensioni (m	m)				,				Dimensioni m
	A ₂	H ₂ ¹⁾	L_{max}	N_7	S ₇	T	T _{1min}	$T_{1S}^{2)}$	T _{1 max}	(kg/m)
15	15	16,20	3 836	7,5	M5	60	10	28,0	50	1,4
20	20	20,55	5 816	9,0	M6	60	10	28,0	50	2,4
25	23	24,25	5 816	12,0	M6	60	10	28,0	50	3,2
30	28	28,35	5 836	15,0	M8	80	12	38,0	68	5,0
35	34	31,85	5 836	15,0	M8	80	12	38,0	68	6,8
45	45	39,85	5 771	19,0	M12	105	16	50,5	89	10,5
55	53	47,85	3 836	22,0	M14	120	18	58,0	102	16,2
65	63	59,85	3 746	25,0	M16	150	20	73,0	130	22,4

- Dimensione H₂ senza nastro di protezione
 Quota preferenziale consigliata T_{1S} con tolleranze ± 0,75.

Descrizione del prodotto

Richiedere il "Manuale di montaggio per guide su rotaia a sfere" e il "Manuale di montaggio per nastro di copertura".

Accessori: Nastro di copertura, serranastri, tappi di chiusura fori, ... per rotaie a sfere, vedi il capitolo "Accessori per rotaie a sfere"

Resistenza alla corrosione e condizioni di utilizzo

Le rotaie a sfere Resist NR II così come tutte le parti metalliche in acciaio resistenti alla corrosione secondo DIN EN 10088, serranastri in alluminio. Le rotaie a sfere Resist NR II sono utilizzate in particolare in presenza di mezzi acquosi, acidi molto diluiti, soluzioni alcaline o soluzioni saline. Queste guide sono straordinarie anche per l'utilizzo con un'umidita relativa superiore al 70 % e temperature superiori ai 30 °C. Queste condizioni sono presenti soprattutto in impianti di pulizia, impianti di galvanizzazione e di decappaggio, impianti di sgrassatura a vapore e macchine frigorifere. Poiché non è necessaria una protezione aggiuntiva contro la corrosione, le guide a sfere su rotaia Resist NR II sono perfette per l'impiego in camere bianche e in generale nella produzione di circuiti stampati. Ulteriori possibilità di impiego nell'industria farmaceutica e alimentare.

Pattino a sfere consigliato per rotaie a sfere Resist NR II vedi capitolo Pattino a sfere Resist NR II In caso di utilizzo di rotaie a sfere NRII, devono essere utilizzati sempre i fattori di carico più bassi dei pattini a sfere NRII. Combinazione di differenti classi di precisione

Quando si combinano rotaie e pattini di diverse classi di precisione, si modificano le tolleranze per le dimensioni H e A₃ (vedi "Classi di precisione e loro tolleranze").

Rotaie a sfere Resist NR II

R2045 .3. .., SNS avvitabile dall'alto, con nastro di copertura e chiusure nastro

Opzioni e codici materiale

Grandezza	Rotaia a sfere con grandezza	Classe o	li precisi	one	Numero di tratti ., Lunghezza rotaia L (mm	ı) ,
		N	Н	P	Monopezzo	In più tratti
15 ¹⁾	R2045 13	4	3	2	31,	3.,
20	R2045 83	4	3	2	31,	3.,
25	R2045 23	4	3	2	31,	3.,
30	R2045 73	4	3	2	31,	3.,
35	R2045 33	4	3	2	61,	6.,
Es.:	R2045 73		3	,	31, 1676	

1) Lunghezza rotaia massima 1856 mm, numero massimo di fori $\rm n_B$ 30

Istruzioni di montaggio

- ► Fissare il nastro di protezione!
- Serranastri compresi nella dotazione.
- ► Rotaia a sfere disponibile anche in più tratti.

Esempio di ordinazione 1 (fino a L_{max}):

Opzioni:

- ► Rotaia a sfere NR II, SNS
- ► Grandezza 30
- ► Classe di precisione H
- ▶ Monopezzo
- ► Lunghezza rotaia L = 1676 mm

Numero di identificazione: R2045 733 31, 1676 mm

Esempio di ordinazione 2 (oltre L_{max})

Opzioni:

- ► Rotaia a sfere NR II, SNS
- ► Grandezza 30
- ► Classe di precisione H
- ▶ 2 tratti
- ► Lunghezza rotaia L = 5116 mm

Numero di identificazione: R2045 733 32, 5116 mm

a sfere Resist NR II

2045 .0. .., SNS avvitabili dall'alto, con tappi di chiusura fori in plastica

Opzioni e codici materiale

Grandezza	Rotaia a sfere con grandezza	Classe o	li precisi	one	Numero di tratti ., Lunghezza rotaia L (mm),						
		N	Н	Р	Monopezzo	In più tratti					
15 ¹⁾	R2045 10	4	3	2	31,	3.,					
20	R2045 80	4	3	2	31,	3.,					
25	R2045 20	4	3	2	31,	3.,					
30	R2045 70	4	3	2	31,	3.,					
35	R2045 30	4	3	2	31,	3.,					
Es.:	R2045 70		3		31, 1676						

1) Lunghezza rotaia massima 1856 mm, numero massimo di fori n_B 30

Istruzioni di montaggio

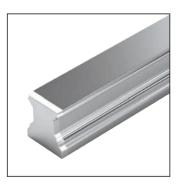
- ► I tappi di chiusura fori in plastica fanno parte della fornitura.
- ► Rotaia a sfere disponibile anche in più tratti.

Esempio di ordinazione 1 (fino a L_{max}):

Opzioni:

- ► Rotaia a sfere NR II, SNS
- ► Grandezza 30
- ► Classe di precisione H
- ▶ Monopezzo
- ► Lunghezza rotaia L = 1676 mm

Numero di identificazione: R2045 703 31, 1676 mm


Esempio di ordinazione 2 (oltre L_{max})

Opzioni:

- ► Rotaia a sfere NR II, SNS
- ► Grandezza 30
- ► Classe di precisione H
- ▶ 2 tratti
- ► Lunghezza rotaia L = 5116 mm

Numero di identificazione: R2045 703 32, 5116 mm

R2047 .0. .., SNS avvitabile dal basso

Opzioni e codici materiale

Grandezza	Rotaia a sfere	Classe o	li precisi	one	Numero di tratti .,							
	con grandezza				Lunghezza rotaia L (mr	n),						
		N	Н	P	Monopezzo	In più tratti						
15 ¹⁾	R2047 10	4	3	2	31,	3.,						
20	R2047 80	4	3	2	31,	3.,						
25	R2047 20	4	3	2	31,	3.,						
30	R2047 70	4	3	2	31,	3.,						
35	R2047 30	4	3	2	31,	3.,						
Es.:	R2047 70		3			32, 5116						

1) Lunghezza rotaia massima 1856 mm, numero massimo di fori n_B 30

Istruzioni di montaggio

Rotaia a sfere disponibile anche in più tratti.

Esempio di ordinazione 1 (fino a L_{max}):

Opzioni:

- ► Rotaia a sfere NR II, SNS
- ► Grandezza 30
- ► Classe di precisione H
- ► Monopezzo
- ► Lunghezza rotaia

L = 1676 mm

Numero di identificazione: R2047 703 31, 1676 mm

Esempio di ordinazione 2 (oltre L_{max})

Opzioni:

- ► Rotaia a sfere NR II, SNS
- ► Grandezza 30
- ► Classe di precisione H
- ▶ 2 tratti
- ▶ Lunghezza rotaia

L = 5116 mm

Numero di identificazione: R2047 703 32, 5116 mm

Descrizione del prodotto

Avvertenze generali sulle rotaie a sfere Resist CR

Per i numeri di identificazione vedere le pagine seguenti. Per le lunghezze delle rotaie consigliate, le misure e i pesi vedere Rotaie a sfere in acciaio standard. Osservare il capitolo Istruzioni di montaggio!

Richiedere il "Manuale di montaggio per guide su rotaia a sfere" e il "Manuale di montaggio per nastro di copertura".

Accessori: Nastro di copertura, serranastri, tappi di chiusura fori, ... per rotaie a sfere, vedi il capitolo "Accessori per rotaie a sfere"

Rivestimento anti-corrosione rivestimento Resist CR

Rotaie a sfere in acciaio con rivestimento resistente alla corrosione, con cromatura dura, argento opaco.

Guide a sfere con lati frontali rivestiti

- ► Lati frontali, smussi e filettatura anteriore rivestiti, codici materiale: R16.. ... 41 oppure R16.. ... 71
- ▶ Le rotaie a sfere in più tratti sono smussate sui punti di giunzione, su entrambi i lati.

Pattini a sfere consigliati per le rotaie a sfere Resist CR della classe di precisione H e della classe di precarico C0 e C1

Grandezza 15 - 65: classe di precisione H, classe di precarico CO

Grandezza 30 - 65: classe di precisione H, classe di precarico C1

Combinazione di differenti classi di precisione

Quando si combinano rotaie e pattini di diverse classi di precisione, si modificano le tolleranze per le dimensioni H e A3 (vedi "capitolo Classi di precisione e loro tolleranze").

Rotaie a sfere Resist CR

R1645 .3. .., SNS avvitabile dall'alto, con nastro di copertura e chiusure nastro

Opzioni e codici materiale

Grandezza	Rotaia a sfere con grandezza	Classe di precisione	Numero di tratti ., Lunghezza rotaia L (mm), Monopezzo	In più tratti
		н	Lati frontali rivestiti	Lati frontali rivestiti
15	R1645 13	3	41,	4.,
20	R1645 83	3	41,	4.,
25	R1645 23	3	41,	4.,
30	R1645 73	3	41,	4.,
35	R1645 33	3	71,	7.,
45	R1645 43	3	71,	7.,
55	R1645 53	3	71,	7.,
65	R1645 63	3	71,	7.,
Es.:	R1645 73	3	41, 1676	

Istruzioni di montaggio

- Fissare il nastro di protezione!
- Serranastri compresi nella dotazione.
- ► Rotaia a sfere disponibile anche in più tratti.

Esempio di ordinazione 1 (fino a L_{max}):

Opzioni:

- ► Rotaia a sfere CR, SNS
- ► Grandezza 30
- ► Classe di precisione H
- ▶ Monopezzo
- ► Lati frontali rivestiti
- ► Lunghezza rotaia L = 1676 mm

Numero di identificazione: R1645 733 41, 1676 mm

Esempio di ordinazione 2 (oltre L_{max})

Opzioni:

- ► Rotaia a sfere CR, SNS
- ► Grandezza 30
- ► Classe di precisione H
- ▶ 2 tratti
- ► Lati frontali rivestiti
- ► Lunghezza rotaia L = 5116 mm

Numero di identificazione: R1645 733 4**2**, 5116 mm

a sfere Resist CR

R1645 .0. .., SNS avvitabile dall'alto, con tappi di chiusura fori in plastica

Es.:

Opzioni e codici materiale

Grandezza	Rotaia a sfere con grandezza	Classe di precisione	Numero di tratti ., Lunghezza rotaia L (mm),					
			Monopezzo	In più tratti				
		H	Lati frontali rivestiti	Lati frontali rivestiti				
15	R1645 10	3	41,		4.,			
20	R1645 80	3	41,		4.,			
25	R1645 20	3	41,		4.,			
30	R1645 70	3	41,		4.,			
35	R1645 30	3	41,		4.,			
45	R1645 40	3	41,		4.,			
55	R1645 50	3	41,		4.,			
65	R1645 60		41		Δ			

3

Istruzioni di montaggio

- ▶ I tappi di chiusura fori in plastica fanno parte della fornitura.
- ► Rotaia a sfere disponibile anche in più tratti.

Esempio di ordinazione 1 (fino a L_{max}):

Opzioni:

R1645 70

- ▶ Rotaia a sfere CR, SNS
- ► Grandezza 30
- ► Classe di precisione H
- ▶ Monopezzo
- ► Lati frontali rivestiti
- ► Lunghezza rotaia L = 1676 mm

Numero di identificazione: R1645 703 41, 1676 mm

Esempio di ordinazione 2 (oltre L_{max})

Opzioni:

- ► Rotaia a sfere CR, SNS
- Grandezza 30

41, 1676

- Classe di precisione H
- 2 tratti
- Lati frontali rivestiti
- ► Lunghezza rotaia L = 5116 mm

Numero di identificazione:

R1645 703 42, 5116 mm

R1647 .0. .., SNS avvitabile dal basso

Opzioni e codici materiale

Grandezza	Rotaia a sfere con grandezza	Classe di precisione	Numero di tratti ., Lunghezza rotaia L (mm), Monopezzo	In più tratti
		н	Lati frontali rivestiti	Lati frontali rivestiti
15	R1647 10	3	41,	4.,
20	R1647 80	3	41,	4.,
25	R1647 20	3	41,	4.,
30	R1647 70	3	41,	4.,
35	R1647 30	3	41,	4.,
45	R1647 40	3	41,	4.,
55	R1647 50	3	41,	4.,
65	R1647 60	3	41,	4.,
Es.:	R1647 70	3		42, 5116

Istruzioni di montaggio

Rotaia a sfere disponibile anche in più tratti.

Esempio di ordinazione 1 (fino a L_{max}):

Opzioni:

- ► Rotaia a sfere CR, SNS
- ► Grandezza 30
- ► Classe di precisione H
- ► Monopezzo
- ► Lati frontali rivestiti
- ► Lunghezza rotaia

L = 1676 mm

Numero di identificazione: R1647 703 41, 1676 mm

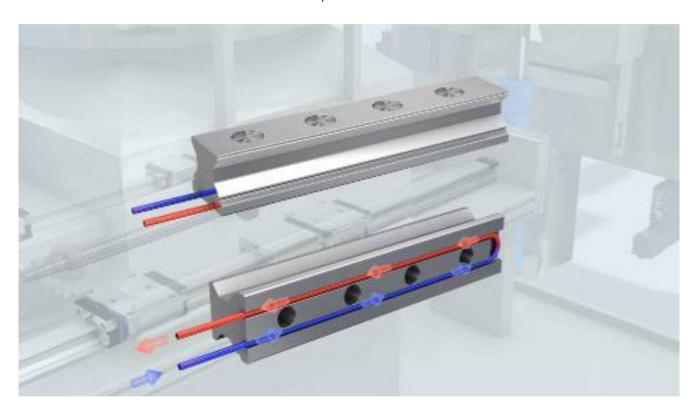
Esempio di ordinazione 2 (oltre L_{max})

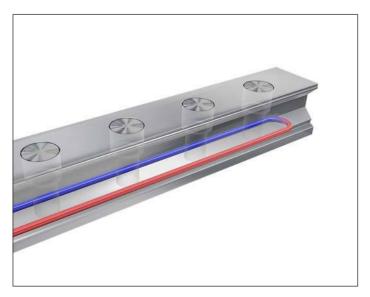
Opzioni:

- Rotaia a sfere CR, SNS
- Grandezza 30
- Classe di precisione H
- 2 tratti
- Lati frontali rivestiti
- ► Lunghezza rotaia

L = 5116 mm

Numero di identificazione: R1647 703 42, 5116 mm

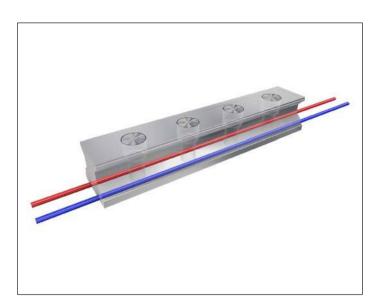



Rotaie a sfere con scala graduata Descrizione del prodotto

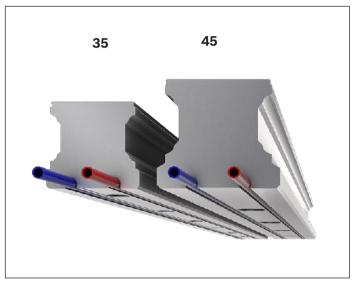
Proprietà eccellenti

Avvio rapido, procedura più precisa, trasformazione semplice.

Ciò che finora era possibile con soluzioni speciali complicate, è ora lo standard: Rexroth ha integrato la scala graduata nelle rotaie di guida. È ora possibile applicarla dovunque siano importanti cicli di corsa rapidi ed estrema precisione, senza rodaggio. Sempre perfettamente graduata e termicamente stabile. E con minore scarto. Perfetta anche per potenziamenti: sostituire semplicemente la rotaia e collegarla alla camicia di raffreddamento presente. Trasformate in un batter d'occhio le macchine standard in macchine di precisione!



Procedura ultraprecisa, personalizzazione flessibile


Poiché le nuove rotaie di guida di Rexroth conducono o dissipano il calore laddove si verifichi o sia necessario, avete tutte le possibilità: non importa dove si trovi la macchina o in quale materiale sia realizzato il bancale macchina: le guide lineari lavorano in modo altamente preciso e termicamente stabile. Senza rodaggi, con buona suddivisione della prima parte. Ciò contribuisce ad un'elevata disponibilità ed aumento della precisione delle parti fino al 75%. Anche su macchine già presenti: pronto per l'allacciamento, collegare semplicemente le rotaie alle camicie di raffreddamento presenti. Fatto.

Altre caratteristiche salienti

- ▶ Ultraprecise: maggiore precisione delle parti fino al 75%, indipendentemente dall'ambiente
- ► Sempre disponibili: nessuno rodaggio sulla temperatura
- ► Flessibili: personalizzabili a seconda delle esigenze e delle modifiche
- Installabili a posteriori: compatibile con sistemi già esistenti
- ► Semplici: pronte per l'allacciamento, utilizza le camicie di raffreddamento presenti

Valori tecnici

▶ Dimensioni guida a sfere: 35/45

► Forme costruttive: R1605

- Copertura della rotaia: Nastro di copertura, cappucci in plastica
- Serie con scanalatura sul fondo
- ► Classi di precisione: P/SP
- ► Lunghezze rotaia: fino a max. 4000 mm
- ► Rinvio della scala graduata: nella rotaia oppure completa
- ▶ In corso di brevettazione

Le rotaie a sfere con scala graduata sono disponibili su richiesta. Le rappresentazioni mostrano in parte la versione di rotaie a rulli.

Descrizione del prodotto

Proprietà eccellenti

- ► Costruzione intercambiabile illimitata attraverso possibilità di combinazione a piacere di tutte le versioni di rotaie a sfere con tutte le varianti di pattini a sfere all'interno di qualsiasi classe di precisione
- ▶ Momento di torsione elevatissimo e rigidità alla torsione parimenti elevata, pertanto utilizzabile soprattutto come guida singola
- ▶ Elevata resistenza momento torcente
- ► Fattori di carico parimenti elevati in tutte e quattro le direzioni principali
- ▶ Protezione completa con guarnizioni integrate
- ▶ Bassa rumorosità e miglior comportamento di scolamento
- ► I migliori valori dinamici:

Velocità: v_{max} fino a 5 m/s $^{1)}$

Accelerazione: a_{max} fino a 500 m/s^{2 1)}

- Lubrificazione permanente su più anni possibile
- ▶ Sistema di lubrificazione minima con serbatoio integrato con lubrificazione a olio¹¹
- ► Raccordi di lubrificazione su tutti i lati con filetto metallico¹)
- ▶ Massima rigidità di sistema attraverso disposizione a O precaricata
- Vasto programma di accessori

Altre caratteristiche salienti

- ▶ Ridotte oscillazioni delle molle grazie alla geometria di ingresso ideale e all'elevato numero di sfere
- ► Filetto di fissaggio frontale per tutte le unità
- Guida con gioco ridotto o leggero pre-carico
- ▶ Scorrimento silenzioso e fluido grazie al rinvio progettato in modo ottimale e alla guida delle sfere o alla gabbia guida-sfere1)
- ► Sovrastrutture sui pattini a sfere avvitabili dall'alto e dal basso¹)
- ▶ Aumento della rigidità in caso di sollecitazione di sollevamento e laterale grazie a ulteriore avvitamento su due fori al centro del pattino a sfere
- ► Prima lubrificazione pattini a sfere in fabbrica¹⁾
- ▶ Disponibile opzionalmente con catena a sfere¹)
- ▶ Per tutte le rotaie a sfere BNS.

Protezione anti-corrosione (opzionale)

► Resist CR:

Corpo del pattino a sfere o della rotaia a sfere in acciaio con rivestimento resistente alla corrosione, con cromatura dura, argento opaco

1) A seconda del tipo

A Grandezza 20/40:

Nuova guida a sfere su rotaia con altri diametri delle sfere. Nessuna struttura intercambiabile possibile con precedente grandezza 20/40!

BNS

Grandezza 35/90

Grandezza 20/40 e 25/70

- ► Con gabbia guida-sfere
- Con prima lubrificazione

Grandezza 20/40 e 25/70:

- ► Con gabbia guida-sfere
- Con prima lubrificazione

Definizione forma pattino a sfere

Criterio	Denominazione	Abbrev	viazione (e	sempio)
		В	N	S
Larghezza	Flangia (F)	F		
	Sottile (S)	S		
	Largo (B)	В		
	Compact (C)	С		
Lunghezza	Normale (N)		N	
	Lungo (L)		L	
	Corto (K)		K	
Altezza	Altezza standard (S)			S
	Alto (H)			Н
	Basso (N)			N

Catena a sfere (opzionale)

► Rumorosità ottimizzata

BNS - Largo Normale Altezza standard

Velocità in acciaio R1671 ... 2.

Valori dinamici

Velocità: v_{max} = 5 m/s

Accelerations 500 m

Accelerazione: a_{max} = 500 m/s² (Se F_{comb} > 2,8 · F_{pr} : a_{max} = 50 m/s²)

Nota per la lubrificazione:

► Con prima lubrificazione

Ulteriori pattino a sfere BNS

▶ Pattini a sfere resistenti alla corrosione vedi sotto

Opzioni e codici materiale

Grandezza Pattini Classe di Classe di precisione Guarnizione per pattini a sfere precarico a sfere di grandezza senza gabbia con gabbia guida-sfere guida-sfere CO C1 н SS DS SS DS 20 /401) R1671 5 3 20 22 4 2 20 3 22 25/70 R1671 2 4 20 3 22 2 2Z 4 3 20 22 Es.: R1671 2 3 20

Esempio di ordinazione

Opzioni:

- ▶ Pattino a sfere BNS
- ► Grandezza 25/70
- ► Classe di precarico C1
- ► Classe di precisione H
- Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione: R1671 213 20

Pattino a sfere Resist CR R1671 ... 7.

Nota per la lubrificazione:

Con prima lubrificazione

Esempio di ordinazione Opzioni:

- ▶ Pattino a sfere BNS
- ► Grandezza 25/70
- ► Classe di precarico C0
- ► Classe di precisione H
- Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione: R1671 293 70

Opzioni e codici materiale

Grandezza	Pattini a sfere di	Classe di precarico	Classe di precisione		Guarnizione per pattini a sf								
	grandezza	precuries			senza ga guida-sf		con gab guida-sf						
		C0		Н	SS	DS	SS	DS					
20/401)	R1671 5	9		3	70	7Z	72	7Y					
25/70	R1671 2	9		3	70	7Z	72	7Y					
Es.:	R1671 2	9		3	70								

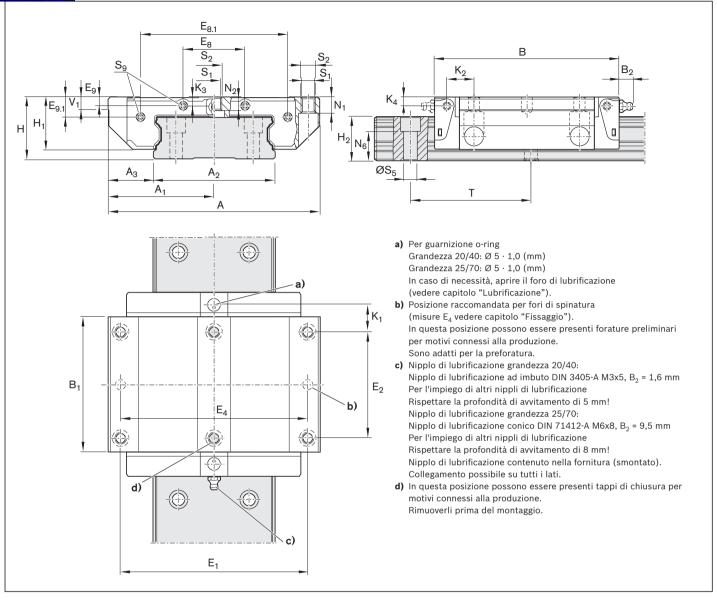
1) Attenzione: Pattino a sfere non combinabile con rotaia a sfere R167.8...!

Classi di precarico

C0 = Senza precarico (gioco) C1 = Precarico leggero Guarnizioni

SS = Guarnizione standard DS = Guarnizione a doppio

labbro


Legenda

Cifre grigie

 Nessuna variante preferita/ combinazione
 (in parte tempi di consegna più

lunghi)

Grandezza	Dimensioni (mm)																		
	Α	A_1	A_2	A_3	В	B_1	E_1	E_2	E ₈	E _{8.1}	E ₉	E _{9.1}	Н	H ₁	H_2	K_1	K_2	K_3	K_4
20/40	80	40	42	19,0	73	51,3	70	40	18	53,4	3,4	8,1	27	22,50	18,30	10,6	11,0	3,5	3,5
25/70	120	60	69	25,5	105	76,5	107	60	35	83,5	4,9	11,3	35	29,75	23,55	15,4	15,5	5,2	5,2

Grandezza	Dimer	nsioni	(mm)							Dimensioni	Fattori di	carico ¹⁾	Momen	ti di ca	rico¹) (Nm)	
										(kg)	(N)					
											1	t				
											→ 🖵	7 ←		7		Щ, "Ш
												-	-	_		ч <u>.</u> уг
	N ₁	N_2	$N_6^{\pm 0,5}$	S_1	S_2	S_5	S ₉	Т	V ₁		С	C_0	M _t	M_{t0}	M_L	M _{LO}
20/40	7,70	3,70	12,5	5,3	M6	4,4	M2,5x1,5 ⁺³	60	6,0	0,4	14900	20600	340	470	140	190
25/70	9,35	7,05	14,4	6,7	M8	7,0	M3x2 ^{+4,5}	80	7,5	1,2	36200	50200	1 350	1 870	490	680

¹⁾ Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere. Fattori di carico e momenti di carico per pattini a sfere con gabbia guida-sfere @ 14

I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori \mathbf{C} , \mathbf{M}_{L} e \mathbf{M}_{L} in base a tabella.

BNS - Largo Normale Altezza standard

Velocità in acciaio R1671 ... 1.

Valori dinamici

Velocità: v_{max} = 3 m/s

Accelerazione: $a_{max} = 250 \text{ m/s}^2$

(Se $F_{comb} > 2.8 \cdot F_{pr} : a_{max} = 50 \text{ m/s}^2$)

Nota per la lubrificazione:

► Senza prima lubrificazione

Ulteriori pattino a sfere BNS

▶ Inserto in acciaio e rullo scorrimento Pattino a sfere vedere sotto

Esempio di ordinazione

Opzioni:

- ▶ Pattino a sfere BNS
- Grandezza 35/90
- Classe di precarico C1
- Classe di precisione H
- ► Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione: R1671 313 10

Opzioni e codici materiale

Grandezza	Pattini a sfere di grandezza	Classe	di pred	carico	Classe d	i precisio	one	Guarnizione per pattini a sfere senza gabbia guida-sfere
		C0	C1	C2	N	Н	P	SS
35/90	R1671 3	9			4	3	_	10
			1		4	3	2	10
				2		3	2	10
Es.:	R1671 3		1			3		10

Pattino a sfere Resist CR R1671 ... 6.

Esempio di ordinazione

Opzioni:

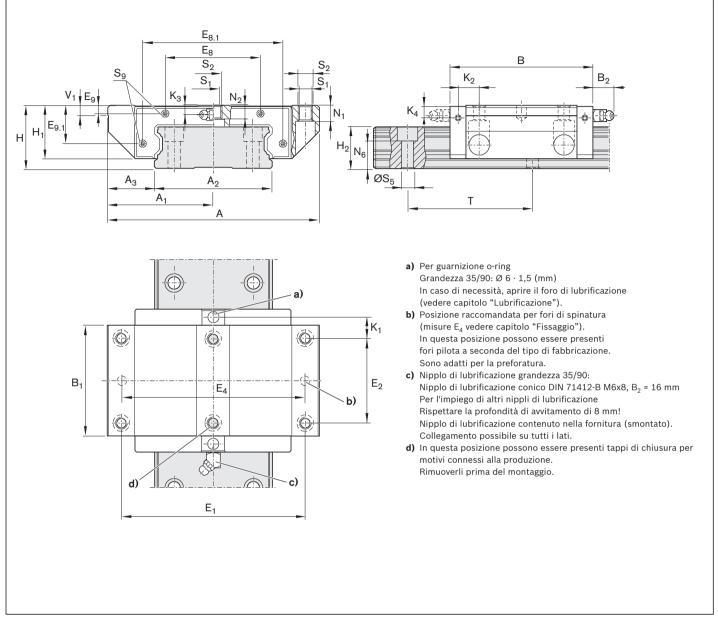
- ▶ Pattino a sfere BNS
- ► Grandezza 35/90
- ► Classe di precarico C1
- Classe di precisione H
- ► Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione: R1671 313 60

Opzioni e codici materiale

	Pattini a sfere di grandezza	Classe d precaric	-	Classe di precisione	Guarnizione per pattini a sfere senza gabbia guida-sfere			
		C0	C1	ŀ	ı ss			
35/90	R1671 3	9	1	;	60			
Es.:	R16713		1		60			

Classi di precarico


C0 = Senza precarico (gioco)

C1 = Precarico leggero

Guarnizioni

SS = Guarnizione standard


Grandezza	Dimension	oni (mm)														
	Α	A_1	A_2	A_3	В	B_1	E_1	E_2	E ₈	E _{8.1}	E_9	E _{9.1}	Н	H ₁	H_2	K_1	K_2
35/90	162	81	90	36	142	113,6	144	80	79	116	6,8	29,9	50	42,5	31,85	22,8	24,8

Grandezza	Dimen	sioni	(mm))								Dimensioni	Fattori di	carico ¹⁾	Momen	ti di ca	rico¹) (Nm)	
												(kg)	(N)				_	
													. ↓	<u>†</u>				
													→ L∑	∵			طلسا	
	K ₃	K_4	N_1	N_2	N ₆ ±0,5	S ₁	S_2	S ₅	S ₉	Т	V_1		С	C _o	M _t	M _{to}	ML	M _{LO}
35/90	9	9	14	12	20,5	8,4	M10	9	М3х5	80	8,0	3,70	70700	126000	3 500	6 240	1 470	2 620

1) Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere. I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori \mathbf{C} , \mathbf{M}_{t} e \mathbf{M}_{l} in base a tabella.

CNS - Compatto Normale Altezza standard

Velocità in acciaio R1672 ... 2.

Valori dinamici

Velocità: $v_{max} = 5 \text{ m/s}$

Accelerazione: $a_{max} = 500 \text{ m/s}^2$

(Se $F_{comb} > 2.8 \cdot F_{pr} : a_{max} = 50 \text{ m/s}^2$)

Nota per la lubrificazione:

► Con prima lubrificazione

Ulteriori pattini a sfere CNS

► Inserto in acciaio e rullo scorrimento Pattino a sfere vedere sotto

Esempio di ordinazione

Opzioni:

- ▶ Pattino a sfere CNS
- ► Grandezza 25/70
- ► Classe di precarico C1
- ► Classe di precisione H
- Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione: R1672 213 20

Opzioni e codici materiale

Grandezza	Pattini a sfere di grandezza	Classe of precario		s s			Guarnizi senza ga guida-sfo	bbia	con gabl	oia
		C0	C1	N	Н	P	SS	DS	SS	DS
20/40 ¹⁾	R1672 5	9		4	3	_	20		22	-
			1	4	3	_	20	2Z	22	2Y
25/70	R1672 2	9		4	3	_	20	_	22	_
			1	4	3	_	20	2Z	22	2Y
Es.:	R1672 2		1		3		20			

Pattino a sfere Resist CR²⁾ R1672 ... 7.

Esempio di ordinazione

Opzioni:

- ▶ Pattino a sfere CNS
- ► Grandezza 25/70
- ► Classe di precarico C0
- Classe di precisione H
- Con guarnizione standard, senza gabbia guida-sfere

Numero di identificazione: R1672 293 70

Opzioni e codici materiale

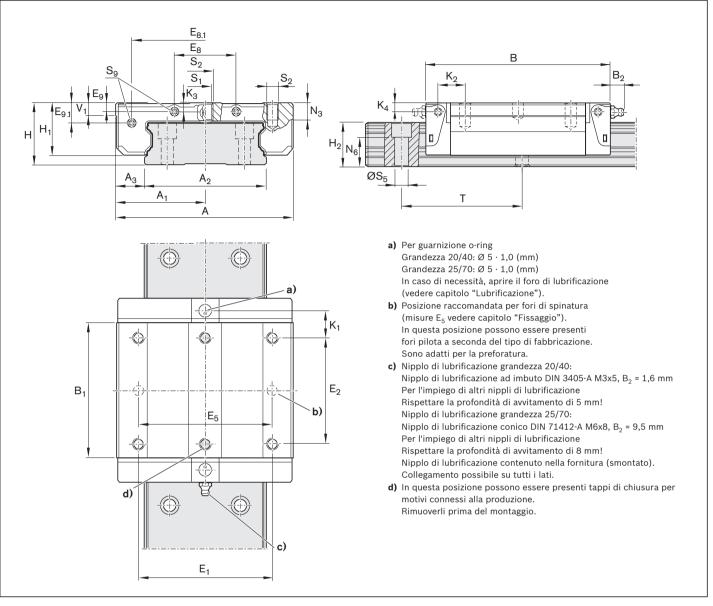
Grandezza	Pattini a sfere di	Classe di precarico	Classe di precisione		Guarnizione	per	pattini a sfer	е
	grandezza	CO		н	senza gabbia guida-sfere SS	DS	con gabbia guida-sfere SS	DS
20/401)	R1672 5	9		3	70	7Z	72	7Y
25/70	R1672 2	9		3	70	7Z	72	7Y
Es.:	R1672 2	9		3	70			

1) Attenzione: Pattino a sfere non combinabile con rotaia a sfere R167.8...!

Classi di precarico

C0 = Senza precarico (gioco) C1 = Precarico leggero

Guarnizioni


SS = Guarnizione standard DS = Guarnizione a doppio labbro

Legenda

Cifre grigie

 Nessuna variante preferita/ combinazione
 (in parte tempi di consegna più lunghi)

Grandezza	Dimensioni (mm)																		
	A	A_1	$\mathbf{A_2}$	A_3	В	$\mathbf{B_1}$	E_1	E_2	E ₈	E _{8.1}	E ₉	$E_{9.1}$	Н	H ₁	H_2	K_1	K_2	K_3	K_4
20/40	62	31	42	10,0	73,0	51,3	46	32	18	53,4	3,4	8,1	27	22,50	18,30	14,6 15	5,00	3,5	3,5
25/70	100	50	69	15,5	104,7	76,5	76	50	35	83,5	4,9	11,3	35	29,75	23,55	19,4 20	0,45	5,2	5,2

Grandezza	Dime	nsioni (mm)						Dimensioni	i Fattori di carico ¹⁾ Momenti di carico ¹⁾ (Nm)					
									(kg)	(N)					
										1	t				
										→ [_	}				
	N ₃	$N_6^{\pm0,5}$	S_1	S_2	S_5	S ₉	Т	V ₁		С	Co	M _t	M_{t0}	M_{L}	M _{L0}
20/40	6	12,5	5,3	M6	4,4	M2,5x1,5 ⁺³	60	6,0	0,3	14900	20600	340	470	140	190
25/70	8	14,4	6,7	M8	7,0	M3x2 ^{+4,5}	80	7,5	1,0	36200	50200	1 350	1 870	490	680

¹⁾ Fattori di carico e momenti di carico per pattini a sfere senza gabbia guida-sfere. Fattori di carico e momenti di carico per pattini a sfere con gabbia guida-sfere @ 14

I fattori e i momenti di carico dinamici sono determinati sulla base di una corsa di 100 000 m secondo DIN ISO 14728-1. Tuttavia, di frequente si prendono come base soltanto 50 000 m. Pertanto, a titolo di confronto, vale quanto segue: Moltiplicare per 1,26 i valori \mathbf{C} , \mathbf{M}_{L} e \mathbf{M}_{L} in base a tabella.

Descrizione del prodotto

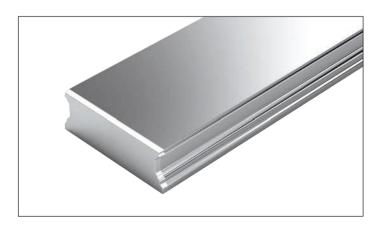
Proprietà eccellenti

- ► Elevata rigidezza in tutte le direzioni di carico
- Elevatissima resistenza momento torcente

Protezione anti-corrosione (opzionale)

► Resist CR:

Rotaia a sfere in acciaio con rivestimento resistente alla corrosione, con cromatura dura, argento opaco in classe di precisione H


Guida a sfere su rotaia con altri diametri delle sfere. Nessuna struttura intercambiabile possibile con precedente grandezza 20/40!

Rotaie a sfere con tappi di chiusura fori in plastica

Rotaie a sfere con tappi di chiusura fori in acciaio

Rotaie a sfere avvitabili dal basso

Definizione forma rotaie a sfere

Criterio	Denominazione	Abbreviazione (esempio)						
		В	N	S				
Larghezza	Sottile (S)	S						
	Largo (B)	В						
Lunghezza	Normale (N)		N					
Altezza	Altezza standard (S)			S				

zione di rotaie con lunghezze delle rotaie consigliate

Ordinazione di rotaie a sfere con lunghezze delle rotaie consigliate

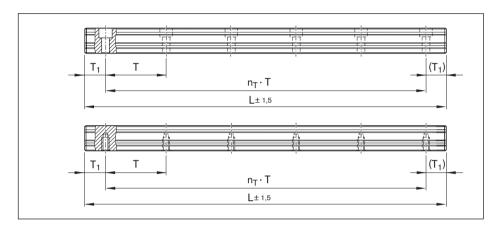
Il rilevamento dei seguenti esempi di ordinazione è valido per tutte le rotaie a sfere. Le lunghezze rotaia consigliata sono più economiche.

Dalla lunghezza desiderata della rotaia alla lunghezza rotaia consigliata

$$L = \left(\frac{L_W}{T}\right)^* \cdot T - 4$$

* Arrotondare il quoziente L_W/T al numero intero!

Esempio di calcolo


$$L = \left(\frac{1660 \text{ mm}}{80 \text{ mm}}\right) \cdot 80 \text{ mm} - 4 \text{ mm}$$

 $L = 21 \cdot 80 \text{ mm} - 4 \text{ mm}$

 $L = 1676 \, \text{mm}$

Estratto dalla tabella con codici materiale e lunghezze rotaia consigliate per esempio d'ordine

Base: Numero dei fori per ogni serie di fori

$$L = n_B \cdot T - 4$$

Base: Numero delle divisioni

$$L = n_{T} \cdot T + 2 \cdot T_{1S}$$

- L = Lunghezza rotaia consigliata (mm)
- -w = Lunghezza desiderata rotaia (mm)
- T = Divisione (mm)
- T_{1S} = Quota preferenziale (mm)
- n_B = Numero dei fori
 - per ogni serie di fori (-)
- n_{T} = Numero delle divisioni (-)

Avvertenze sugli esempi di ordinazione

Se la quota preferenziale T_{1S} non può essere utilizzata:

- Selezionare la distanza definitiva
 T₁ tra T_{1S} e T_{1 min}
- In alternativa è possibile selezionare la distanza definitiva T₁ fino a T_{1 max}

Esempio di ordinazione 1 (fino a L_{max}):

- Rotaia a sfere BNS gr. 35/90 con tappi di chiusura fori in plastica
- ▶ Classe di precisione H
- Lunghezza rotaia calcolata 1676 mm, (20 · T, quota preferenziale
 T_{1S} = 38 mm;
 Numero dei fori per ogni serie di fori n_B = 21)

Indicazioni per l'ordine

Codice materiale, lunghezza rotaia (mm) $T_1 / n_T \cdot T / T_1$ (mm)

R1675 303 31, 1676 mm **38 / 20 · 80 / 38** mm

Esempio di ordinazione 2 (oltre L_{max})

- Rotaia a sfere BNS gr. 35/90 con tappi di chiusura fori in plastica
- ► Classe di precisione H
- Lunghezza rotaia calcolata 5116 mm, 2 tratti (63 · T, quota preferenziale T_{1S} = 38 mm; Numero dei fori per ogni serie di fori n_B = 64)

Indicazioni per l'ordine

Codice materiale con numero di tratti, lunghezza rotaia (mm) $T_1 / n_T \cdot T / T_1$ (mm)

R1675 303 32, 5116 mm **38 / 63 · 80 / 38** mm

Con una lunghezza delle rotaie oltre L_{max} vengono assemblati di fabbrica determinati tratti.

BNS con tappi di chiusura fori in plastica

Rotaie a sfere in acciaio R1675 .0. ..

Con sagoma di foratura a due file, avvitabili dall'alto, con tappi di chiusura fori in plastica

Avvertenze

- ▶ I tappi di chiusura fori in plastica fanno parte della fornitura.
- ► Osservare le istruzioni di montaggio! Richiedere il "Manuale di montaggio per guide a sfere su rotaia".
- ▶ Rotaia a sfere disponibile anche in più tratti.

Ulteriori rotaie a sfere BNS e accessori

- ▶ Rotaie a sfere resistenti alla corrosione vedi sotto
- Per i tappo di chiusura fori vedere il capitolo "Accessori per rotaie a sfere"

Opzioni e codici materiale

Grandezza	Rotaia a sfere con grandezza	Class			Numero di tratti ., Lunghezza rotaia L (mm),		Divisione T (mm)	Lunghezza rotaia consigliata secondo la formula L = n _R · T – 4
		N	н	P	Monopezzo	In più tratti		Numero massimo di fori per ogni serie di fori n _B
20/40 ¹⁾	R1675 50	4	3	2	31,	3.,	60	64
25/70	R1675 20	4	3	2	31,	3.,	80	48
35/90	R1675 30	4	3	2	31,	3.,	80	48
Es.:	R1675 30		3		31, 1676			

Rotaie a sfere Resist CR R1673 .0. ..

Opzioni e codici materiale

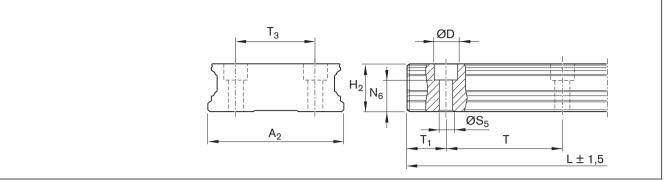
Grandezza	Rotaia a sfere con grandezza	Classe di precisione	Numero di trat Lunghezza rota	•		Divisione T (mm)	Lunghezza rotaia consigliata secondo la formula L = n _B · T – 4
		н	Monopezzo Lati frontali non rivestiti	Lati frontali rivestiti	In più tratti Lati frontali rivestiti		Numero massimo dei fori per ogni serie di fori n _B
20/401)	R1673 50	3	31,	41,	4.,	60	64
25/70	R1673 20	3	31,	41,	4.,	80	48
35/90	R1673 30	3	31,	41,	4.,	80	48
Es.:	R1673 30	3			42, 5116		

¹⁾ Attenzione: Rotaia a sfere non combinabile con pattino a sfere R1671 8....!

Esempio di ordinazione 1 (fino a L_{max}): Opzioni:

- ► Rotaia a sfere BNS
- ► Grandezza 35/90
- Classe di precisione H
- ► Monopezzo
- ▶ Lati frontali non rivestiti
- ► Lunghezza rotaia L = 1676 mm

Numero di identificazione: R1675 303 31, 1676 mm


Esempio di ordinazione 2 (oltre L_{max})

Opzioni:

- ▶ Rotaia a sfere CR, BNS
- Grandezza 35/90
- ► Classe di precisione H
- 2 tratti
- Lati frontali rivestiti
- ► Lunghezza rotaia L = 5116 mm

Numero di identificazione: R1673 303 42, 5116 mm

Grandezza	Dimensioni	(mm)										Dimensioni
	A ₂	D	$H_{2}^{1)}$	L_{max}	$N_6^{\pm 0,5}$	S_5	T	T _{1 min}	$T_{1S}^{2)}$	T _{1 max}	T ₃	(kg/m)
20/40	42	7,4	18,30	3 836	12,45	4,4	60	10	28	50	24	5,3
25/70	69	11,0	23,55	3 836	14,50	7,0	80	10	38	70	40	11,6
35/90	90	15,0	31,85	3 836	20,50	9,0	80	12	38	68	60	21,0

- Dimensione H₂ senza nastro di protezione
 Quota preferenziale T_{1S} con tolleranze ± 0,75.

BNS con tappi di chiusura in acciaio

Rotaie a sfere in acciaio R1676 .5. ..

Con sagoma di foratura a due file, avvitabili dall'alto, con tappi di chiusura fori in acciaio

Avvertenze

- ► Tappi di chiusura fori in acciaio non compresi nella fornitura.
- ► Osservare le istruzioni di montaggio! Richiedere il "Manuale di montaggio per guide a sfere su rotaia".
- ► Rotaia a sfere disponibile anche in più tratti.

Accessori

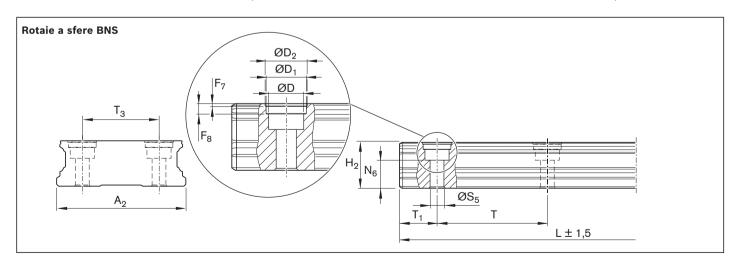
▶ Per i tappi di chiusura fori, il dispositivo di montaggio per i tappi di chiusura fori vedere il capitolo "Accessori per rotaie a sfere"

Opzioni e codici materiale

Grandezza	Rotaia a sfere con	Classe d	i precisio	ne	Numero di tratti Lunghezza rotaia	•	Divisione T (mm)	Lunghezza rotaia consigliata secondo la formula L = n _B · T – 4
	grandezza				Monopezzo	In più tratti		Numero massimo di fori per ogni
		N	Н	P				serie di fori n _B
25/70	R1676 25	4	3	2	31,	3.,	80	48
35/90	R1676 35	4	3	2	31,	3.,	80	48
Es.:	R1676 35		3		31, 1676			

Esempio di ordinazione 1 (fino a L_{max}): Opzioni:

- ► Rotaia a sfere BNS
- Grandezza 35/90
- Classe di precisione H
- Monopezzo
- ► Lunghezza rotaia L = 1676 mm


Numero di identificazione: R1676 353 31, 1676 mm

Esempio di ordinazione 2 (oltre L_{max})

Opzioni:

- Rotaia a sfere BNS
- Grandezza 35/90
- Classe di precisione H
- 2 tratti
- Lunghezza rotaia L = 5116 mm

Numero di identificazione: R1676 353 32, 5116 mm

Grandezza	Dimens	ioni (mi	m)													Dimensioni
	A ₂	D	D_1	D_2	F_7	F ₈	$H_{2}^{1)}$	\mathbf{L}_{\max}	$N_6^{\pm0,5}$	S ₅	Т	T _{1 min}	T _{1S} 2)	T _{1 max}	T_3	(kg/m)
25/70	69	11,0	12,55	13	0,9	3,7	23,55	3 836	14,5	7,0	80	10	38	70	40	11,6
35/90	90	15,0	17,55	18	0,9	3,6	31,85	3 836	20,5	9,0	80	12	38	68	60	21,0

- 1) Dimensione H₂ senza nastro di protezione
- 2) Quota preferenziale T_{1S} con tolleranze ± 0,75.

vitabili dal basso

Rotaie a sfere in acciaio R1677 .0. .. Con sagoma di foratura a due file, avvitabile dal basso

Avvertenze

- Osservare le istruzioni di montaggio! Richiedere il "Manuale di montaggio per guide a sfere
- ► Rotaia a sfere disponibile anche in più tratti.

Opzioni e codici materiale

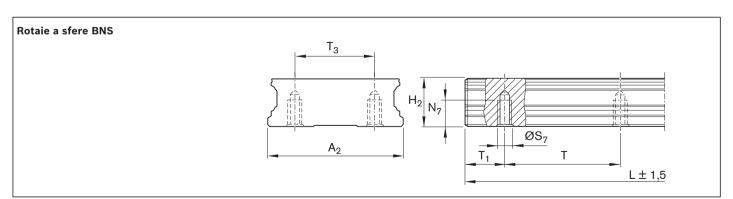
Grandezza	Rotaia a sfere con grandezza	Classe di	precisio	ne	Numero di tratt Lunghezza rota	•		Lunghezza rotaia consigliata secondo la formula L = n _B · T – 4
		l .			Monopezzo In più tratti			Numero massimo di fori per ogni
		N	н	Р				serie di fori n _B
20/40 ¹⁾	R1677 50	4	3	2	31,	3.,	60	64
25/70	R1677 20	4	3	2	31,	3.,	80	48
35/90	R1677 30	4	3	2	31,	3.,	80	48
Es.:	R1677 30	3		31, 1676				

1) Attenzione: Rotaia a sfere non combinabile con pattino a sfere R1671 8.. ..!

Esempio di ordinazione 1 (fino a L_{max}):

Opzioni:

- ▶ Rotaia a sfere BNS,
- Grandezza 35/90,
- Classe di precisione H,
- Monopezzo
- Lunghezza rotaia L = 1676 mm


Numero di identificazione: R1677 303 31, 1676 mm

Esempio di ordinazione 2 (oltre L_{max})

Opzioni:

- ► Rotaia a sfere BNS,
- ► Grandezza 35/90,
- ► Classe di precisione H,
- ▶ 2 tratti
- ► Lunghezza rotaia L = 5116 mm

Numero di identificazione: R1677 303 32, 5116 mm

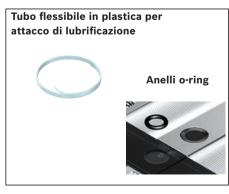
Grandezza	Dimensioni (imensioni (mm)											
	A ₂	$H_{2}^{1)}$	L_{max}	N_7	S ₇	Т	T _{1 min}	T _{1S} ²⁾	T _{1 max}	T ₃	(kg/m)		
20/40	42	18,30	3 836	7,5	M5	60	10	28	50	24	5,3		
25/70	69	23,55	3 836	12,0	M6	80	10	38	70	40	11,6		
35/90	90	31,85	3 836	15,0	M8	80	12	38	68	60	21,0		

- 1) Dimensione H₂ senza nastro di protezione
- 2) Quota preferenziale T_{1S} con tolleranze \pm 0,75.

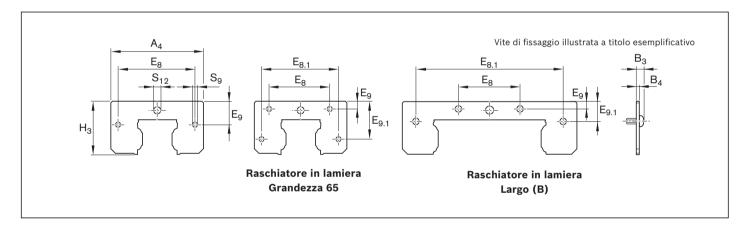
Descrizione del prodotto

Rexroth offre una struttura intercambiabile illimitata attraverso possibilità di combinazione a piacere di tutte le varianti di pattini a sfere, con tutti gli accessori per ogni misura. Il programma completo per le migliori prestazioni in caso di esigenze speciali. Su richiesta, gli accessori possono essere forniti anche montati.

Panoramica accessori per pattino a sfere



1) Per pattini a sfere F.N (Flangiato ... Basso) e S.N (Stretto ... Basso) non disponibile

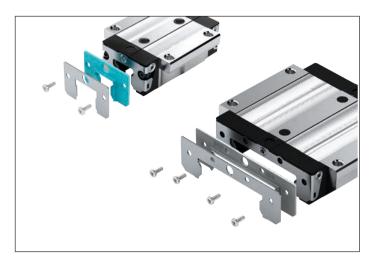


Raschiatore in lamiera R16.0 .10 ..

- ► Materiale: Acciaio resistente alla corrosione a norma **DIN EN 10088**
- Versione: liscia
- ▶ Versione di precisione con traferro massimo da 0,1 a 0,3 mm

Istruzioni di montaggio

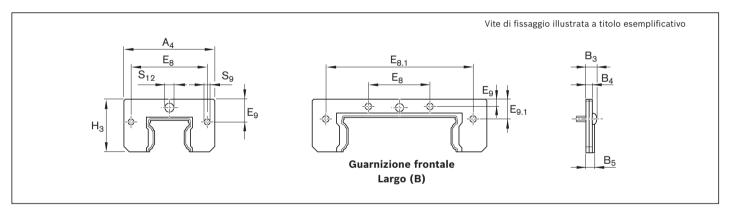
- ▶ Nel caso di combinazione con guarnizione supplementare bicomponente utilizzare il kit guarnizioni: Numeri di identificazione, vedi kit guarnizioni
- ▶ Le viti di fissaggio sono in dotazione.
- ▶ Durante il montaggio prestare attenzione all'uniformità della fessura tra la rotaia a sfere e il raschiatore in lamiera.
- ▶ In caso di attacco di lubrificazione sul lato frontale. attenersi alla profondità di avvitamento minima.
- ► Osservare le istruzioni di montaggio.



Grandezza	Codice materiale	Dimensio	ni (mm)									Dimensioni
	per rotaia a sfere		В		_	-	_	_		6		(g)
	copertura	A ₄	B ₃	B_4	E ₈	E _{8.1}	E ₉	E _{9.1}	H ₃	S ₉	S ₁₂	
15	R1620 110 30	33,0	3,1	1,0	24,55	_	6,30	_	19,2	3,5	4,6	5
20	R1620 810 30	42,0	3,4	1,0	32,40	_	6,80	-	24,8	4,0	5,1	6
	R1620 810 35 ³⁾	41,0	3,4	1,0	30,50	_	5,10	_	22,8	4,0	4,0	5
25	R1620 210 30	47,0	3,4	1,0	38,30	_	11,00	-	29,5	4,0	7,0	8
	R1620 210 35 ³⁾	47,0	3,4	1,0	38,30	_	8,00	-	26,5	4,0	4,0	7
30	R1620 710 30	59,0	3,4	1,0	48,40	_	14,10	_	34,7	4,0	7,0	12
35	R1620 310 40 ¹⁾	69,0	3,4	1,0	58,00	_	17,00	-	40,1	4,0	7,0	16
45	R1620 410 40 ¹⁾	85,0	5,1	2,0	69,80	_	20,50	-	50,0	5,0	7,0	50
55	R1620 510 40 ¹⁾	98,0	5,7	2,0	80,00	_	21,80	_	56,4	6,0	7,0	65
65	R1620 610 40 ¹⁾	124,0	5,6	2,5	76,00	100,0	10,00	52,50	74,7	5,0	9,0	140
20/404)5)	R1670 510 00 ²⁾	60,0	3,1	1,0	18,00	53,4	2,65	7,35	21,7	3,5	4,0	7
25/70 ⁴⁾	R1670 210 10 ²⁾	101,0	3,4	1,0	35,00	83,5	4,35	10,75	29,1	4,0	7,0	14
35/90 ⁴⁾	R1670 310 10 ²⁾	129,0	3,4	1,0	79,00	116,0	5,60	28,70	40,8	4,0	7,0	25

- 1) Numero di materiale con rotaia a sfere senza nastro di copertura: R1620 .10 30
- 2) Rotaia a sfere senza nastro di copertura
- 3) Per pattini a sfere F.N (Flangiato ... Basso) e S.N (Stretto ... Basso)
- 4) Larghezza guida su rotaia a sfere
- 5) Attenzione: Raschiatore in lamiera non combinabile con rotaia a sfere R167.8...!

Guarnizione frontale



Bicomponente

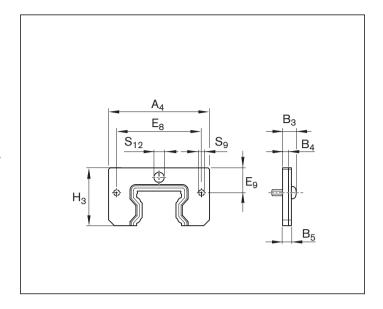
- ► Materiale: Acciaio resistente alla corrosione secondo DIN EN 10088 con guarnizione in plastica
- ▶ Versione: liscia

Istruzioni di montaggio

- ▶ Le viti di fissaggio sono in dotazione.
- In caso di attacco di lubrificazione sul lato frontale, attenersi alla profondità di avvitamento minima.
- Osservare le istruzioni di montaggio.

Grandezza	Numero di	Dimensio	ni (mm)										Dimensioni
	identificazione	A ₄	B_3	B_4	B ₅	E ₈	E _{8.1}	E ₉	E _{9.1}	H ₃	S ₉	S ₁₂	(g)
15	R1619 121 20	32,0	4,3	2,2	3,0	24,55	_	6,30	_	19,0	3,5	4,3	6,0
20 ¹⁾	R1619 821 20	42,0	4,9	2,5	3,3	32,40	_	6,80	_	24,3	4,0	5,1	8,0
25 ¹⁾	R1619 221 30	47,0	4,9	2,5	3,3	38,30	_	11,00	_	29,0	4,0	7,0	10,0
30	R1619 721 30	59,0	5,7	3,3	4,5	48,40	_	14,10	_	34,5	4,0	7,0	18,0
35	R1619 321 30	69,0	5,7	3,3	4,5	58,00	_	17,00	_	39,5	4,0	7,0	25,0
45	R1619 421 30	85,0	7,1	4,0	5,5	69,80	_	20,50	_	49,5	5,0	7,0	55,0
55	R1619 521 30	98,0	7,7	4,0	5,5	80,00	-	21,50	-	56,0	6,0	7,0	65,0
20/402)3)	R1619 522 20	60,0	4,6	2,5	3,3	18,00	53,4	2,65	7,35	21,7	3,5	4,0	7,5
25/70 ²⁾	R1619 222 20	99,0	4,9	2,5	3,3	35,00	83,5	4,30	10,70	28,6	4,0	7,3	14,5
35/90 ²⁾	R1619 322 20	128,6	5,7	3,3	4,5	79,00	116,0	5,80	28,90	41,0	4,0	7,0	40,0

- 1) Non per pattini a sfere F.N (Flangiato ... Basso) e S.N (Stretto ... Basso)
- 2) Larghezza guida su rotaia a sfere
- 3) Attenzione: Nuova guarnizione supplementare non combinabile con rotaia a sfere attuale R167 8...!

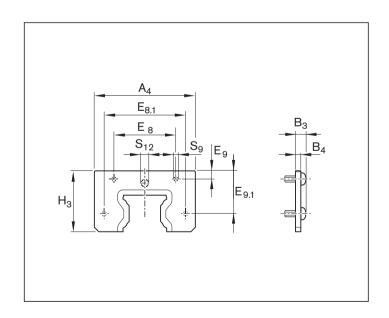

- ▶ Materiale: Acciaio resistente alla corrosione secondo DIN EN 10088 con guarnizione in FKM
- ▶ Per campo di impiego e resistenza, vedi criteri di selezione/guarnizioni

Particolarità

Montaggio e smontaggio semplice con rotaia a sfere fissata.

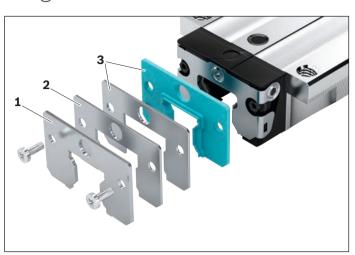
Istruzioni di montaggio

- Le viti di fissaggio sono in dotazione.
- ▶ In caso di attacco di lubrificazione sul lato frontale, attenersi alla profondità di avvitamento minima.
- ▶ Osservare le istruzioni di montaggio.


Grandezza	Numero di	Dimensioni	Dimensioni (mm)											
	identificazione	A ₄	B_3	B_4	B ₅	E ₈	E ₉	H ₃	S ₉	S ₁₂	(g)			
35	R1619 320 30	69	8,4	4	6	58,0	17,0	39,5	4	7	39,0			
45	R1619 420 30	85	9,1	4	6	69,8	20,5	49,5	5	7	61,0			
55	R1619 520 30	98	9,7	4	6	80,0	21,8	56,4	6	7	80,5			

Monopezzo

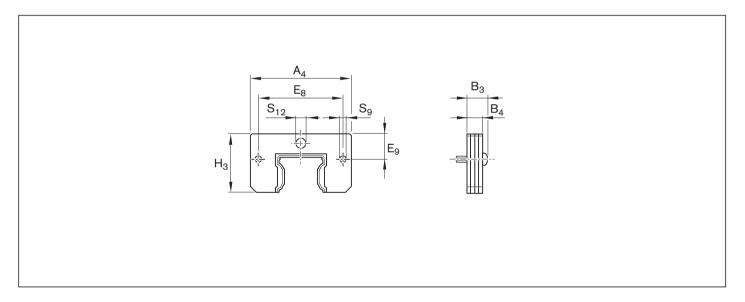
Materiale: Acciaio resistente alla corrosione secondo DIN EN 10088 Guarnizione in FKM.


Istruzioni di montaggio

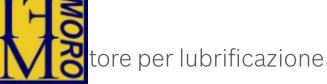
- Le viti di fissaggio sono in dotazione.
- In caso di attacco di lubrificazione sul lato frontale, attenersi alla profondità di avvitamento minima.
- Osservare le istruzioni di montaggio.

Grandezza	Numero di	Dimension	i (mm)									Dimensioni
	identificazione											
		A ₄	B_3	B_4	E ₈	E _{8.1}	E ₉	E _{9.1}	H_3	S_9	S ₁₂	(g)
65	R1619 620 30	124	9,6	6,5	76	100	10	52,5	74,7	5	9	146

Kit guarnizioni



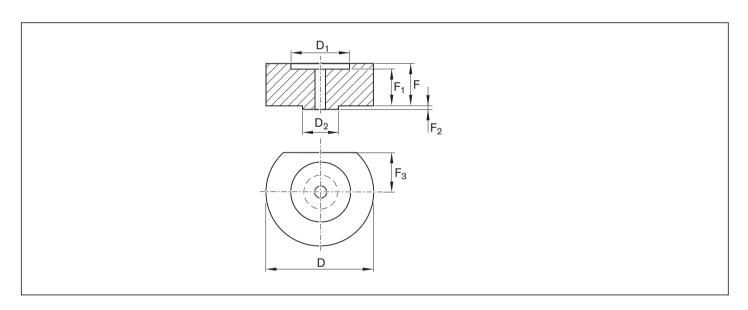
- 1 Raschiatore in lamiera
- 2 Lamiera di supporto
- 3 Guarnizione frontale bicomponente


Istruzioni di montaggio

- ► Il kit guarnizioni è consigliato in caso di combinazione di raschiatore in lamiera e della guarnizione a due pezzi.
- ► Le viti di fissaggio sono in dotazione.
- In caso di attacco di lubrificazione sul lato frontale, attenersi alla profondità di avvitamento minima.
- Osservare le istruzioni di montaggio.

Grandezza	Codice materiale per	Dimensi	oni (mm)							Dimensioni	
	senza nastro di	con nastro di	A ₄	B_3	B_4	E ₈	E ₉	H_3	S ₉	S ₁₂	(g)
	copertura	copertura									
15	R1619 120 50	R1619 120 50	32,0	6,3	4,2	24,55	6,30	19,0	3,5	4,3	16
20 ¹⁾	R1619 820 50	R1619 820 50	42,0	6,9	4,5	32,40	6,80	24,3	4,0	5,1	20
25 ¹⁾	R1619 220 50	R1619 220 50	47,0	6,9	4,5	38,30	11,00	29,0	4,0	7,0	26
30	R1619 720 50	R1619 720 50	59,0	8,2	5,8	48,40	14,10	34,5	4,0	7,0	42
35	R1619 320 40	R1619 320 50	69,0	8,2	5,8	58,00	17,00	39,5	4,0	7,0	57
45	R1619 420 40	R1619 420 50	85,0	11,1	8,0	69,80	20,50	49,5	5,0	7,0	155
55	R1619 520 40	R1619 520 50	98,0	11,7	8,0	80,00	21,50	56,0	6,0	7,0	195

1) Non per pattini a sfere F.N (Flangiato ... Basso) e S.N (Stretto ... Basso)



Per lubrificazione a olio e grasso dall'alto, solo per pattini a sfere alti **SNH R1621 o SLH R1624**

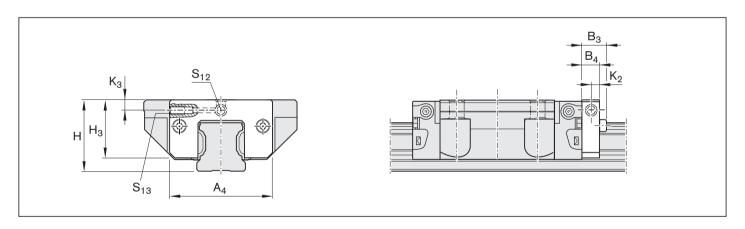
Materiale: Plastica Confezione: 1 pezzo

Istruzioni di montaggio

- ► O-ring in dotazione.
- ▶ Aprire il foro di lubrificazione del pattino a sfere con una punta in metallo riscaldata prima del montaggio (non aprire trapanando).
- ▶ Vedi capitolo "Lubrificazione e manutenzione".

	Numero di	Dimensioni (mm)			,	,		Dimensioni
	identificazione	D	D_1	D_2	F	F_1	F_2	F ₃	(g)
15	R1621 100 05	12	6,2	3,4	3,7	3,1	0,5	3,20	0,5
25	R1621 200 05	15	7,2	4,4	3,8	3,2	0,5	5,85	0,9
30	R1621 700 05	16	7,2	4,4	2,8	2,2	0,5	6,10	0,7
35	R1621 300 05	18	7,2	4,4	6,8	6,2	0,5	6,80	2,2
45	R1621 400 05	20	7,2	4,4	9,8	9,2	0,5	8,30	4,1

Piastra di lubrificazione


Per nipplo di lubrificazione standard

Materiale: Alluminio

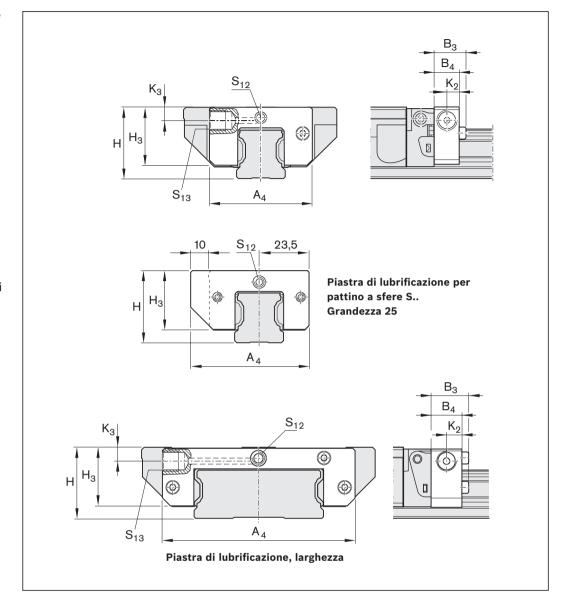
Istruzioni di montaggio

- ▶ I componenti richiesti per l'attacco sono forniti in dotazione.
- Grandezza 15 20: Nipplo di lubrificazione a imbuto con codolo di rimbocco in dotazione.
- ► Grandezza 25 65: È possibile utilizzare il nipplo di lubrificazione dei pattini a sfere.
- Osservare le istruzioni di montaggio.

ATra piastra di lubrificazione e pattini a sfere, è necessario montare il perno di lubrificazione (1) fornito! (Il perno contiene un foro di lubrificazione.)

Grandezza	Numero di	Dimensioni	(mm)								Dimensioni
	identificazione	A ₄	B_3	B_4	н	H ₃ ²⁾	K ₂	K ₃ ²⁾	S ₁₂	S ₁₃	(g)
15	R1620 111 20	32	13,1	11	24 28 ³⁾	19,0	5,5	3,4 7,4 ³⁾	МЗ	Ø3	15
20 ¹⁾	R1620 811 20	42	15,0	12	30	24,8	6,0	3,5	МЗ	Ø3	25
25 ¹⁾	R1620 211 20	47	15,0	12	36 40 ³⁾	28,3	6,0	6,0 10,0 ³⁾	M6	M6	30
30	R1620 711 20	59	15,0	12	42 45 ³⁾	33,8	6,0	8,0 11,0 ³⁾	M6	M6	45
35	R1620 311 20	69	15,0	12	48 55 ³⁾	39,1	6,0	8,0 15,0 ³⁾	M6	M6	60
45	R1620 411 20	85	16,0	12	60 70 ³⁾	48,5	6,0	8,0 18,0 ³⁾	M6	M6	85
55	R1620 511 20	98	17,0	12	70 80 ³⁾	56,0	6,0	9,0 19,0 ³⁾	M6	M6	115
65	R1620 611 20	124	18,0	14	90	75,7	7,0	18,0	M8x1	M8x1	250

- 1) Non per pattini a sfere F.N (Flangiato ... Basso) e S.N (Stretto ... Basso)
- 2) In riferimento alla superficie di avvitamento del pattino a sfere
- 3) Per pattini a sfere S.H (Stretto ... Alto)


di lubrificazione G 1/8

Per nipplo di lubrificazione G 1/8

Materiale: Alluminio

Istruzioni di montaggio

- ► I componenti richiesti per l'attacco sono forniti in dotazione.
- ▶ Pattino a sfere S.. (Stretto) Grandezza 25: Verificare la sporgenza laterale della piastra di lubrificazione!
- Osservare le istruzioni di montaggio.

Grandezza	Numero di	Dimensioni	(mm)								Dimensioni
	identificazione										
		A ₄	B_3	B_4	Н	$H_3^{2)}$	K_2	$K_3^{2)}$	S_{12}	S ₁₃	(g)
25 ¹⁾	R1620 211 30	57	19,0	16	36	28,3	8	7,0	M6	G 1/8x8	40
					403)			11,0 ³⁾			
30	R1620 711 30	59	19,0	16	42	33,8	8	7,0	M6	G 1/8x8	59
					45 ³⁾			10,0 ³⁾			
35	R1620 311 30	69	19,0	16	48	39,1	8	8,0	M6	G 1/8x8	79
					$55^{3)}$			15,0 ³⁾			
45	R1620 411 30	85	20,0	16	60	48,5	8	8,0	M6	G 1/8x8	112
					703)			18,0 ³⁾			
55	R1620 511 30	98	21,0	16	70	56,0	8	9,0	M6	G 1/8x8	152
					803)			$19,0^{3)}$			
65	R1620 611 30	124	20,0	16	90	75,7	8	18,0	M6	G 1/8x8	285
25/70 ⁴⁾	R1670 211 40	99	19,0	16	35	29,6	8	8,4	M6	G 1/8x8	65
35/90 ⁴⁾	R1670 311 30	129	19,0	16	50	42,0	8	9,5	M6	G 1/8x8	120

- 1) Non per pattini a sfere F.N (Flangiato ... Basso) e S.N (Stretto ... Basso)
- 2) In riferimento alla superficie di avvitamento del pattino a sfere
- 3) Per pattini a sfere S.H (Stretto ... Alto)
- 4) Larghezza guida su rotaia a sfere

Fermo di trasporto



Fermo di trasporto per pattini a sfere

Per il trasporto e come ausilio di montaggio

Materiale: Plastica

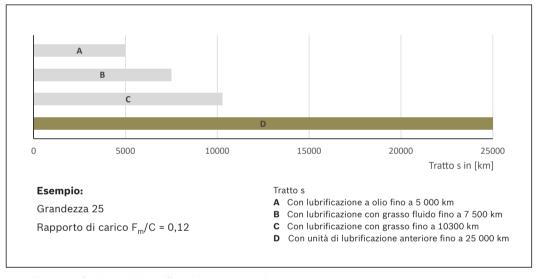
Grandezza	Numeri di identificazione	Dimensioni (g)
15	R1653 101 89	2
20	R1653 801 89	3
25	R1653 202 89	4
30	R1653 702 89	10
35	R1653 302 89	10
45	R1653 402 89	20
55	R1653 502 89	31
65	R1653 602 89	58
20/40	R1671 505 89	7
25/70	R1671 201 89	13
35/90	R1671 301 89	33

Avvertenze

Il pattino a sfere è spostato, con il fermo di trasporto, sulla rotaia. Vedere il capitolo "Istruzioni di montaggio".

All fermo di trasporto deve rimanere nel pattino a sfere fino al montaggio sulla rotaia a sfere! Pericolo di caduta delle sfere!

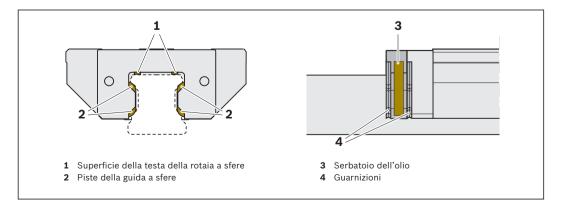
Unità di lubrificazione frontali


Per corse fino a 25 000 km senza rilubrificazione

Vantaggi per il montaggio e il funzionamento

- ▶ Per corse fino a 25 000 km senza rilubrificazione
- ▶ Necessaria solo lubrificazione iniziale con grasso sul pattino a sfere
- Su entrambi i lati unità di lubrificazione frontale sui pattini a sfere
- Perdita di lubrificante ridotta
- Riduzione del consumo di olio
- ▶ Nessun condotto di lubrificazione
- Temperatura di lavoro max. 60 °C.
- Con nipplo di lubrificazione possibilità di rilubrificazione frontale o laterale dell'unità di lubrificazione frontale.
- Attacco di lubrificazione frontale sull'unità di lubrificazione frontale per lubrificazione a grasso del pattino a sfere.

Grandezza	Possibile tratto s con unità di lubrificazione frontali
	(km)
15	15000
20*)	15000
25*)	25 000
30	25 000
35	25 000
45	25 000
55	1 500
65	1 000


Codici materiale, disegno quotato, misure e dati tecnici, vedi pagina successiva.

*) I pattini a sfere bassi del tipo FNN, SNN, FKN e SKN hanno corse inferiori. Vedere diagramma 1

"Intervalli di rilubrificazione a seconda delle sollecitazioni per pattini a sfere con unità di lubrificazione frontale"

Distribuzione lubrificante

Grazie alla speciale struttura del sistema di distribuzione del lubrificante, la lubrificazione avviene principalmente dove è necessario: direttamente sulle piste e sulla superficie della testa delle rotaie a sfere.

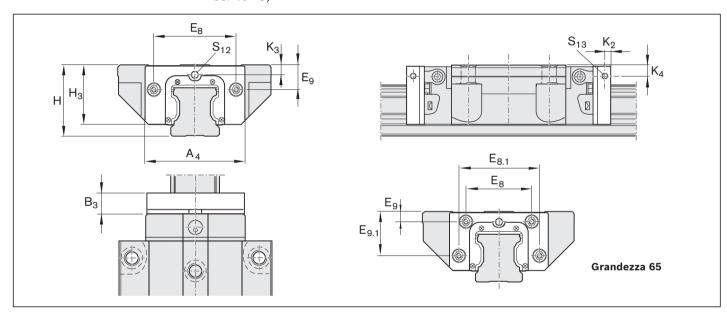
Jnità di lubrificazione frontale R1619 .2. 00

Materiale: plastica speciale

Le unità di lubrificazione frontali R1619 .2. 00 sono già riempite di olio (Mobil SHC 639) e possono essere montate dopo la lubrificazione di base dei pattini a sfere.

Unità di lubrificazione frontale R1619 .2. 10

Materiale: plastica speciale


Le unità di lubrificazione frontali R1619 .2. 10 vengono consegnate dallo stabilimento prive di lubrificante.

Olio lubrificante consigliato per il primo riempimento:

▶ Mobil SHC 639 (Viscosità 1000 mm2/s bei 40 °C)

Prima del montaggio delle unità di lubrificazione frontale è necessaria una lubrificazione iniziale dei pattini a sfere con grasso lubrificante! Vedere il capitolo Lubrificazione.

In caso di utilizzo di oli lubrificanti diversi da quelli indicati, controllare la compatibilità dei lubrificanti e verificare il tratto!

Grandezza	Numero di	Dimens	ioni (m	nm)								'		Olio	Dimensioni
	identificazione	A ₄	B_3	E ₈	E _{8.1}	E ₉ ²⁾	$E_{9.1}^{2)}$	Н	$H_3^{2)}$	K_2	$K_3^{2)}/K_4^{2)}$	S ₁₂	S ₁₃	(cm ³)	(g)
15	R1619 125 00	31,8	11,5	24,55	_	6,70		24	19,40	5	3,35	МЗ	МЗ	1,00	15
						$10,70^{3)}$		28 ³⁾	$23,40^{3)}$		$7,35^{3)}$				
20	R1619 825 00	43,0	12,5	32,50	_	7,30	_	30	24,90	5	3,70	МЗ	МЗ	2,20	20
	R1619 826 00 ¹⁾	41,0	12,5	30,50	_	5,60	_	28	22,90	-	3,10	_	МЗ	1,80	20
25	R1619 225 00	47,0	13,0	38,30	_	11,50	_	36	29,30	5	5,50	M6	M6	2,60	25
						$15,50^{3)}$		403)	$33,30^{3)}$		$9,50^{3)}$				
	R1619 226 00 ¹⁾	47,0	13,0	38,30	_	8,50	_	33	26,30	5	4,10	МЗ	МЗ	2,50	25
30	R1619 725 00	58,8	14,5	48,40	_	14,60	_	42	35,05	6	6,05	M6	M6	3,85	35
						^{17,60} 3)		$45^{3)}$	$38,05^{3)}$		$9,05^{3)}$				
35	R1619 325 00	69,0	16,0	58,00	_	17,35	_	48	39,85	6	6,90	M6	M6	5,70	50
						$24,35^{3}$		$55^{3)}$	46,85 ³⁾		$13,90^{3)}$				
45	R1619 425 00	84,0	17,0	69,80	_	20,90	-	60	49,80	7	8,20	M6	M6	9,60	70
						$30,90^{3)}$		$70^{3)}$	$59,80^{3)}$		18,20 ³⁾				
55	R1619 525 00	99,0	18,0	80,00	_	22,30	_	70	57,05	8	8,90	M6	M6	14,50	90
						$32,30^{3)}$		803)	$67,05^{3)}$		18,90 ³⁾				
65	R1619 625 00	124,2	19,0	76,00	100	11,00	53,5	90	75,70	8	16,00	M8	M8	30,00	130

- 1) Per pattini a sfere F.N (Flangiato ... Basso) e S.N (Stretto ... Basso)
- 2) In riferimento alla superficie di avvitamento del pattino a sfere
- 3) Per pattini a sfere S.H (Stretto ... Alto)

Unità di lubrificazione frontali

Primo riempimento di un'unità di lubrificazione frontale senza olio

- Rimuovere il perno filettato dal foro di lubrificazione (figura 1, pos. 1) e conservarlo.
- ► Avvitare il nipplo di lubrificazione (2).
- ▶ Unità di lubrificazione frontale (3) in posizione orizzontale, rifornire la quantità di olio indicata nella tabella 1, lasciar depositare per ca. 36 ore.
- Controllare se l'inserto di lubrificazione è completamente imbevuto d'olio. Se necessario rabboccare l'olio.
- ► Rimuovere il nipplo di lubrificazione.
- Avvitare il perno filettato
- ► Con misura 20 basso: Depositare le unità di lubrificazione frontale per ca. 36 ore in strato di olio profondo 10 mm (vedi figura 2).

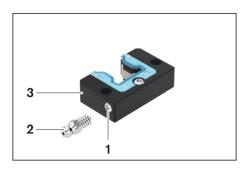


Figura 1

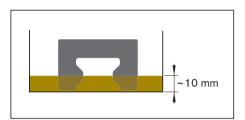


Figura 2

Grandezza Quantità di olio per primo riempimento di un'unità di lubrificazione frontale senza olio (cm³) 15 0.90 20 2.00 25 2,40 30 3,85 35 5,70 45 9.60 55 14,50 65 30,00

Tabella 1

Rilubrificazione delle unità di lubrificazione frontali

Una volta raggiunto l'intervallo di rilubrificazione come da diagramma 1, introdurre la quantità di rilubrificazione come da tabella 1.

- ▶ Rilubrificazione di una dimensione di attacco di lubrificazione laterale possibile.
- L'unità di lubrificazione frontale misura 20 bassa **non** è rabboccabile tramite l'attacco di lubrificazione (vedi Figura 2).

Avvertenza

Al più tardi dopo 3 anni, la Rexroth consiglia di sostituire le unità di lubrificazione frontale e il pattino a sfere prima del montaggio della nuova unità di lubrificazione frontale.

Rilubrificazione dei pattini a sfere

Se in condizioni di esercizio l'impianto è pulito, i pattini a sfere possono essere rilubrificati dal lato frontale con grasso (Dynalub 510). Rilubrificazione dei pattini a sfere con grasso lubrificante vedi il capitolo Lubrificazione

A Se si utilizzano lubrificanti diversi da quelli indicati, non si escludono eventuali intervalli di rilubrificazione ridotti, nonché minori prestazioni in termini di corsa breve e capacità di carico. Attenzione anche a possibili interazioni chimiche tra plastiche, lubrificanti e mezzi anticorrosione.

Gli intervalli di rilubrificazione consigliati dipendono dagli influssi ambientali, dalle sollecitazioni e dal tipo di sollecitazione.

Gli influssi ambientali sono ad esempio trucioli fini, abrasione minerale e simili, solventi e temperatura. Sollecitazione e tipo di sollecitazione sono ad esempio oscillazioni, urti e ribaltamenti.

🗚 Il produttore non conosce le condizioni d'impiego. La sicurezza degli intervalli di lubrificazione si ottiene solo con tentativi da parte dell'utilizzatore o osservazioni più precise.

🛦 Non apportare olio refrigerante in emulsione acquosa sulle rotaie e sui pattini a sfere!

Intervalli di rilubrificazione a seconda delle sollecitazioni per pattini a sfere con unità di lubrificazione frontale

- ► Lubrificanti pattini a sfere: Dynalub 510 (grasso NLGI 2) in alternativa Castrol Tribol GR 100-2 PD oppure Elkalube GLS 135/N2
- ► Lubrificante unità di lubrificazione frontale: Mobil SHC 639 (olio sintetico)
- ▶ Velocità massima: v_{max} = 2 m/s
- Nessun utilizzo di fluidi
- Guarnizioni standard (SS)

Vale alle condizioni seguenti:

Temperatura ambiente: T = 10 - 40 °C

C	= Fattore di carico dinamico	(N)
F_{m}	= Carico del cuscinetto	
	dinamico equivalente	(N)
F_m/C	= Rapporto di carico	(-)

= Intervallo di rilubrificazione

(km) come tratto

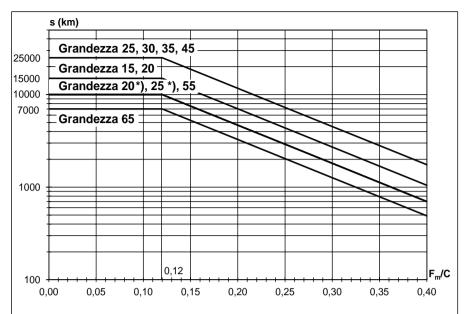


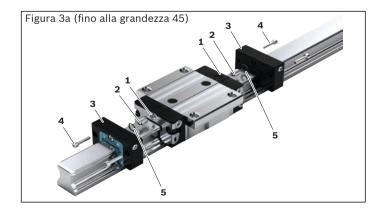
Diagramma 1

Montaggio delle unità di lubrificazione frontali Istruzioni di montaggio

I componenti richiesti per il montaggio sono compresi nella dotazione (viti rivestite, guarnizione e nipplo ingrassatore). Su entrambi i lati del pattino a sfere, montare un'unità di lubrificazione frontale (immagine 3, pos. 3)! Non estrarre il pattino a sfere dalla rotaia a sfere!

Pattino a sfere fino alla misura 45 (Figura 3a):

Tra piastra di lubrificazione e pattino a sfere, è necessario montare il perno di lubrificazione (2) in dotazione! (Il perno contiene un foro di lubrificazione.)

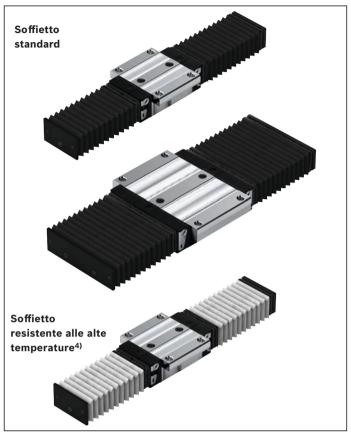

- ▶ Rimuovere i perni filettati (1).
- Avvitare il perno di lubrificazione (2).
- Montare le unità di lubrificazione frontali (3).
- Inserire gli o-ring (5) tra il pattino a sfere e le unità di lubrificazione frontali.
- Avvitare le viti (4) con una coppia di serraggio M_A (vedere la tabella 2).

Pattini a sfere dalla grandezza 55 (figura 3b):

- ▶ Montare le unità di lubrificazione frontali (3).
- ▶ Rimuovere i perni filettati (1) e inserire gli o-ring (5) tra il pattino a sfere e le unità di lubrificazione frontali.
- ► Avvitare le viti (4) con una coppia di serraggio M_A (vedere la tabella 2).

	Coppia di serraggio M _A
Pos. 4	(Nm)
M2,5 x 12	0,3
M3 x 14	0,6
M3 x 14	0,6
M3 x 14	1,2
M3 x 16	1,2
M4 x 18	1,6
M5 x 18	2,0
M4 x 20	1,6
	M2,5 x 12 M3 x 14 M3 x 14 M3 x 14 M3 x 16 M4 x 18 M5 x 18

Tabella 2



^{*)} Pattini a sfere F.N (Flangiato ... Basso) e S.N (Stretto ... Basso)

Soffietto

Soffietto standard R1620 .0. 00

- ▶ Materiale: Tessuto poliestere con rivestimento in poliuretano
- ► Piastra lubrificante in alluminio

Soffietto resistente alle alte temperature⁴⁾ R1620 .5. 00

► Materiale: tessuto Nomex, metallizzato

Resistenza alla temperatura

- ▶ Non combustibile e non infiammabile
- ▶ Resistente a singole scintille, spruzzi di saldatura o trucioli bollenti
- ▶ Possibilità di picchi di temperatura fino a 200 °C prima del rivestimento di protezione
- ► Temperatura di lavoro max. 80 °C per il soffietto intero

Grandezza	Numero di identificazione, numero di pi	ieghe	
	Tipo 1: con piastra di lubrificazione ¹⁾ e lamiera finale Tipo 6: con VSE ²⁾ e lamiera finale	Tipo 2: con telaio di fissaggio e lamiera finale	Tipo 3: con 2 piastre di lubrificazione ¹⁾ Tipo 7: con 2 VSE ²⁾
	Soffietto standard		1 1
15	R1620 10. 00,	R1620 102 00,	R1620 10. 00,
20	R1620 80. 00,	R1620 802 00,	R1620 80. 00,
25	R1620 20. 00,	R1620 202 00,	R1620 20. 00,
30	R1620 70. 00,	R1620 702 00,	R1620 70. 00,
35	R1620 30. 00,	R1620 302 00,	R1620 30. 00,
45	R1620 40. 00,	R1620 402 00,	R1620 40. 00,
55	R1620 50. 00,	R1620 502 00,	R1620 50. 00,
65	R1620 60. 00,	R1620 602 00,	R1620 60. 00,
20/40 ³⁾	-	R1670 502 00,	-
25/70 ³⁾	-	R1670 202 00,	_
35/90 ³⁾	-	R1670 302 00,	-
	Soffietto resistente alle alte temperatur	re ⁴⁾	•
25	R1620 25. 00,	R1620 252 00,	R1620 25. 00,
30	R1620 75. 00,	R1620 752 00,	R1620 75. 00,
35	R1620 35. 00,	R1620 352 00,	R1620 35. 00,
45	R1620 45. 00,	R1620 452 00,	R1620 45. 00,
55	R1620 55. 00,	R1620 552 00,	R1620 55. 00,
65	R1620 65. 00,	R1620 652 00,	R1620 65. 00,

Numero di identificazione, numero di pieghe

	Tipo 4: con 2 telai di fissaggio	Tipo 5: con piastra di lubrificazione ¹⁾ e telaio di fissaggio Tipo 8: con VSE ²⁾ e telaio di fissaggio	Tipo 9: Soffietto sciolto (Pezzo di ricambio)
	Soffietto standard		I .
15	R1620 104 00,	R1620 10. 00,	R1600 109 00,
20	R1620 804 00,	R1620 80. 00,	R1600 809 00,
25	R1620 204 00,	R1620 20. 00,	R1600 209 00,
30	R1620 704 00,	R1620 70. 00,	R1600 709 00,
35	R1620 304 00,	R1620 30. 00,	R1600 309 00,
45	R1620 404 00,	R1620 40. 00,	R1600 409 00,
55	R1620 504 00,	R1620 50. 00,	R1600 509 00,
65	R1620 604 00,	R1620 60. 00,	R1600 609 00,
20/403)	R1670 504 00,	-	R1670 509 00,
25/70 ³⁾	R1670 204 00,	-	R1670 209 00,
35/90 ³⁾	R1670 304 00,	-	R1670 309 00,
	Soffietto resistente alle alte te	mperature ⁴⁾	
25	R1620 254 00,	R1620 25. 00,	R1600 259 00,
30	R1620 754 00,	R1620 75. 00,	R1600 759 00,
35	R1620 354 00,	R1620 35. 00,	R1600 359 00,
45	R1620 454 00,	R1620 45. 00,	R1600 459 00,
55	R1620 554 00,	R1620 55. 00,	R1600 559 00,
65	R1620 654 00,	R1620 65. 00,	R1600 659 00,

Pesi su richiesta

- 1) Nessuna piastra di lubrificazione necessaria in caso di pattini a sfere con attacchi di lubrificazione laterali
- 2) VSE= unità di lubrificazione frontale
- 3) Larghezza guida su rotaia a sfere
- 4) Osservare l'altezza costruttiva (vedere disegno quotato/misure soffietto resistente ad alte temperature)

Esempio di ordinazione:

Soffietto

Grandezza 35

Standard

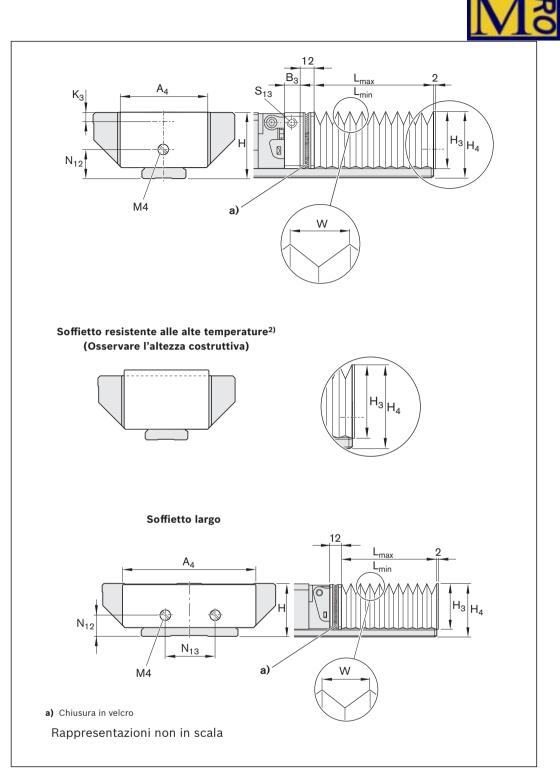
Tipo 6: con VSE e lamiera finale

Numero delle pieghe: 36

R1620 3 0 6 00, 36 Pieghe Esempio:

Standard = 0 Resistente alle alte temperature Tipo 1 - 9

Soffietto


Istruzioni di montaggio

- ► Il soffietto è premontato.
- Le viti di fissaggio sono in dotazione.
- ► Soffietto con piastra di lubrificazione (tipo 1, 3 5)
 Grandezza 15 20:
 Nipplo di lubrificazione a imbuto con codolo di rimbocco in dotazione.
 Grandezza 25 65
 e largo:
 È possibile utilizzare il

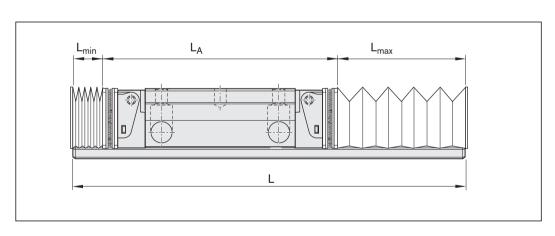
nipplo di lubrificazione

dei pattini a sfere.

- ► Con tipo 1 e tipo 2 occorre inserire nel lato frontale della rotaia a sfera SNS una filettatura M4x10 e angolazione 2 x 45°. Con rotaia a sfere BNS: Per ogni rotaia inserire due filettature.
- Osservare le istruzioni di montaggio

Soffietto standard

Grandezza	Dimensioni (m	Dimensioni (mm)											
	A ₄	B_3	Н	H_3	H_4	K ₃	N ₁₂	N ₁₃	S ₁₃	w	U		
15	45	11	24	26,5	31,5	3,4	11,0	_	M3	19,9	1,18		
20	42	12	30	24,0	29,2	3,5	13,0	_	М3	10,3	1,33		
25	45	12	36	28,5	35,0	6,0	15,0	_	М3	12,9	1,32		
30	55	12	42	34,0	41,0	8,0	18,0	_	M6	15,4	1,25		
35	64	12	48	39,0	47,0	8,0	22,0	_	M6	19,9	1,18		
45	83	12	60	49,0	59,0	8,0	30,0	_	M6	26,9	1,13		
55	96	12	70	56,0	69,0	9,0	30,0	_	M6	29,9	1,12		
65	120	14	90	75,0	89,0	18,0	40,0	_	M8x1	40,4	1,08		
20/401)	73	_	27	31,0	35,0	-	11,5	_	-	19,9	1,12		
25/70 ¹⁾	101	_	35	29,0	35,0	_	14,0	26	-	12,9	1,25		
35/90 ¹⁾	128	_	50	42,0	49,0	-	21,5	40	_	19,9	1,18		


Soffietto resistente alle alte temperature²⁾

Grandezza	Dimensioni (m	ım)									Fattore
	A ₄	B_3	Н	H_3	H_4	K_3	N ₁₂	N ₁₃	S ₁₃	w	U
25	62	12	36	39,0	44,5	6,0	15	_	M6	25,9	1,25
30	67	12	42	42,0	47,5	8,0	18	_	M6	25,9	1,25
35	74	12	48	47,0	54,0	8,0	22	_	M6	29,9	1,21
45	88	12	60	55,0	64,0	8,0	30	_	M6	32,9	1,18
55	102	12	70	63,0	75,0	9,0	30	_	M6	37,9	1,16
65	134	14	90	86,0	99,0	18,0	40	_	M8x1	52,4	1,11

 L_A

- 1) Larghezza guida su rotaia a sfere
- 2) Osservare l'altezza costruttiva (quota H₄ rispetto alla quota H)

Calcolo

Soffietto

$$L_{max} = (corsa + 30) \cdot U$$

$$L_{min} = L_{max} - Corsa$$

delle pieghe =
$$\frac{L_{\text{max}}}{W}$$
 + 2

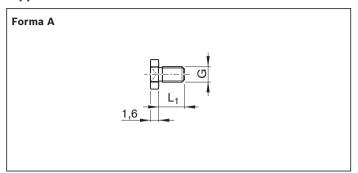
$$L_{max}$$
 = Soffietto esteso (mm)

$$L_{min}$$
 = Soffietto compresso (mm)

= Lunghezza pattini a sfere con telaio di fissaggio

Lunghezza rotaie a sfere

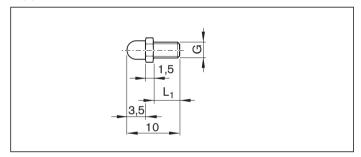
$$L = L_{\min} + L_{\max} + L_{A}$$


(mm)

158

Nipplo di lubrificazione, raccordi di lubrificazione, prolungh

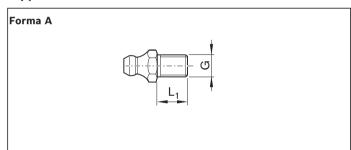
Nipplo di lubrificazione ad imbuto a norma DIN 3405


Forma B		
	W C C C C C C C C C C C C C C C C C C C	

Numero di	Dimensioni (mm)	Dimensioni	
identificazione	G	L ₁	(g)
R3417 029 09	M3	5	0,3
R3417 032 09 ¹⁾			

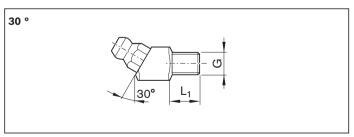
Numero di	Dimensioni (mm)	Dimensioni	
identificazione	G	L ₁	(g)
R3417 004 09	M3	5	1,5

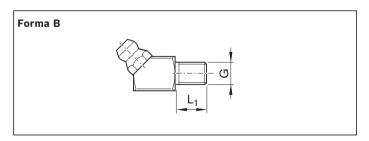
 Nipplo di lubrificazione Resist NR II in acciaio resistente alla corrosione secondo DIN EN 10088


Nipplo di lubrificazione sferico

Numero di	Dimensioni (mm)		Dimensioni
identificazione	G	L_1	(g)
R3417 005 01 ¹⁾	M3	5	0,5

1) Materiale: Ottone

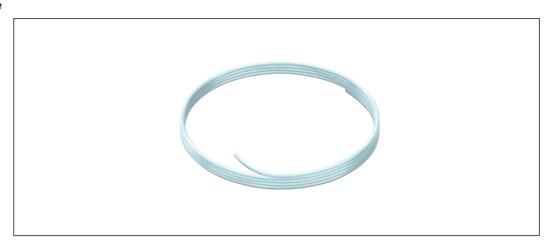

Nipplo di lubrificazione conico a norma DIN 71412


Numero di	Dimensioni (mm)	Dimensioni	
identificazione	G	L ₁	(g)
R3417 008 02	M6	8	2,6
R3417 016 02 ¹⁾			

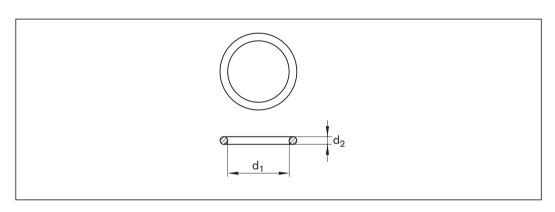
 Nipplo di lubrificazione Resist NR II in acciaio resistente alla corrosione secondo DIN EN 10088

Nipplo di lubrificazione conico a norma DIN 71412

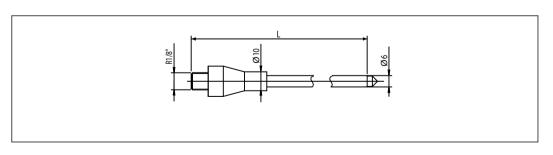
Numero di	Dimensioni (mm)		Dimensioni
identificazione	G	L ₁	(g)
R3417 023 02	M6	8	7,4



Numero di	Dimensioni (mm)		Dimensioni
identificazione	G	L ₁	(g)
R3417 007 02	M6	8	7,4
R3417 006 02	M8x1	8	8,0


Attacchi per la lubrificazione Tubo flessibile in plastica per attacco di lubrificazione

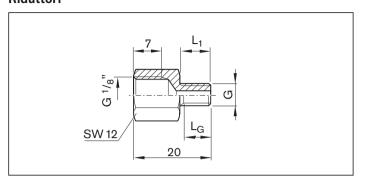
Tubo flessibile in plastica Ø 3 mm

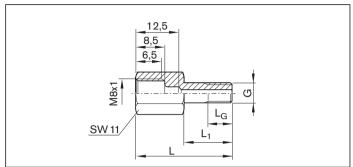

Numero di	Dimensioni			Dimensioni
identificazione	Ø esterno (mm)	Ø interno (mm)	Lunghezza (m)	(kg)
R3499 287 00	3	1,7	50	0,4

Anelli o-ring

Numero di identificazione	d₁ x d₂ (mm)	Dimensioni
R3411 130 01	4 x 1,0	
R3411 131 01	5 x 1,0	
R3411 003 01	6 x 1,5	0,03

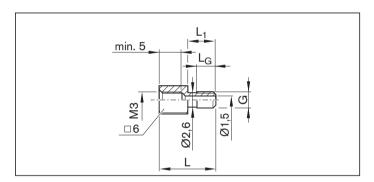
Tubo a ugelli




Numero di	Dimensioni (mm)	Dimensioni
identificazione	L	(g)
R3455 030 44	200	158

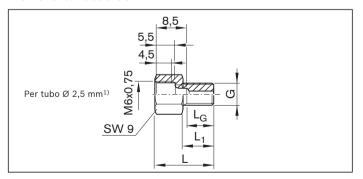
Nipplo di lubrificazione, raccordi di lubrificazione, prolungh

Attacchi per la lubrificazione Riduttori

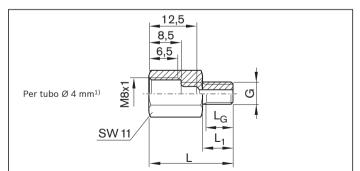

Numero di Dimensioni (mm)			Dimensioni	
identificazione	G	L_1	L_{G}	(g)
R3455 030 34	M6	8	6,5	7,5

Numero di	Dimensio	Dimensioni (mm)				
identificazione	G	L	L_1	L _G	(g)	
R3455 030 53	M8x1	28,5	14,5	8	10	

Prolunghe

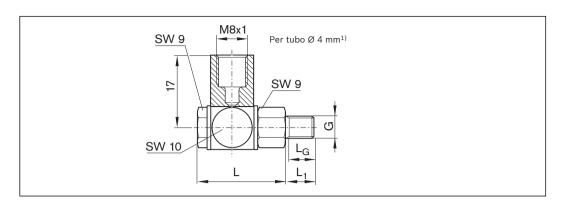


L							
					Dimensioni		
Numero di	Numero di Dimensioni (mm)						
identificazione	G	L	L ₁	L _G	(g)		
R3455 030 69	M6	21,0	10,5	7	5,0		
R3455 030 87	M6	25,0	14,5	8	5,5		
R3455 030 85	M6	26,5	16,0	7	5,0		



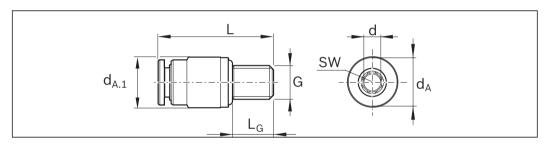
Numero di	Dimension	Dimensioni			
identificazione	G	L	L_1	L _G	(g)
R3455 030 78	М3	16,5	8,5	6	2,5

Elementi di raccordo


Numero di	Dimensio	Dimensioni			
identificazione	G	L	L_1	L_{G}	(g)
R3455 030 38	M6	15,5	8	6,5	4,1

Numero di	Dimensioni				
identificazione	G	L	L_1	L _G	(g)
R3455 030 37	M6	22	8	6,5	8,8

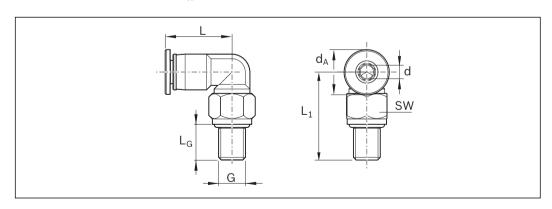
1) Per collegamento a norma DIN 2353 (raccordo filettato tubo senza saldatura)



Numero di	Dimensioni (mm)				Dimensioni
identificazione	G	L	L_{i}	L_{G}	(g)
R3417 018 09	M6	21,5	8	6,5	18,6

1) Per collegamento a norma DIN 2353 (raccordo filettato tubo senza saldatura)

Attacchi a innesto diritti Collegamenti a innesto per tubi flessibili in plastica e tubi di metallo


A Non ammesso con pattini a sfere con accessori frontali

Numero di	Dimension	Dimensioni (mm)						Dimensioni
identificazione	d _A	$d_{A.1}$	d±0,1	G	L	L_{G}	SW	(g)
R3417 073 09	6,5	6,5	3	М3	16	5	$1,5^{1)}$	1,6
R3417 074 09	6,5	8	3	M5	16	5	2	2,5
R3417 075 09	9	9	4	M6	24,5	8	2,5	4,9
R3417 076 09	11	11	6	M6	26	8	2,5	6,2

1) Massima coppia di serraggio: M_A = 0,5 Nm

Attacchi a innesto angolari girevoli1)

Numero di	Dimensio	Dimensioni (mm)						Dimensioni
identificazione	d _A	d±0,1	G	L	L_1	L_{G}	SW	(g)
R3417 077 09	6,5	3	МЗ	11,2	14,7	5	6 ²⁾	3,8
R3417 078 09	9	4	M6	18,1	18,1	8	9	10,8
R3417 079 09	11	6	M6	20,8	18,1	8	9	12,9

- 1) Massima pressione di lubrificazione: 30 bar (premere lentamente con l'ingrassatore a siringa manuale)
- 2) Massima coppia di serraggio: M_A = 0,5 Nm

Descrizione del prodotto

Rexroth offre una struttura intercambiabile illimitata attraverso possibilità di combinazione a piacere di tutte le varianti di rotaie a sfere, con tutti gli accessori per ogni misura.

Il programma completo per le migliori prestazioni in caso di esigenze speciali.

Panoramica del modello accessori rotaia a sfere

di protezione

struzioni di montaggio per il nastro di copertura

Fissare il nastro di protezione!

▶ Osservare le istruzioni di montaggio! Richiedere il "Manuale di montaggio per il nastro di protezione".

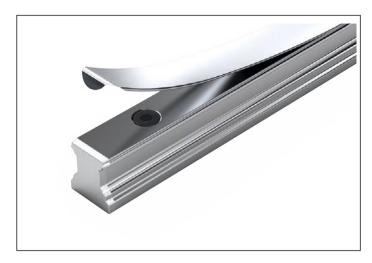
Vantaggi

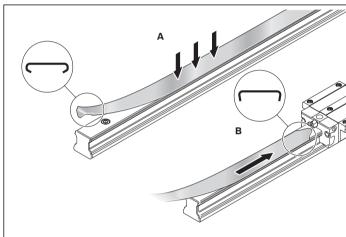
Il nastro di protezione può essere semplicemente agganciato e rimosso.

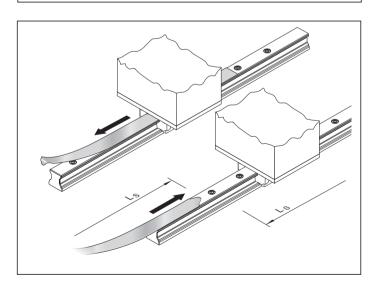
- ▶ Da ciò risultano una semplificazione notevole e un montaggio rapido:
 - Non sarà più necessario chiudere i singoli fori.
 - ▶ Nessun tempo di attesa necessario per l'indurimento della colla sui nastri adesivi.
- ► Montaggio e smontaggio multipli possibili (fino a quattro volte).

Esecuzioni e funzioni

- A Nastro di protezione con sede fissa (standard)
 - ▶ Il nastro di protezione è agganciato prima di montare il pattino a sfere e rimane fisso.
- B Nastro di protezione con parte scorrevole
 - ▶ Per il montaggio o la sostituzione del nastro di copertura, se la struttura di raccordo o i pattini a sfere non possono essere rimossi.
 - ▶ Un settore del nastro di copertura con sede fissa viene ampliato molto facilmente e può pertanto essere spostato senza problemi sotto il pattino a sfere.

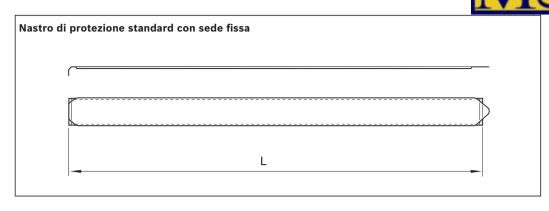

Con un mandrino di espansione per nastri di copertura, è possibile creare in un secondo momento la parte scorrevole. Soprattutto, è però possibile adattare la lunghezza di scorrimento L_s alle condizioni di installazione.


All nastro di protezione è una parte di precisione che presuppone un trattamento accurato. Soprattutto, non deve essere piegato.


Pericolo di lesione sui bordi e sulle estremità del nastro di protezione!

Indossare guanti.

Codici materiale, disegno quotato, misure e pesi, vedi pagine successive.


Nastro di protezione

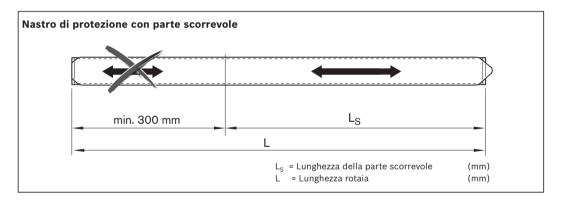
Nastro di protezione sciolto

Per il primo montaggio, il magazzinaggio e la sostituzione

Avvertenza

Per ogni rotaia a sfere SNS, è disponibile un nastro di copertura adatto con sede fissa o parte scorrevole.

Esempio di ordinazione 1 (Nastro di copertura standard


con sede fissa)

- ▶ Rotaia a sfere SNS
- ► Grandezza 35
- ► Lunghezza rotaia L = 2696 mm

Numero di identificazione:

R1619 330 20, 2696 mm

Grandezza	Nastro di protezione standard con sede fissa	Dimensioni
	Codice materiale, lunghezza rotaia L (mm)	(g/m)
15	R1619 130 00,	10
20	R1619 830 00,	29
25	R1619 230 00,	32
30	R1619 730 00,	40
35	R1619 330 20,	80
45	R1619 430 20,	100
55	R1619 530 20,	120
65	R1619 630 20,	148

Esempio di ordinazione 2 (Nastro di copertura con parte scorrevole)

- ▶ Rotaia a sfere SNS
- ► Grandezza 35
- ► Lunghezza rotaia
 - L = 2696 mm
- ► Lunghezza della parte scorrevole L_S = 1200 mm

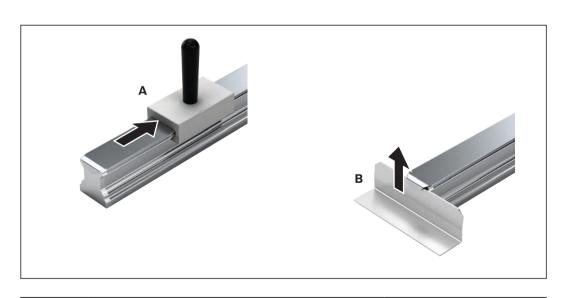
Numero di identificazione:

R1619 330 30, 2696, 1200 mm

Grandezza	Nastro di protezione con parte scorrevole	Dimensioni
е	Codice materiale, lunghezza rotaia L (mm), Lunghezza della parte scorrevole L _S (mm)	(g/m)
15	R1619 130 10,	10
20	R1619 830 10,	29
25	R1619 230 10,	32
30	R1619 730 10,	40
35	R1619 330 30,	80
45	R1619 430 30,	100
55	R1619 530 30,	120
65	R1619 630 30,	148

andrino di espansione

Per la creazione di una parte scorrevole nel nastro di protezione


Grandezza	Numero di identificazione	Dimensioni
		(g)
15	R1619 115 10	40
20	R1619 815 10	50
25	R1619 215 10	80
30	R1619 715 10	100
35	R1619 315 30	100
45	R1619 415 30	130
55	R1619 515 30	210
65	R1619 615 30	270

Set di montaggio per nastro di protezione

Ausilio di montaggio e lamiera di sollevamento

Istruzioni di montaggio

► Per l'aggancio del nastro di protezione è disponibile un ausilio per il montaggio (A), per lo smontaggio una lamiera di sollevamento (B).

Osservare le istruzioni di montaggio!

► Richiedere il "Manuale di montaggio per il nastro di protezione".

Numero di identificazione	Dimensioni
	(g)
R1619 210 80	170
R1619 710 80	200
R1619 310 60	200
R1619 410 60	210
R1619 510 60	210
R1619 610 60	280
	R1619 210 80 R1619 710 80 R1619 310 60 R1619 410 60 R1619 510 60

Nastro di protezione

Sicurezza per nastro di protezione

Istruzioni di montaggio

- ► Rexroth consiglia di utilizzare chiusure nastro:
- ▶ Previene un sollevamento imprevisto del nastro e un'infiltrazione di sporco
- ► Fissa il nastro di copertura

Serranastri

Per rotaie a sfere senza fori filettati frontali

Materiale:

- ► Serranastro in alluminio, anodizzato
- ▶ Vite di bloccaggio e dado in acciaio resistente alla corrosione conforme DIN EN 10088

Grandezza	Set (2 pezzi per unità)		Confezione grande (100 pezzi per unità)		
	Numero di identificazione (Unità)	Dimensioni (g)	Numero di identificazione (Unità)	Dimensioni (kg)	
15	R1619 139 50	11	R1619 139 60	0,55	
20	R1619 839 50	13	R1619 839 60	0,65	
25	R1619 239 50	14	R1619 239 60	0,70	
30	R1619 739 50	22	R1619 739 60	1,10	
35	R1619 339 50	30	R1619 339 60	1,50	
45	R1619 439 50	56	R1619 439 60	2,80	
55	R1619 539 50	62	R1619 539 60	3,10	
65	R1619 639 50	84	R1619 639 60	4,20	

Cappucci di protezione Per rotaie a sfere con fori filettati frontali

Materiale:

- ► Cappuccio di protezione in plastica, nero
- ▶ Vite in acciaio resistente alla corrosione a norma **DIN EN 10088**
- ► Rondella in acciaio, zincata

Grandezza	Tappo singolo		Set (2 pezzi per unità	con vite)	Confezione grande				
			OMO OM		a la				
	Numero di	Peso	Numero di	Dimensioni	Numero di	Dimensioni			
	identificazione	(g)	identificazione	(g)	identificazione/pezzo	(kg)			
	(senza vite)		(Unità)		(senza viti)				
15	R1619 139 00	0,8	R1619 139 20	5,5	R1619 139 01 / 1000	0,8			
20	R1619 839 00	0,9	R1619 839 20	6,0	R1619 839 01 / 1000	0,9			
25	R1619 239 00	1,0	R1619 239 20	7,0	R1619 239 01 / 1000	1,3			
30	R1619 739 00	1,7	R1619 739 20	9,0	R1619 739 01 / 1000	1,7			
35	R1619 339 00	2,0	R1619 339 20	10,0	R1619 339 01 / 1000	2,5			
45	R1619 439 00	4,0	R1619 439 20	13,0	R1619 439 01 / 700	2,6			
55	R1619 539 00	4,0	R1619 539 20	20,0	R1619 539 01 / 500	2,1			
65	R1619 639 00	6,0	R1619 639 20	20,0	R1619 639 01 / 300	1,7			

Tappi di chiusura fori in plastica

Grandezza	Tappo singolo	
	Numeri di identificazione	Dimensioni (g)
15	R1605 100 80	0,05
20	R1605 800 80	0,10
25	R1605 200 80	0,30
30	R1605 300 80	0,60
35	R1605 300 80	0,60
45	R1605 400 80	1,00
55	R1605 500 80	1,70
65	R1605 600 80	2,10
20/40	R1605 100 80	0,05
25/70	R1605 200 80	0,30
35/90	R1605 300 80	0,60

Avvertenza

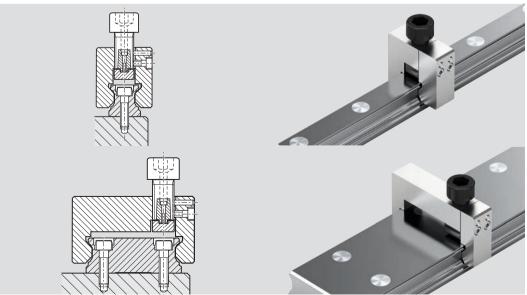
► Osservare le istruzioni di montaggio! Richiedere il "Manuale di montaggio per guide a sfere su rotaia".

Tappi di chiusura fori in acciaio

Grandezza	Tappo singolo in acciaio da taglio libero	
	Numeri di identificazione	Dimensioni (g)
25	R1606 200 75	2
30	R1606 300 75	3
35	R1606 300 75	3
45	R1606 400 75	6
55	R1606 500 75	8
65	R1606 600 75	9
25/70	R1606 200 75	2
35/90	R1606 300 75	3

Avvertenze

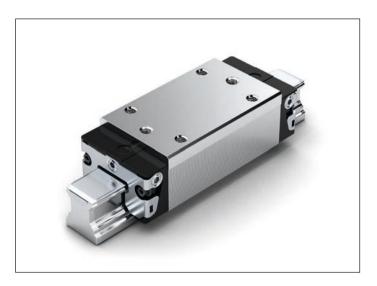
- ▶ I tappi di copertura in acciaio non sono compresi nella fornitura delle rotaie a sfere. Ordinare anche il dispositivo di montaggio!
- ► Osservare le istruzioni di montaggio! Richiedere il "Manuale di montaggio per guide a sfere su rotaia".


Dispositivo di montaggio per tappi di chiusura fori in acciaio

Bicomponente,

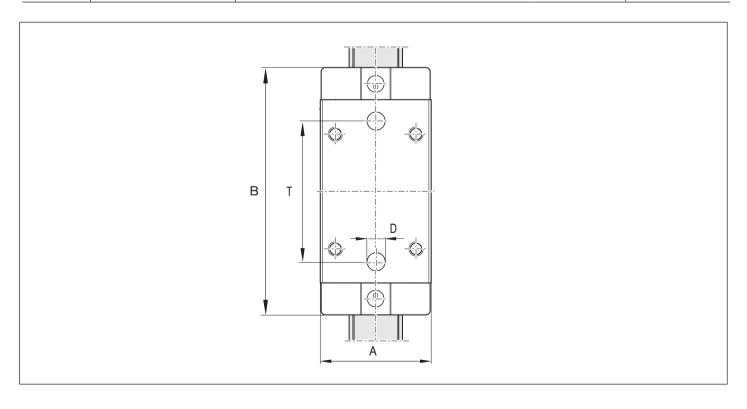
con istruzioni di montaggio

Il dispositivo bicomponente è idoneo al montaggio dei tappi di copertura con rotaia a sfere integrata.


Gran-	Numeri di	Dimen-
dezza	identificazione	sioni
		(kg)
25	R1619 210 00 ¹⁾	0,37
30	R1619 710 00 ¹⁾	0,37
35	R1619 310 10	0,57
45	R1619 410 10	0,85
55	R1619 510 10	1,50
65	R1619 610 00 ¹⁾	1,85
25/70	R1619 210 40	0,75
35/90	R1619 310 40	1,05

¹⁾ Disponibile solo monocomponente.

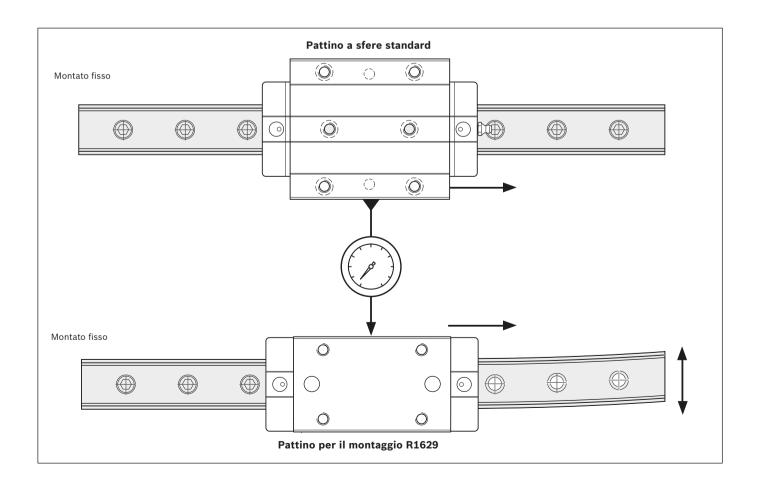
Pattino per il montaggio



Pattino per il montaggio

- ► Per allineare in parallelo con estrema precisione le guide a sfere su rotaia (tipi SNS e SNO)
- ► Per allineare le giunzioni di rotaie a sfere composte da più tratti (tipi SNS e SNO).

Grandezza	Numeri di identificazione	Dimensioni (mm)				Dimensioni
		A	В	Т	D	(kg)
15	R1629 121 90	34	72,6	43	6	0,2
20	R1629 821 90	44	91	55	6	0,5
25	R1629 221 90	48	107,9	60	8	0,8
30	R1629 721 90	60	119,7	75	10	1,1
35	R1629 321 90	70	139	80	10	2,2
45	R1629 421 90	86	174,1	105	15	4,1
55	R1629 521 90	100	199	120	18	6,0
65	R1629 621 90	126	243	150	20	9,8


Montaggio con pattino per il montaggio

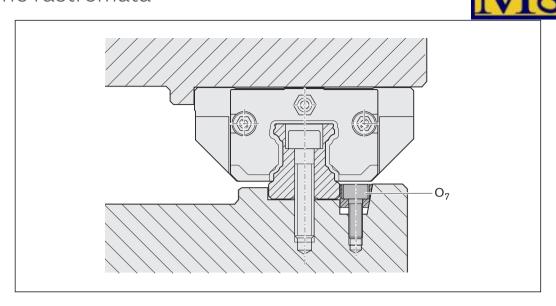
Processo di allineamento di rotaie parallele

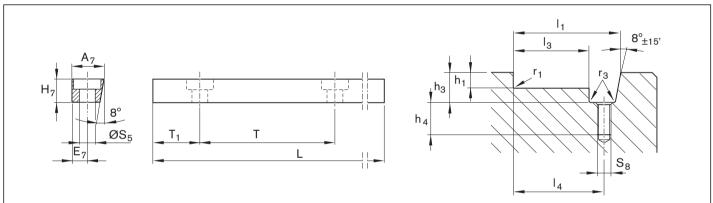
- 1 Allineare e montare la prima rotaia a sfere utilizzando una superficie laterale di riferimento.
- 2 Montare tra i pattini a sfere un comparatore millesimale con indicatore a quadrante.
- 3 Spostare entrambi i pattini a sfere in parallelo fino al preciso posizionamento dei fori D del pattino per il montaggio sopra i due fori di fissaggio della rotaia (il presupposto è che le distanze tra i fori della rotaia corrispondano alla divisione T).
- 4 Allineare la rotaia a sfere manualmente fino a quando il comparatore mostra la misura corretta.
- **5** Serrare le viti con il pattino per il montaggio.

Processo di allineamento di rotaie composte da più tratti

- 1 Spingere le rotaie composte da più tratti in corrispondenza della giunzione.
- 2 Spingere il pattino per il montaggio al centro sopra la giunzione fino a quando non si vedono entrambe le testi delle viti. Ciò accade laddove la distanza dal centro del foro della giunzione corrisponde alla divisione T. In caso contrario, continuare con il punto 5.
- 3 Il pattino per il montaggio allinea automaticamente le rotaie in corrispondenza della giunzione.
- 4 Serrare le viti con il pattino per il montaggio.
- 5 Se le distanze dal centro della vite della rotaia di guida in corrispondenza della giunzione non sono uguali a T e divergono dalla distanza tra i fori del pattino per il montaggio, ogni vite deve essere serrata singolarmente per passare poi al foro successivo.

Lardone a sezione rastremata


Lardone a sezione rastremata


Fissaggio laterale delle rotaie a sfere

Materiale: AcciaioVersione: brunito

Avvertenza

 Osservare le istruzioni di montaggio!
 Richiedere il "Manuale di montaggio per guide a sfere su rotaia".

Lardone a sezione rastremata

Grandezza	Numero di identificazione	Dimensioni (mm)							Dimensioni
		A ₇	E ₇	H_7	L	O ₇ 1)	S ₅	Т	T ₁	(kg)
15	R1619 200 01	12,0	6	10	957	M5x20	6,0	60	28,5	0,8
20	1									
25	1									
30	1									
35	1									
45	R1619 400 01	19,0	9	16	942	M8x25	9,0	105	51,0	2,0
55	1									
65	1									

1) Vite O₇ a norma DIN 6912

Scanalatura del lardone a sezione rastremata

Grandezza	Dimensioni (mm)								
	h _{1-0,2}	h ₃ +1	h ₄ +2	l ₁ ±0,05	l ₃ -0,1	I ₄ ±0,1	r _{1 max}	r _{3 max}	S ₈
15	3,5	12,5	15	27	14,9	21	0,4	0,5	M5
20	4,0	12,5	15	32	19,9	26	0,5	0,5	M5
25	4,0	12,5	15	35	22,9	29	0,8	0,5	M5
30	5,0	12,5	15	40	27,9	34	0,8	0,5	M5
35	6,0	12,5	15	46	33,9	40	0,8	0,5	M5
45	8,0	19,0	16	64	44,9	54	0,8	0,5	M8
55	10,0	19,0	16	72	52,9	62	1,2	0,5	M8
65	10,0	19,0	16	82	62,9	72	1,2	0,5	M8

- ► Mezzi ausiliari per l'apertura della confezione di rotaie di
- ► Previene pericoli di lesione

Indicazioni per l'ordine

Codice materiale R320105175

Elementi idraulici di serraggio e frenatura Descrizione del p

Ambiti di applicazione

Serraggio

- ▶ Durante lavori di montaggio e fermo della macchina con energia a KBH
- ▶ Di sistemi di movimentazione pesanti
- Bloccaggio di tavole della macchina di centri di lavorazione a elevata produzione di schegge

Freni

- Supporto come freno per motori lineari
- Di sistemi di movimentazione pesanti

Proprietà eccellenti

- Forze di bloccaggio assiali molto elevate
- Stabilizzazione dinamica e statica in direzione dell'asse
- Freno per carichi elevati

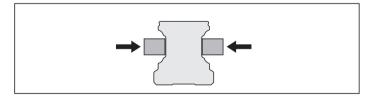
Altre caratteristiche salienti

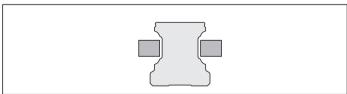
- Numero di bloccaggi fino a 1 milione.
- Fino a 2 000 frenature di emergenza
- Parte filettata su entrambi i lati del raccordo idraulico
- Supporto massiccio e rigido in acciaio, chimicamente
- Elevata precisione di posizionamento
- Pressione di apertura 150 bar
- ▶ Protezione completa con guarnizioni integrate
- ► Tecnologia speciale con membrana di pressione per massima sicurezza di funzionamento senza perdita di pressione e perdite
- ▶ Profili di contatto delle pinze dei freni, integrati, ad accoppiamento ed estesi su grande superficie, per massima rigidezza assiale
- ► Tipo per carichi elevati super

Particolarità KBH:

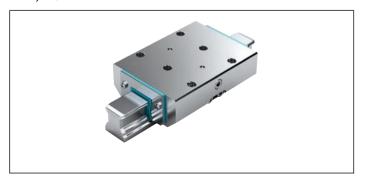
- Volume di assorbimento ridotto
- ▶ Versione compatta, compatibile con DIN 645
- ▶ 10 milioni di cicli di serraggio (valore B10d)

A Osservare le indicazioni di sicurezza sugli elementi di bloccaggio e frenanti.


Principio di funzionamento


Pressione idraulica: 50 - 150 bar Serraggio e frenatura con pressione

I profili di serraggio grandi vengono pressati direttamente sulle superfici libere della rotaia a sfere grazie all'azione dell'olio idraulico su un pistone.


Pressione idraulica: 0 bar Rilassamento con forza elastica

Una molla di richiamo pretensionata consente brevi cicli di rilassamento.

KBH, FLS

KBH, SLS

nformazioni supplementari

Raccordi idraulici

Gli elementi di serraggio idraulici sono riempiti in azienda con HLP 46. Il raccordo idraulico è applicato su due lati. Per la sollecitazione è sufficiente un collegamento. Fare particolare attenzione al momento dello sfiato dei cavi idraulici fissi e flessibili, perché eventuali sacche d'aria potrebbero danneggiare gli elementi sigillanti.

Struttura del collegamento, montaggio degli elementi di serraggio

Per evitare effetti avversi, ad es. strisciamento permanente sulla guida lineare, la struttura del raccordo deve essere rigida in modo corrispondente alla sollecitazione e ai requisiti. In caso di errore di angolazione degli elementi di serraggio, può verificarsi un contatto, un'usura e pertanto un danneggiamento della guida lineare.

Le impostazioni preliminari di fabbrica sono adattate alla guida lineare e non possono essere modificate al montaggio. Osservare assolutamente le istruzioni di montaggio degli elementi di serraggio e frenanti e delle guide lineari. Alcuni elementi caricati a molla devono essere dotati di un fermo di trasporto tra i profili di contatto.

Essa deve essere rimossa al montaggio attraverso una sollecitazione con pressione dell'elemento. Quando si rimuove la pressione, è necessario applicare sempre la sicurezza per il trasporto o la relativa guida lineare tra i profili di contatto! Gli elementi di serraggio non svolgono alcuna funzione di guida. La sostituzione di un pattino con un elemento di serraggio non è pertanto possibile. La posizione ideale dell'elemento di serraggio è tra due pattini.

In caso di utilizzo di più elementi di serraggio, essi devono essere distribuiti in modo uniforme sulle due rotaie di guida per raggiungere la massima rigidezza dell'intera struttura.

Lubrificazione

In caso di utilizzo del mezzo di pressione prescritto, non è necessaria una lubrificazione.

Protezione della superficie

Tutti i supporti degli elementi di serraggio sono nichelati chimicamente e hanno pertanto una determinata protezione antiruggine. Aree parziali in alluminio sono nichelate chimicamente o dotate di rivestimento duro a seconda dei requisiti.

Valore B10d

Il valore B10d indica il numero di cicli di commutazione fino a quando il 10% dei componenti non si danneggia in modo pericoloso.

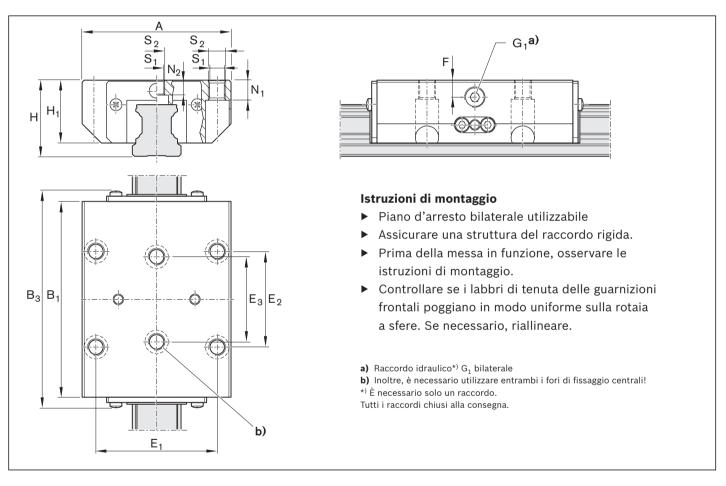
Elementi idraulici di serraggio e frenatura, KBH, FLS

FLS

Flangiato Lungo Altezza standard R1619 .40 21

Avvertenza

Adatti a tutte le rotaie a sfere SNS.


Serraggio e frenatura con pressione

- Max. pressione di esercizio idraulica:
 - ▶ Grandezza 25: 100 bar
 - ► Grandezza 35 65: 150 bar
- Campo di temperatura di esercizio t: 0 70 °C

Note per la lubrificazione

- ► Primo riempimento olio idraulico HLP46
- ► In caso di utilizzo di altri oli, controllare la compatibilità

A Osservare le indicazioni di sicurezza sugli elementi di bloccaggio e frenanti.

Gran-	Numero di	Forza di tenuta ¹⁾	Dime	nsioni	(mm)												Volume di	Dimen-
dezza	identificazione	(N)															assorb. ⁶⁾	sioni
			Α	B ₁	B _{3 max}	Н	H ₁	E ₁	$\mathbf{E_2}$	E ₃	F	G_1	$N_1^{4)}$	$N_2^{5)}$	S_1	S_2	(cm ³)	(kg)
25	R1619 240 21	2 200 ²⁾	70	92,0	102,3	36	29,5	57	45	40	8	1/8"	9	7,0	6,8	M8	0,6	1,10
35	R1619 340 21	5 700 ³⁾	100	120,5	141,0	48	40,0	82	62	52	12	1/8"	12	10,2	8,6	M10	1,1	2,69
45	R1619 440 21	9 9003)	120	155,0	178,0	60	50,0	100	80	60	15	1/8"	15	12,4	10,5	M12	1,8	5,20
55	R1619 540 21	13 700 ³⁾	140	184,0	209,0	70	57,0	116	95	70	16	1/8"	18	13,5	12,5	M14	2,4	8,40
65	R1619 640 21	22 700 ³⁾	170	227,0	264,0	90	76,0	142	110	82	20	1/4"	23	14,0	14,5	M16	3,8	17,30

- 1) La verifica avviene in versione montata con uno strato di lubrificante in olio (ISO-VG 68).
- 2) Con 100 bar
- 3) Con 150 bar

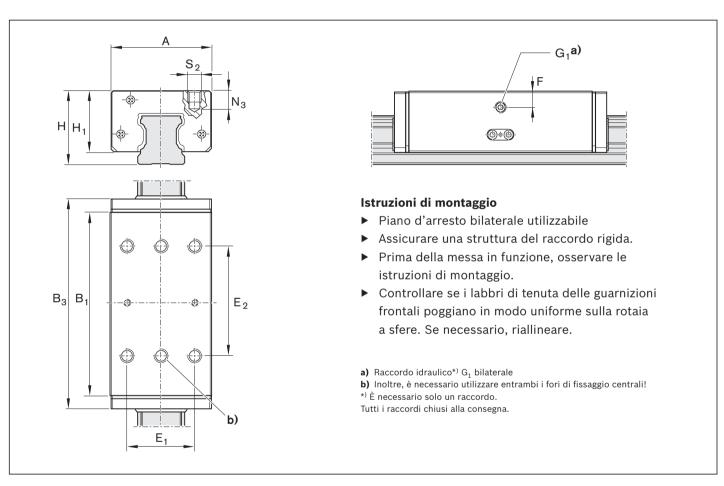
- 4) Avvitabile dal basso con ISO 4762
- 5) Avvitabile dal basso con DIN 7984
- 6) Per ogni processo di bloccaggio

nti idraulici di serraggio e frenatura, KBH, SLS

Stretto Lungo Altezza standard R1619 .40 20

Avvertenza

Adatti a tutte le rotaie a sfere SNS.


Serraggio e frenatura con pressione

- ▶ Max. pressione di esercizio idraulica:
- Grandezza 65: 150 bar
- Campo di temperatura di esercizio t: 0 70 °C

Note per la lubrificazione

- ▶ Primo riempimento olio idraulico HLP46
- ► In caso di utilizzo di altri oli, controllare la compatibilità

• Osservare le indicazioni di sicurezza sugli elementi di bloccaggio e frenanti.

Grandezza	Numero di	Forza di tenuta ¹⁾	Dimen	sioni (mm)			-			-			Volume di	Dimensioni
	identificazione	(N)												assorb. ³⁾	(kg)
			Α	B_1	B _{3 max}	Н	H ₁	E ₁	E_2	F	G_1	N_3	S2	(cm ³)	
65	R1619 640 20	22 700 ²⁾	126	227	264	90	76	76	120	20	1/4"	21	M16	3.8	14,40

- 1) La verifica avviene in versione montata con uno strato di lubrificante in olio (ISO-VG 68).
- 2) Con 100 bar
- 3) Per ogni processo di bloccaggio

Elementi idraulici di serraggio descrizione del prodotto

Ambiti di applicazione

- Bloccaggio di sistemi di movimentazione pesanti
- Bloccaggio di tavole della macchina di centri di lavorazione a elevata produzione di schegge

Proprietà eccellenti

- ► Forze di bloccaggio assiali molto elevate
- Versione compatta, compatibile con DIN 645
- Stabilizzazione dinamica e statica in direzione dell'asse

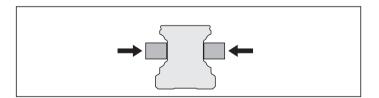
Altre caratteristiche salienti

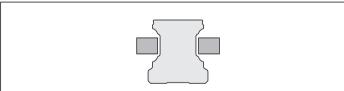
- Supporto massiccio e rigido in acciaio, chimicamente nichelato
- ▶ Elevata precisione di posizionamento
- ▶ Pressione regolabile in maniera continua di 50 150 bar
- Protezione completa con guarnizioni integrate
- ▶ Tecnologia speciale con membrana di pressione per massima sicurezza di funzionamento senza perdita di pressione e perdite
- ▶ Profili di contatto integrati, ad accoppiamento ed estesi su grande superficie, per massima rigidezza assiale

Particolarità KWH:

▶ 10 milioni di cicli di serraggio (valore B10d)

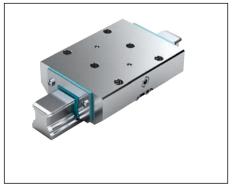
A Osservare le indicazioni di sicurezza sugli elementi di bloccaggio e frenanti.


Principio di funzionamento

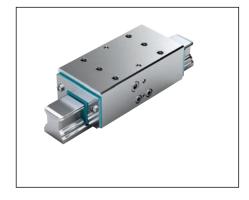

Pressione idraulica: 50 - 150 bar Serraggio con pressione

I profili di serraggio grandi vengono pressati direttamente sulle superfici libere della rotaia a sfere grazie all'azione dell'olio idraulico su un pistone.

Pressione idraulica: 0 bar Rilassamento con forza elastica


Una molla di richiamo pretensionata consente brevi cicli di rilassamento.

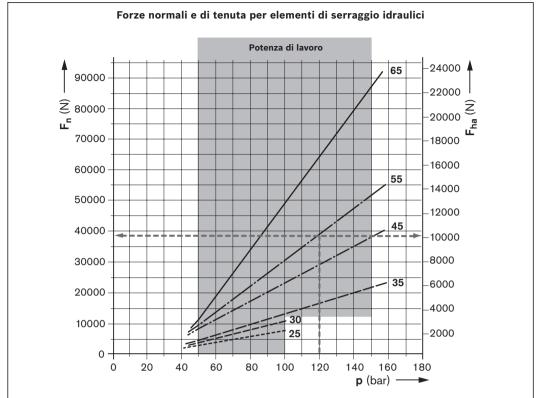
Panoramica del modello accessori elementi di bloccaggio idraulici


KWH, FLS

KWH, SLS

KWH, SLH

Bosch Rexroth AG, R999001197/2020-10



Forze normali e forze di tenuta

Valori misurati sull'elemento di serraggio KWH, **FLS Flangiato Lungo** Altezza standard, Grandezza 25 - 65

Max. pressione di esercizio idraulica:

- Grandezza 25 - 30: 100 bar
- Grandezza 35 - 65: 150 bar

Calcolo della forza di tenuta

Forza di tenuta per elementi idraulici di serraggio

$$F_{ha} \, = \, F_n \cdot 2 \cdot \mu_0$$

Forza normale (misurata): F_n vedere diagramma

Coefficiente di frizione: μ_0 = 0,13 (ca.) per acciaio/acciaio, oliato,

riferito alla rotaia a sfere

Esempio di calcolo: elemento di serraggio KWH grandezza 55

Stampa: = 120 bar

Forza normale: = 38500 N (vedere il diagramma)

Forza di tenuta: $= 38500 \text{ N} \cdot 2 \cdot 0,13$

= 10010 N

Forza di tenuta ammessa per elementi idraulici di serraggio

= Fattore di sicurezza (-) f_S

= Forza di tenuta F_{ha} (N) $(con \mu_0 = 0,13)$

F_{ha, cons} = Forza di tenuta

consentita (N)

 F_n = Forza normale

= Coefficiente

di frizione (-)

= Pressione (bar)

$$F_{ha. cons} = F_{ha} / f_{S}$$

Il fattore di sicurezza f_S dipende da:

- Vibrazioni
- ► Forze d'impulso
- ► Requisiti specifici per l'applicazione

Esempio: elemento di serraggio KWH grandezza 55

Forza di tenuta: = 10010 N

(vedi Esempio di calcolo)

= 1,25 (assunto) Fattore di sicurezza: Forza di tenuta consentita: $F_{ha. cons} = 10 \ 010 \ N / 1,25$

 $\approx 8000 \text{ N}$

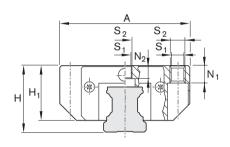
Elementi idraulici di serraggio KWH, FLS

FLS Flangiato Lungo Altezza standard R1619 .42 11

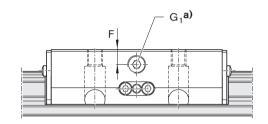
Avvertenza

Adatti a tutte le rotaie a sfere SNS.

Serraggio con pressione


- ▶ Max. pressione di esercizio idraulica:
 - ▶ Grandezza 25 30: 100 bar
 - ▶ Grandezza 35 65: 150 bar
- ► Campo di temperatura di esercizio t: 0 70 °C




Note per la lubrificazione

- ▶ Primo riempimento olio idraulico HLP46
- ▶ In caso di utilizzo di altri oli, controllare la compatibilità

A Osservare le indicazioni di sicurezza sugli elementi di bloccaggio e frenanti.

Istruzioni di montaggio

- ▶ Piano d'arresto bilaterale utilizzabile
- Assicurare una struttura del raccordo rigida.
- ▶ Prima della messa in funzione, osservare le istruzioni di montaggio.
- ► Controllare se i labbri di tenuta delle guarnizioni frontali poggiano in modo uniforme sulla rotaia a sfere. Se necessario, riallineare.
- a) Raccordo idraulico*) G₁ bilaterale
- b) Inoltre, è necessario utilizzare entrambi i fori di fissaggio centrali!
- *) È necessario solo un raccordo.

Tutti i raccordi chiusi alla consegna.

Grandezza	Numero di	Forza di	Dime	nsioni (mm)												Volume di	Dimen-
	identificazione	tenuta ¹⁾															assorb. ⁶⁾	sioni
		(N)	Α	B_1	B _{3 max}	Н	H ₁	E ₁	$\mathbf{E_2}$	E_3	F	G_1	$N_1^{4)}$	$N_2^{5)}$	S_1	S_2	(cm ³)	(kg)
25	R1619 242 11	2 2002)	70	92,0	102,3	36	29,5	57	45	40	8,0	1/8"	9	7,0	6,8	M8	0,6	1,22
30	R1619 742 11	3 0002)	90	103,5	115,4	42	35,0	72	52	44	10,5	1/8"	11	8,0	8,6	M10	0,7	2,09
35	R1619 342 11	5 700 ³⁾	100	120,5	133,0	48	40,0	82	62	52	12,0	1/8"	12	10,2	8,6	M10	1,1	2,69
45	R1619 442 11	9 9003)	120	155,0	170,0	60	50,0	100	80	60	15,0	1/8"	15	12,4	10,5	M12	1,8	5,32
55	R1619 542 11	13 700 ³⁾	140	184,0	201,0	70	57,0	116	95	70	16,0	1/8"	18	13,5	12,5	M14	2,4	8,40
65	R1619 642 11	22 700 ³⁾	170	227,0	256,0	90	76,0	142	110	82	20,0	1/4"	23	14,0	14,5	M16	3,8	17,30

- 1) La verifica avviene in versione montata con uno strato di lubrificante in olio (ISO-VG 68). Forza di tenuta consentita 🗨 🗎 173
- 2) Con 100 bar
- 3) Con 150 bar

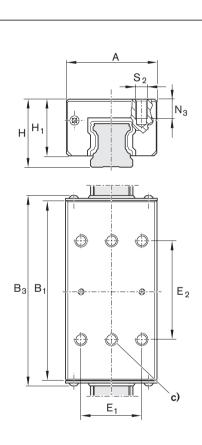
- 4) Avvitabile dal basso con ISO 4762
- 5) Avvitabile dal basso con DIN 7984
- 6) Per ogni processo di bloccaggio

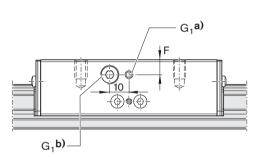
nti idraulici di serraggio KWH, SLS

SLS Stretto Lungo Altezza standard R1619 .42 51

Avvertenza

Adatti a tutte le rotaie a sfere SNS.


Serraggio con pressione


- ▶ Max. pressione di esercizio idraulica:
 - ▶ Grandezza 25 30: 100 bar
 - ▶ Grandezza 35, 55, 65: 150 bar
 - ► Grandezza 45: 110 bar
- Campo di temperatura di esercizio t: 0 70 °C

Note per la lubrificazione

- ▶ Primo riempimento olio idraulico HLP46
- ► In caso di utilizzo di altri oli, controllare la compatibilità

• Osservare le indicazioni di sicurezza sugli elementi di bloccaggio e frenanti.

Istruzioni di montaggio

- ▶ Piano d'arresto bilaterale utilizzabile
- Assicurare una struttura del raccordo rigida.
- ▶ Prima della messa in funzione, osservare le istruzioni di montaggio.
- ► Controllare se i labbri di tenuta delle guarnizioni frontali poggiano in modo uniforme sulla rotaia a sfere. Se necessario, riallineare.
- a) Raccordo idraulico*) G₁ bilaterale
- **b)** Raccordo idraulico*) G_1 sui due lati con grandezza 25 30
- c) Inoltre, è necessario utilizzare entrambi i fori di fissaggio!
- *) È necessario solo un raccordo.

Tutti i raccordi chiusi alla consegna.

Grandezza	Numero di	Forza di	Dimen	sioni (m	m)									Volume di	Dimensioni
	identificazione	tenuta ¹⁾												assorb. ⁴⁾	(kg)
		(N)	Α	B ₁	B _{3 max}	Н	H ₁	E ₁	$\mathbf{E_2}$	F	G_1	N_3	S ₂	(cm ³)	
25	R1619 242 51	1 600 ²⁾	48	92,0	102,3	36	29,5	35	50	8	1/8"	8	M6	0,6	1,22
30	R1619 742 51	3 0002)	60	103,5	115,4	42	35,0	40	60	9	1/8"	8	M8	0,7	2,09
35	R1619 342 51	3 500 ²⁾	70	120,5	134,0	48	40,0	50	72	12	1/8"	13	M8	1,1	2,02
45	R1619 442 51	7 4002)	86	155,0	170,0	60	50,0	60	80	15	1/8"	15	M10	1,8	4,00
55	R1619 542-51	13 700 ³⁾	100	184,0	201,0	70	57,0	75	95	16	1/8"	18	M12	2,4	6,10
65	R1619 642 51	22 700 ³⁾	126	227,0	256,0	90	76,0	76	120	20	1/4"	21	M16	3,8	14,40

- 1) La verifica avviene in versione montata con uno strato di lubrificante in olio (ISO-VG 68). Forza di tenuta consentita 🖝 173
- 2) Con 100 bar
- 3) Con 150 bar
- 4) Per ogni processo di bloccaggio

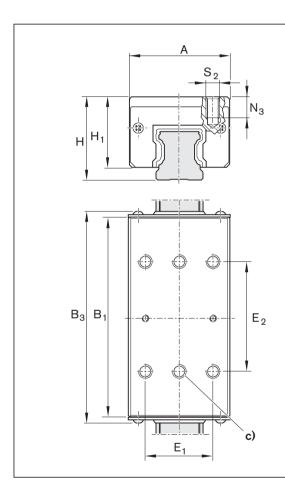
Elementi idraulici di serraggio KWH, SLH

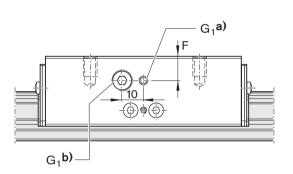
SLH Sottile Lungo Alto R1619 .42 31

Avvertenza

Adatti a tutte le rotaie a sfere SNS.

Serraggio con pressione


- ▶ Max. pressione di esercizio idraulica:
 - ▶ Grandezza 25 30: 100 bar
 - ▶ Grandezza 35, 55, 65: 150 bar
 - ▶ Grandezza 45: 110 bar
- Campo di temperatura di esercizio t: 0 70 °C



Note per la lubrificazione

- ► Primo riempimento olio idraulico HLP46
- In caso di utilizzo di altri oli, controllare la compatibilità

A Osservare le indicazioni di sicurezza sugli elementi di bloccaggio e frenanti.

Istruzioni di montaggio

- ► Piano d'arresto bilaterale utilizzabile
- ► Assicurare una struttura del raccordo rigida.
- ► Prima della messa in funzione, osservare le istruzioni di montaggio.
- ► Controllare se i labbri di tenuta delle guarnizioni frontali poggiano in modo uniforme sulla rotaia a sfere. Se necessario, riallineare.
- a) Raccordo idraulico*) G₁ bilaterale
- b) Raccordo idraulico*) G₁ sui due lati con grandezza 25 30
- c) Inoltre, è necessario utilizzare entrambi i fori di fissaggio centrali!
- *) È necessario solo un raccordo.
- Tutti i raccordi chiusi alla consegna

Grandezza	Numero di	Forza di	Dimens	i oni (mr	n)									Volume di	Dimensioni
	identificazione	tenuta ¹⁾												assorb. ⁴⁾	(kg)
		(N)	Α	B_1	B _{3 max}	Н	H ₁	E ₁	$\mathbf{E_2}$	F	G_1	N_3	S_2	(cm ³)	
25	R1619 242 31	1 600 ²⁾	48	92,0	102,3	40	33,5	35	50	12	1/8"	12	M6	0,6	1,10
30	R1619 742 31	3 0002)	60	103,5	115,4	45	38,0	40	60	12	1/8"	11	M8	0,7	1,90
35	R1619 342 31	3 500 ²⁾	70	120,5	134,0	55	47,0	50	72	18	1/8"	13	M8	1,1	2,46
45	R1619 442 31	7 400 ²⁾	86	155,0	170,0	70	60,0	60	80	24	1/8"	18	M10	1,8	4,95
55	R1619 542 31	13 700 ³⁾	100	184,0	201,0	80	67,0	75	95	26	1/8"	19	M12	2,4	7,90

- 1) La verifica avviene in versione montata con uno strato di lubrificante in olio (ISO-VG 68). Forza di tenuta consentita 🕫 🗈 173
- 2) Con 100 bar
- 3) Con 150 bar
- 4) Per ogni processo di bloccaggio

Elementi pneumatici di serraggio e frenatura, descrizione del prodotto

Ambiti di applicazione

Serraggio

- ▶ In caso di caduta di pressione
- Durante lavori di montaggio e fermo della macchina senza energia
- ▶ Di tavole della macchina di centri di lavorazione
- ▶ Di posizionamento assi Z in posizione di riposo

Freni

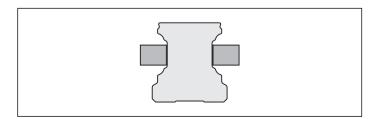
- ► In caso di caduta di energia
- ▶ In caso di caduta di pressione
- ► Supporto della funzione di arresto di emergenza
- Supporto come freno per motori lineari

Proprietà eccellenti

- ► Serraggio e frenatura per effetto dell'accumulatore di energia elastica
- ▶ Profili di contatto integrati, ad accoppiamento, per massima rigidezza assiale e orizzontale ed eccellente efficacia di frenatura
- Stabilizzazione dinamica e statica in direzione dell'asse

Particolarità KBH:

▶ 5 milioni di cicli di serraggio (valore B10d)

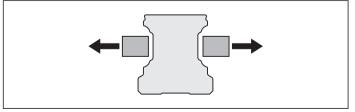

A Osservare le indicazioni di sicurezza sugli elementi di bloccaggio e frenanti.

Principio di funzionamento

Pressione atmosferica: 0 bar Bloccaggio e frenatura con forza elastica

In caso di caduta di pressione, si origina un effetto di serraggio e frenante tramite un ingranaggio a cuneo di scorrimento a doppia azione con un pacchetto molla (accumulatore di energia elastica).

Una formula di sfiato veloce integrata consente brevi tempi di reazione.



Pressione atmosferica: 4,5 - 8 bar (MBPS) 5,5 - 8 bar (UBPS)

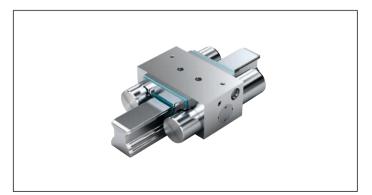
Rilassamento con aria compressa

I profilati di serraggio vengono tenuti lontani attraverso l'aria compressa.

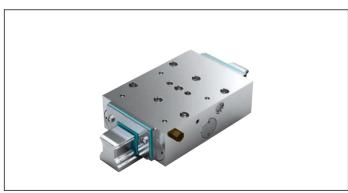
► Movimento libero possibile

Altre caratteristiche salienti

- Numero di bloccaggi fino a 1 milione
- Fino a 2 000 frenature di emergenza
- ▶ Protezione completa con guarnizioni integrate
- ► Elevata potenza permanente
- ▶ Elevata precisione di posizionamento
- ▶ Ingranaggio a cuneo di scorrimento meccanico
- Supporto massiccio e rigido in acciaio, chimicamente nichelato
- Consumo di aria ridotto
- Esente da manutenzione


Particolarità MBPS:

- ▶ Elemento di serraggio e frenatura di modello corto
- ▶ Dispositivi con tre pistoni collegati in serie in abbinamento con molle resistenti producono forze di tenuta assiali fino a 3 800 N a soli 4,5 bar di pressione di apertura.
- ▶ 5 milioni di cicli di serraggio (valore B10d)¹)


Particolarità UBPS:

- ► Forze di bloccaggio assiali molto elevate fino a 7 700 N pressione di apertura di 5,5 bar con forte accumulatore di energia elastica.
- ► Aumento delle forze di bloccaggio fino a 9200 N mediante un rifornimento di aria supplementare alla connessione aria positiva
- Consumo di aria estremamente contenuto
- ▶ Versione compatta, compatibile con DIN 645
- ▶ 5 milioni di cicli di serraggio (valore B10d)¹)
- 1) con attacco POSITIVO il valore B10d non viene raggiunto

MBPS

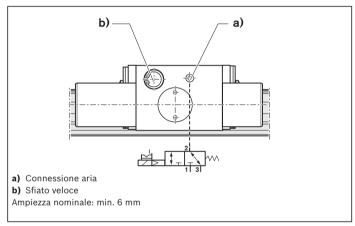
UBPS

Elementi pneumatici di serraggio e frenatura MBPS

R1619 .40 31

Avvertenza

Adatti a tutte le rotaie a sfere SNS.


Serraggio e frenatura senza pressione (Energia elastica)

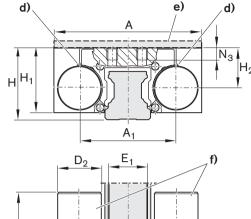
- ▶ Pressione di apertura min. 4,5 bar
- Max. pressione di esercizio pneumatica: 8 bar
- Campo di temperatura di esercizio t: 0 70 °C

Istruzioni di montaggio

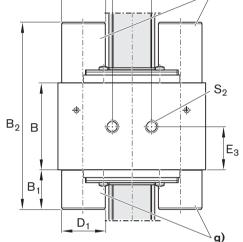
- Assicurare una struttura del raccordo rigida.
- Utilizzare solo aria depurata e lubrificata. La grandezza prescritta per il filtro è pari a circa 25 µm.
- ▶ Prima della messa in funzione, osservare le istruzioni di montaggio.
- Controllare se i labbri di tenuta delle guarnizioni frontali poggiano in modo uniforme sulla rotaia a sfere. Se necessario, riallineare.

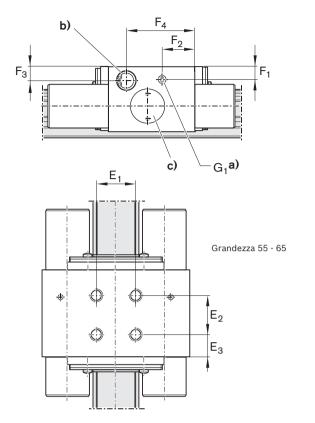
Azionamento¹⁾ per connessione aria standard

A Osservare le indicazioni di sicurezza sugli elementi di bloccaggio e frenanti.


Grandezza	Numero di identificazione	Forza di tenuta	Consumo di aria (litri normali)
		Energia elastica ¹⁾	Connessione aria
		(N)	(dm³/corsa)
20	R1619 840 31	1 000	0,034
25	R1619 240 31	1 300	0,048
30	R1619 740 31	2 000	0,065
35	R1619 340 31	2 600	0,093
45	R1619 440 31	3 600	0,099
55	R1619 540 31	4 700	0,244
65	R1619 640 31	4 700	0,244

¹⁾ Forza di tenuta mediante energia elastica a 6 bar. La verifica avviene in versione montata con uno strato di lubrificante in olio (ISO-VG 68).





d)

e)

- a) Connessione aria*) ${\bf G}_1$ bilaterale per pressione di apertura.
- **b)** Sfiato veloce sui due lati
- c) Vite di registrazione sui due lati
- d) Sfiato sui due lati
- e) Piastra distanziale (accessori)
- f) Pistone
- g) Accumulatore di energia elastica *) È necessario solo un raccordo.

Tutti i raccordi chiusi alla consegna.

Grandezza	Dime	Dimensioni (mm)														Dimensioni					
	Α	A_1	В	B_1	B _{2 max}	D_1	D_2	E ₁	$\mathbf{E_2}$	E_3	F_1	F_2	F_3	F_4	G_1	Н	$H_{1}^{1)}$	H_2	N_3	S_2	(kg)
20	66	45,7	44	19,0	94,5	16	18	20	-	22,0	5,5	15,5	6,0	35,5	M5	30	25,8	16,2	8,6	M6	0,7
25	75	49,0	44	20,2	95,5	22	22	20	-	22,0	6,5	16,5	7,0	34,7	M5	36	32,5	20,0	8,0	M6	1,0
30	90	58,0	47	29,0	107,5	25	25	22	-	23,0	7,2	30,5	7,2	40,0	M5	42	38,5	24,0	9,0	M8	1,8
35	100	68,0	46	27,7	106,2	28	28	24	-	24,5	9,0	19,0	9,5	38,0	G1/8"	48	42,0	26,5	10,0	M8	1,9
45	120	78,8	49	32,2	113,7	30	30	26	-	24,5	15,0	31,1	12,2	41,6	G1/8"	60	52,0	35,5	15,0	M10	2,3
55	140	97,0	62	41,0	145,0	39	39	38	38	12,0	11,0	23,0	11,0	40,0	M5	70	59,0	38,0	18,0	M10	3,7
65	150	106,0	62	41,0	145,0	39	38	38	38	12,0	16,0	23,0	16,0	40,0	M5	90	75,5	53,5	18,0	M10	4,2

¹⁾ Pattini a sfere .H. (...Alti...) Piastra distanziale necessaria.

Elementi pneumatici di serraggio e frenatura UBPS

R1619 .40 51

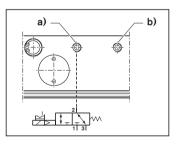
Forze di tenuta assiali molto elevate grazie a tre pistoni collegati in serie e potente accumulatore di energia elastica; aumento delle forze di bloccaggio mediante un rifornimento di aria supplementare alla connessione aria positiva

Avvertenza

Adatti a tutte le rotaie a sfere SNS.

Serraggio e frenatura senza pressione (energia elastica)

- ▶ Pressione di apertura min. 5,5 bar
- Max. pressione di esercizio pneumatica: 8 bar
- Campo di temperatura di esercizio t:0 70 °C


Piano d'arresto bilaterale utilizzabile.

Istruzioni di montaggio

- Assicurare una struttura del raccordo rigida.
- Utilizzare solo aria depurata e lubrificata. La grandezza prescritta per il filtro è pari a circa 25 µm.
- Prima della messa in funzione, osservare le istruzioni di montaggio.
- Controllare se i labbri di tenuta delle guarnizioni frontali poggiano in modo uniforme sulla rotaia a sfere. Se necessario, riallineare.

A Osservare le indicazioni di sicurezza sugli elementi di bloccaggio e frenanti.

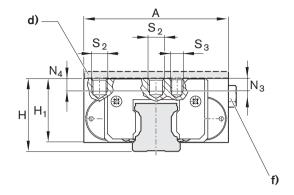
Azionamento¹⁾ in caso di connessione aria standard

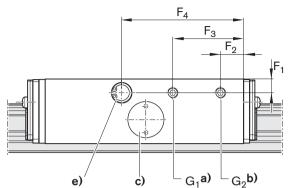
- a) Connessione aria
- b) Filtro aria Ampiezza nominale: min. 6 mm

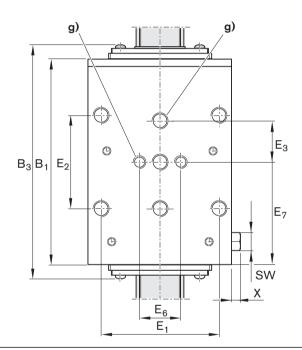
a) Connessione aria b) Connessione aria positiva

Azionamento²⁾

con connessione aria positiva


Ampiezza nominale: min. 6 mm


Grandezza	Numero di identificazione	Forza di tenuta		Consumo di aria (lit	ri normali)
		Energia elastica ¹⁾	con connessione aria positiva ²⁾	Connessione aria	Connessione aria positiva
		(N)	(N)	(dm³/corsa)	(dm³/corsa)
25	R1619 240 51	1 500	2 650	0,080	0,165
30	R1619 740 51	2 500	3 300	0,111	0,274
35	R1619 340 51	2 800	3 800	0,139	0,303
45	R1619 440 51	5 200	7 600	0,153	0,483
55	R1619 540 51	7 700	9 200	0,554	0,952


- 1) Forza di tenuta mediante energia elastica. La verifica avviene in versione montata con uno strato di lubrificante in olio (ISO-VG 68).
- 2) Aumento delle forze di bloccaggio mediante un rifornimento di aria supplementare alla connessione aria positiva con 6,0 bar. Processo di commutazione mediante valvola a 5/2 o valvola a 5/3 vie.

- a) Connessione aria*) G₁ bilaterale per pressione di apertura.
- **b)** Raccordo*) G₂ bilaterale per connessione aria positiva oppure filtro dell'aria.
- c) Vite di registrazione sui due lati
- d) Piastra distanziale (accessori)
- e) Sfiato sui due lati
- f) Filtro aria: Collegamento G₂ (bilaterale possibile)
- g) È necessario utilizzare entrambi i fori di fissaggio centrali!
- *) È necessario solo un raccordo.

Tutti i raccordi chiusi alla consegna.

Grandezza	Dimensioni (mm)												
	Α	B_1	B _{3 max}	E ₁	E_2	E ₃	E ₆	E ₇	F_1	F_2	F_3	F ₄	
25	70	99	115,1	57	45	20	20	49,5	6,5	11	34,3	59,0	
30	90	109	128,7	72	52	22	22	54,5	6,5	11	40,8	66,5	
35	100	109	131,0	82	62	26	24	54,5	8,0	11	40,8	66,5	
45	120	197	220,1	100	80	30	-	98,5	12	32	167	106,5	
55	140	197	221,6	116	95	35	-	98,5	13	32	165	103,5	

Grandezza	Dimensioni (mensioni (mm)												
	G₁	G_2	Н	$H_1^{1)}$	N_3	N_4	S_2	S_3	X	SW	(kg)			
25	M5	M5	36	31	7	7	M8	M6	5,5	Ø8, SW7	1,20			
30	M5	M5	42	37	8	8	M10	M8	5,5	Ø8, SW7	1,80			
35	G1/8"	G1/8"	48	42	10	10	M10	M8	6,5	Ø15, SW13	2,25			
45	G1/8"	G1/8"	60	52	-	12	M12	-	6,5	Ø15, SW13	6,20			
55	G1/8"	G1/8"	70	60	-	14	M14	-	6,5	Ø15, SW13	9,40			

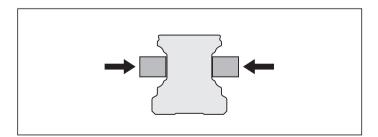
¹⁾ Pattini a sfere .H. (...Alti...) Piastra distanziale necessaria. Disponibile su richiesta.

Elementi pneumatici di serraggio descrizione del prodotto

Ambiti di applicazione

- ▶ Bloccaggio pneumatico di assi macchina
- ► Traverse tavolo nell'industria del legno
- ▶ Posizionamento di meccanismi di sollevamento

Proprietà eccellenti


- ▶ Elevate forze di bloccaggio assiali con modello corto
- ▶ Stabilizzazione dinamica e statica in direzione dell'asse
- Semplice principio di bloccaggio meccanico con le unità
 LCP e LCPS ed eccellente rapporto qualità-prezzo

Altre caratteristiche salienti

- ▶ Semplice montaggio
- Supporto in acciaio chimicamente nichelato
- ► Elevata rigidezza assiale e orizzontale
- Posizionamento preciso

A Osservare le indicazioni di sicurezza sugli elementi di bloccaggio e frenanti.

Principio di funzionamento

Bloccaggio con aria compressa o forza elastica

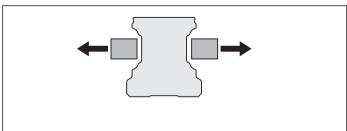
► I profilati di serraggio vengono premuti sulle superfici asta della rotaia a sfere.

Particolarità MK:

- Serraggio con pressione (pneumatico). I profilati di serraggio sono premuti attraverso aria compressa tramite un ingranaggio a cuneo di scorrimento a doppia azione sul gambo della rotaia a sfere.
- ▶ Pressione regolabile in maniera continua di 4 8 bar
- ► Rilassamento con forza elastica. Una molla di richiamo pretensionata consente brevi cicli di rilassamento.
- ▶ 5 milioni di cicli di serraggio (valore B10d)

Particolarità MKS:

- Serraggio senza pressione (con energia elastica) in caso di caduta di pressione tramite un ingranaggio a cuneo di scorrimento a doppia azione con due pacchetti di molle
- Una valvola integrata di sfiato rapido assicura rapidi tempi di reazione
- ► Forza di tenuta maggiore attraverso la connessione aria positiva
- ► Rilassamento pneumatico. Pressione di apertura 5.5 8 bar
- ▶ 5 milioni di cicli di serraggio (valore B10d) *)

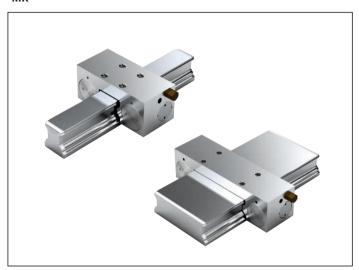

Particolarità LCP:

- ► Serraggio con pressione (pneumatica) mediante bloccaggio meccanico
- ▶ Pressione regolabile in maniera continua di 5.5 8 bar
- ► Cicli brevi di rilassamento
- ► Rilassamento con forza elastica. Una molla di richiamo pretensionata consente brevi cicli di rilassamento.

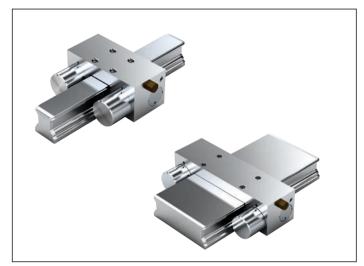
Particolarità LCPS:

- Serraggio senza pressione (con energia elastica) mediante bloccaggio meccanico con un pacchetto di molle (accumulatore di energia elastica)
- ▶ Pressione di apertura 5,5 8 bar (pneumatica)
- ► Forza di tenuta maggiore attraverso la connessione aria positiva
- ► Rilassamento con aria compressa.

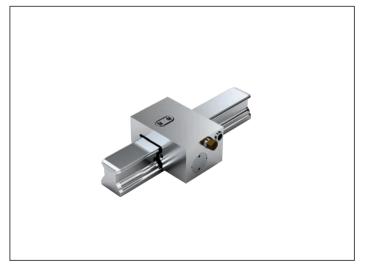
*) con la connessione aria positiva il valore B10d non viene raggiunto.


Rilassamento con aria compressa o forza elastica

- ▶ I profilati di serraggio vengono tenuti distanziati.
- ▶ Movimento libero possibile



anoramica del modello accessori elementi di bloccaggio pneumatici


MK

LCP

LCPS

Elementi pneumatici di serraggio MK

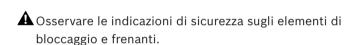
R1619 .42 60

Avvertenza

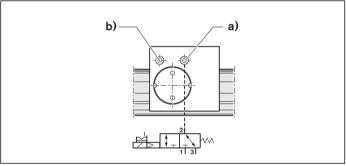
Adatti a tutte le rotaie a sfere SNS.

R1619 .42 62

Avvertenza


Per tutte le rotaie a sfere BNS.

Serraggio con pressione


- Max. pressione di esercizio pneumatica: 8 bar
- ▶ Campo di temperatura di esercizio t: 0 70 °C

Istruzioni di montaggio

- Assicurare una struttura del raccordo rigida.
- Utilizzare solo aria depurata e lubrificata. La grandezza prescritta per il filtro è pari a circa 25 µm.
- ▶ Prima della messa in funzione, osservare le istruzioni di montaggio.

Azionamento¹⁾ in caso di connessione aria standard

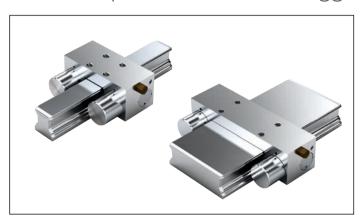
- a) Connessione aria
- b) Filtro aria

Ampiezza nominale:

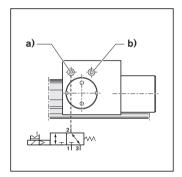
Grandezza 15 - 20: min. 4 mm Grandezza 25 - 65: min. 6 mm

Grandezza	Numero di identificazione	Forza di tenuta	Consumo di aria (litri normali)
		pneumatico ¹⁾	Connessione aria
		(N)	(dm³/corsa)
15	R1619 142 60	650	0,011
20	R1619 842 60	1 000	0,019
25	R1619 242 60	1 200	0,021
30	R1619 742 60	1 750	0,031
35	R1619 342 60	2 000	0,031
45	R1619 442 60	2 250	0,041
55	R1619 542 60	2 250	0,041
65	R1619 642 60	2 250	0,041
20/40	R1619 842 62	650	0,019
25/70	R1619 242 62	1 200	0,021
35/90	R1619 342 62	2 000	0,031

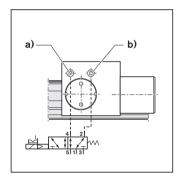
¹⁾ Forza di bloccaggio di 6 bar. La verifica avviene in versione montata con uno strato di lubrificante in olio (ISO-VG 68).



Grandezza	Dimension	ni (mm)													Dimensioni
	Α	В	E ₁	E_2	E_3	F_1	F_2	F_3	F_4	Н	$H_1^{1)}$	N_3	S_2	x	(kg)
15	55	39	15	15	15,5	5,6	34,0	16,1	34,0	24	20,8	4,5	M4	6,5	0,25
20	66	39	20	20	9,0	4,5	17,3	6,0	34,5	30	27,0	6,0	M6	5,5	0,36
25	75	35	20	20	5,0	7,0	17,5	7,0	30,0	36	32,5	8,0	M6	5,5	0,45
30	90	39	22	22	8,5	8,5	15,0	10,3	24,5	42	38,5	9,0	M8	5,5	0,72
35	100	39	24	24	7,5	11,0	14,5	12,0	24,5	48	44,0	10,0	M8	5,5	0,88
45	120	49	26	26	11,5	14,5	19,5	14,5	29,5	60	52,0	15,0	M10	5,5	1,70
55	128	49	30	30	9,5	17,0	19,5	17,0	29,5	70	57,0	15,0	M10	5,5	1,95
65	138	49	30	30	9,5	14,5	19,5	14,5	29,5	90	73,5	20,0	M10	5,5	2,68
20/40	80	39	20	20	15,5	5,0	4,5	5,0	31,0	27	23,5	4,5	M4	5,5	0,37
25/70	120	35	50	20	5,0	7,0	17,5	9,0	30,0	35	32,5	8,0	M6	5,5	0,62
35/90	156	42	60	20	9,5	11,5	18,0	14,0	36,5	50	45,5	10,0	M10	5,5	0,88


¹⁾ Pattini a sfere .H. (...Alti...) Piastra distanziale necessaria

Elementi pneumatici di serraggio MKS



Azionamento¹⁾ in caso di connessione aria standard

a) Connessione aria b) Filtro aria Ampiezza nominale: Grandezza 15 - 20: min. 4 mm Grandezza 25 - 65: min. 6 mm

Azionamento²⁾ con connessione aria positiva

- a) Connessione aria
- b) Connessione aria positiva Ampiezza nominale: Grandezza 15 - 20: min. 4 mm

Grandezza 25 - 65: min. 6 mm

R1619 .40 60

Avvertenza

Adatti a tutte le rotaie a sfere SNS.

R1619 .40 62

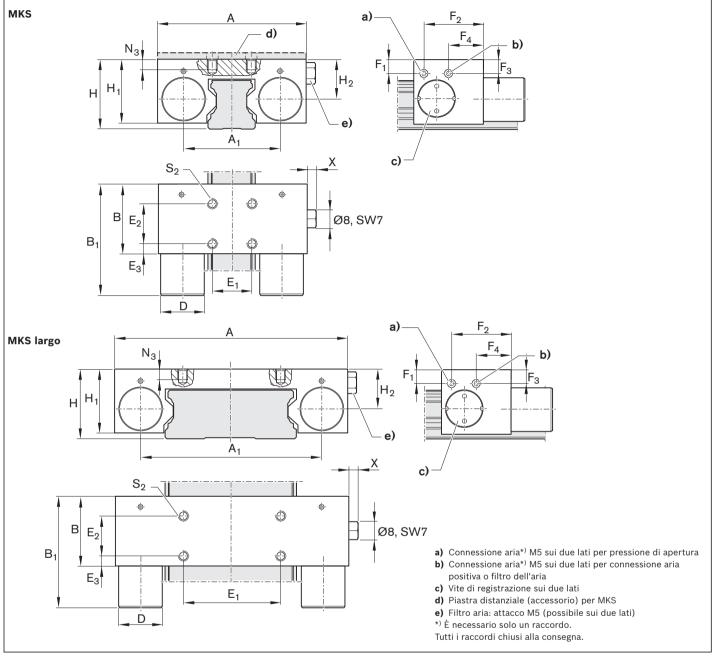
Avvertenza

Per tutte le rotaie a sfere BNS.

Serraggio senza pressione (energia elastica)

- Pressione di apertura min. 5,5 bar
- Max. pressione di esercizio pneumatica: 8 bar
- Campo di temperatura di esercizio t: 0 70 °C

Istruzioni di montaggio

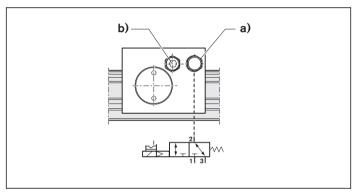

- Assicurare una struttura del raccordo rigida.
- ▶ Utilizzare solo aria depurata e lubrificata. La grandezza prescritta per il filtro è pari a circa 25 µm.
- Prima della messa in funzione, osservare le istruzioni di montaggio.

A Osservare le indicazioni di sicurezza sugli elementi di bloccaggio e frenanti.

Grandezza	Numero di	Forza di tenuta		Consumo di aria (liti	ri normali)
	identificazione	Energia elastica ¹⁾	con connessione	Connessione aria	Connessione aria positiva
			aria positiva ²⁾		
		(N)	(N)	(dm³/corsa)	(dm³/corsa)
15	R1619 140 60	400	1 050	0,011	0,035
20	R1619 840 60	600	1 300	0,019	0,063
25	R1619 240 60	750	1 500	0,021	0,068
30	R1619 740 60	1 050	2 600	0,031	0,121
35	R1619 340 60	1 250	2 200	0,031	0,129
45	R1619 440 60	1 450	3 300	0,041	0,175
55	R1619 540 60	1 450	3 300	0,041	0,175
65	R1619 640 60	1 450	3 300	0,041	0,175
20/40	R1619 840 62	400	1 050	0,019	0,063
25/70	R1619 240 62	750	1 950	0,021	0,068
35/90	R1619 340 62	1 250	2 200	0,031	0,129

- 1) Forza di tenuta mediante energia elastica. La verifica avviene in versione montata con uno strato di lubrificante in olio (ISO-VG 68).
- 2) Aumento delle forze di bloccaggio mediante un rifornimento di aria supplementare alla connessione aria positiva con 6,0 bar. Processo di commutazione mediante valvola a 5/2 o valvola a 5/3 vie.

Grandezza	Dimen	sioni (n	nm)																Dimensioni
	Α	A_1	В	B _{1 max}	D	E,	$\mathbf{E_2}$	E_3	F_1	F_2	F_3	F_4	Н	$H_{1}^{1)}$	H ₂	N_3	S_2	Х	(kg)
15	55	34,0	39	58,5	16	15	15	15,5	16,1	34,0	5,6	34,0	24	20,8	11,6	4,5	M4	6,5	0,29
20	66	43,0	39	61,5	20	20	20	9,0	6,0	34,5	4,5	17,3	30	27,0	15,5	6,0	M6	5,5	0,41
25	75	49,0	35	56,5	22	20	20	5,0	7,0	30,0	7,0	17,5	36	32,5	20,0	8,0	M6	5,5	0,50
30	90	58,0	39	68,5	25	22	22	8,5	10,3	24,5	8,5	15,0	42	38,5	24,0	9,0	M8	5,5	0,81
35	100	68,0	39	67,5	28	24	24	7,5	12,0	24,5	11,0	14,5	48	44,0	28,0	10,0	M8	5,5	1,00
45	120	78,8	49	82,5	30	26	26	11,5	14,5	29,5	14,5	19,5	60	52,0	35,5	15,0	M10	5,5	1,84
55	128	86,8	49	82,5	30	30	30	9,5	17,0	29,5	17,0	19,5	70	57,0	40,0	15,0	M10	5,5	2,08
65	138	96,8	49	82,5	30	30	30	9,5	14,5	29,5	14,5	19,5	90	73,5	55,0	20,0	M10	5,5	2,86
20/40	80	59,0	39	58,5	16	20	20	15,5	5,0	31,0	5,0	4,5	27	23,5	14,0	4,5	M4	5,5	0,39
25/70	120	94,0	35	56,5	22	50	20	5,0	9,0	30,0	7,0	17,5	35	32,5	20,0	8,0	M6	5,5	0,68
35/90	156	124,0	42	70,5	28	60	20	9,5	14,0	36,5	11,5	18,0	50	45,5	30,0	10,0	M10	5,5	0,89


1) Pattini a sfere .H. (...Alti...) Piastra distanziale necessaria

Elementi pneumatici di serraggio LCP

Azionamento¹⁾ in caso di connessione aria standard

- a) Connessione aria
- b) Filtro aria

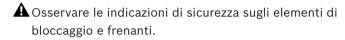
Ampiezza nominale:

Grandezza 15 - 20: min. 4 mm

Grandezza 25 - 65: min. 6 mm

R1619 .42 74

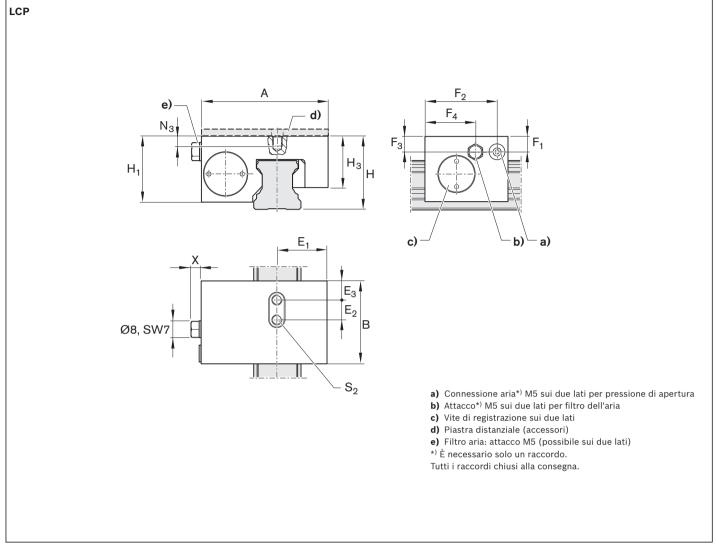
Avvertenza


Adatti a tutte le rotaie a sfere SNS.

Serraggio con pressione

- Max. pressione di esercizio pneumatica: 8 bar
- Campo di temperatura di esercizio t: 0 60 °C

Istruzioni di montaggio


- Assicurare una struttura del raccordo rigida.
- ▶ Utilizzare solo aria depurata e lubrificata. La grandezza prescritta per il filtro è pari a circa 25 µm.
- ▶ Prima della messa in funzione, osservare le istruzioni di montaggio.

Grandezza	Numero di identificazione	Forza di tenuta	Consumo di aria (litri normali)
		pneumatico1)	Connessione aria
		(N)	(dm³/corsa)
25	R1619 242 74	850	0,015

¹⁾ Forza di bloccaggio di 6 bar. La verifica avviene in versione montata con uno strato di lubrificante in olio (ISO-VG 68).

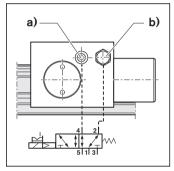
Grandezza Dimensioni (mm)												Dimensioni				
	Α	В	E_1	E_2	E_3	F_1	F_2	F_3	F_4	Н	$H_1^{1)}$	H_3	N_3	S_2	Х	(kg)
25	61,4	41	23,9	9,5	9,75	6,5	36,0	6,5	24,5	36,0	32,5	24,55	7,7	M5	6,5	0,27

1) Pattini a sfere .H. (...Alti...) Piastra distanziale necessaria.

Elementi pneumatici di serraggio LCPS

Azionamento¹⁾ in caso di connessione aria standard

a) b)


- a) Connessione aria
- b) Filtro aria

Ampiezza nominale:

Grandezza 15 - 20: min. 4 mm

Grandezza 25 - 65: min. 6 mm

Azionamento²⁾ con connessione aria positiva

- a) Connessione aria
- b) Connessione aria positiva Ampiezza nominale:

Grandezza 15 - 20: min. 4 mm Grandezza 25 - 65: min. 6 mm

R1619 .40 70

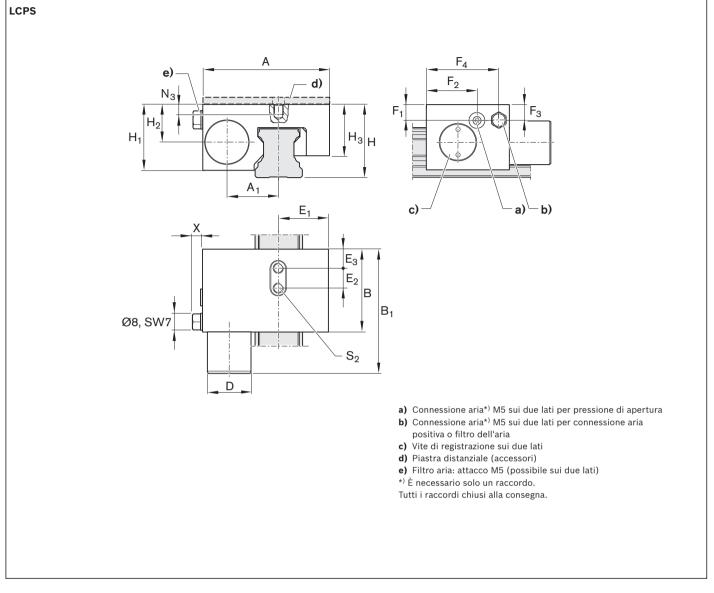
Avvertenza

Adatti a tutte le rotaie a sfere SNS.

Serraggio senza pressione (energia elastica)

- Pressione di apertura min.: 5,5 bar
- Max. pressione di esercizio pneumatica 8 bar
- Campo di temperatura di esercizio t: 0 60 °C

Istruzioni di montaggio


- Assicurare una struttura del raccordo rigida.
- ▶ Utilizzare solo aria depurata e lubrificata. La grandezza prescritta per il filtro è pari a circa 25 µm.
- ▶ Prima della messa in funzione, osservare le istruzioni di montaggio.

A Osservare le indicazioni di sicurezza sugli elementi di bloccaggio e frenanti.

Grandezza	Numero di	Forza di tenuta		Consumo di aria (lit	ri normali)
	identificazione	Energia elastica ¹⁾	con connessione aria positiva ²⁾	Connessione aria	Connessione aria positiva
		(N)	(N)	(dm³/corsa)	(dm³/corsa)
25	R1619 240 70	650	1 050	0,015	0,082

- 1) Forza di tenuta mediante energia elastica. La verifica avviene in versione montata con uno strato di lubrificante in olio (ISO-VG 68).
- 2) Aumento delle forze di bloccaggio mediante un rifornimento di aria supplementare alla connessione aria positiva con 6,0 bar. Processo di commutazione mediante valvola a 5/2 o valvola a 5/3 vie.

Grandezza	Grandezza Dimensioni (mm)													Dimensioni						
	Α	A_1	В	B_{1max}	D	E ₁	E_2	E_3	F_1	F_2	F_3	F_4	Н	$H_1^{1)}$	H_2	H_3	N_3	S_2	Х	(kg)
25	61,4	24,5	41	62,5	22	23,9	9,5	9,75	6,5	24,5	6,5	36,0	36	32,5	20,0	24,55	7,7	M5	6,5	0,35

¹⁾ Pattini a sfere .H. (...Alti...) Piastra distanziale necessaria.

Elementi di serraggio manuali, descrizione del prodotto

Ambiti di applicazione

- ► Traverse tavolo e slitte
- ► Regolazione larghezza
- Battute
- ▶ Posizionamento su dispositivi ottici e tavole di misurazione

Proprietà eccellenti

- ► Costruzione semplice e sicura in modello compatto
- ▶ Elemento di serraggio azionato manualmente senza energia ausiliaria

Particolarità HK:

▶ 500.000 cicli di serraggio (valore B10d)

Altre caratteristiche salienti

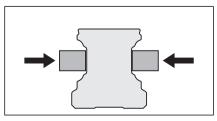
- Leva di serraggio manuale a regolazione libera
- ▶ Introduzione della forza simmetrica su rotaia a sfere tramite profili di contatto flottanti
- Posizionamento preciso
- ► Forze di tenuta fino a 2000 N

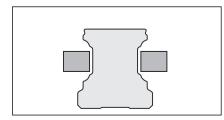
Piastra distanziatrice

Adatto per montaggio con pattino a sfere versione alta SNH R1621 e SLH R1624.

A Osservare le indicazioni di sicurezza sugli elementi di bloccaggio e frenanti.

Panoramica modelli accessori elementi di bloccaggio manuali, piastra distanziale


Piastra distanziatrice


Serra con pressione manuale

I profilati di serraggio vengono pressati tramite la leva manuale agente sul gambo della rotaia a sfere.

Pressione attraverso leva manuale

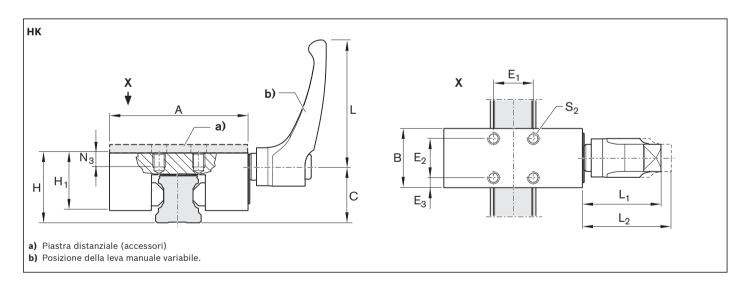
Leva a mano scattata

nti di serraggio manuali HK

Grandezza	Numero di	Forza di	Coppia di serraggio
	identificazione	tenuta ¹⁾ (N)	(Nm)
15	R1619 142 82	1 200	4
20	R1619 842 82	1 200	5
25	R1619 242 82	1 200	7
30	R1619 742 82	2 000	15
35	R1619 342 82	2 000	15
45	R1619 442 82	2 000	15
55	R1619 542 82	2 000	22
65	R1619 642 82	2 000	22

R1619 .42 82

Avvertenza


Adatti a tutte le rotaie a sfere SNS.

Bloccaggio manuale

► Campo di temperatura di esercizio t: 0 – 70 °C

Istruzioni di montaggio

- ► Assicurare una struttura del raccordo rigida.
- ▶ Prima della messa in funzione, osservare le istruzioni di montaggio.
- A Osservare le indicazioni di sicurezza sugli elementi di bloccaggio e frenanti.

Grandezza	Dimension	i (mm)					'							Dimensioni
	Α	В	С	E ₁	E_2	E ₃	Н	$H_1^{(3)}$	L	L ₁	$L_2^{(2)}$	N_3	S ₂	(kg)
15	47	25	19,0	17	17	4,0	24	19	44	30,0	33,0	5	M4	0,16
20	60	24	24,5	15	15	4,5	30	23	44	30,0	33,0	6	M5	0,23
25	70	30	29,3	20	20	5,0	36	29	64	38,5	41,5	7	M6	0,43
30	90	39	34,0	22	22	8,5	42	33	78	46,5	50,5	8	M6	0,82
35	100	39	38,0	24	24	7,5	48	41	78	46,5	50,5	10	M8	1,08
45	120	44	47,0	26	26	9,0	60	48	78	46,5	50,5	14	M10	1,64
55	140	49	56,5	30	30	9,5	70	51	95	56,5	61,5	14	M14	1,71
65	160	64	69,5	35	35	14,5	90	66	95	56,5	61,5	20	M16	2,84

- 1) La verifica avviene in versione montata con uno strato di lubrificante in olio (ISO-VG 68).
- 2) Leva a mano scattata
- 3) Pattini a sfere .H. (...Alti...) Piastra distanziale necessaria

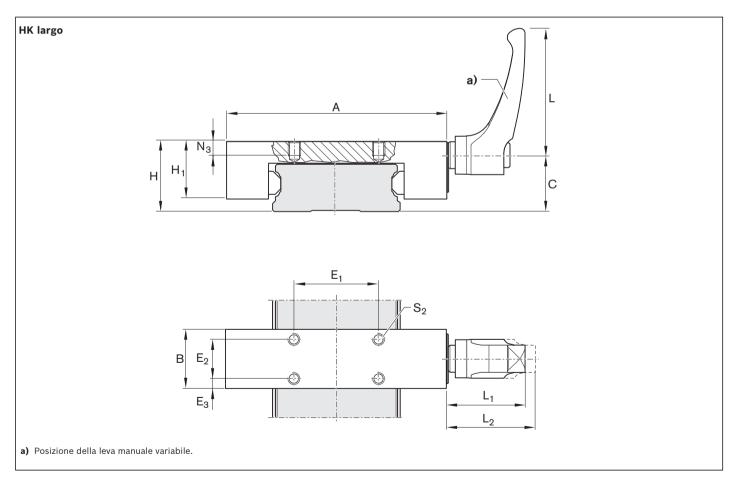
Elementi di serraggio manuali HK

R1619 .42 83

Avvertenza

Per tutte le rotaie a sfere BNS.

Bloccaggio manuale


► Campo di temperatura di esercizio t: 0 – 70 °C

Istruzioni di montaggio

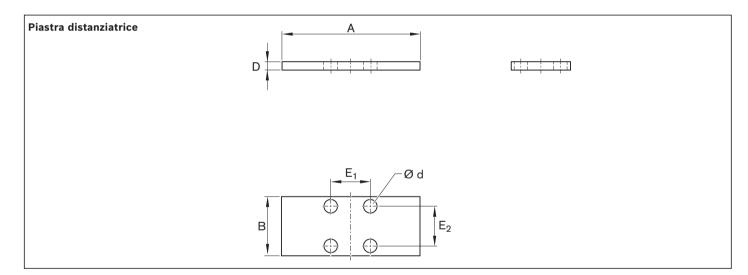
- ► Assicurare una struttura del raccordo rigida.
- Prima della messa in funzione, osservare le istruzioni di montaggio.

Grandezza	Numero di identificazione	Forza di tenuta ¹⁾	Coppia di serraggio
		(N)	(Nm)
25/70	R1619 242 83	1 200	7
35/90	R1619 342 83	2 000	15

A Osservare le indicazioni di sicurezza sugli elementi di bloccaggio e frenanti.

Grandezza	Dimension	i (mm)	'											Dimensioni
	Α	В	С	E ₁	E_2	E_3	н	H ₁	L	L_1	$L_2^{(2)}$	N_3	S ₂	(kg)
25/70	120	39	28,2	50	25	7,0	35	30	64	38,5	41,5	11	M6	0,77
35/90	145	39	38,0	60	20	9,5	50	39	78	46,5	50,5	11	M8	1,38

- 1) La verifica avviene in versione montata con uno strato di lubrificante in olio (ISO-VG 68).
- 2) Leva a mano scattata



per elementi di serraggio MK, MKS e HK

Avvertenza

Adatto per montaggio con pattino a sfere versione alta SNH R1621 e SLH R1624.

R1619 .40 65

Adatta a elementi di serraggio:

- ► R1619 .42 60 (MK)
- ► R1619 .40 60 (MKS)

R1619 .42 .5

Adatta a elementi di serraggio:

► R1619 .42 82 (HK)

Grandezza	Numero di identificazione	Dimensioni	(mm)					Dimensioni
		Α	В	D	d	E ₁	$\mathbf{E_2}$	(kg)
15	R1619 140 65	55	39	4	4,5	15	15	0,065
25	R1619 240 65	75	35	4	6,5	20	20	0,078
30	R1619 740 65	90	39	3	8,5	22	22	0,077
35	R1619 340 65	100	39	7	8,5	24	24	0,202
45	R1619 440 65	120	49	10	10,5	26	26	0,434
55	R1619 540 65	128	49	10	10,5	30	30	0,465

Grandezza	Numero di identificazione	Dimensioni	(mm)					Dimensioni
	lacitimeazione	Α	В	D	d	E ₁	E_2	(kg)
15	R1619 142 85	47	25	4	4,5	17	17	0,035
25	R1619 242 85	70	30	4	6,5	20	20	0,062
30	R1619 742 85	90	39	3	6,5	22	22	0,080
35	R1619 340 65	100	39	7	8,5	24	24	0,202
45	R1619 442 85	120	44	10	10,5	26	26	0,387
55	R1619 542 85	140	49	10	14,5	30	30	0,511

Indicazioni di sicurezza per elementi di bloccaggio e frenant

Avvertenze per la sicurezza generali

A Durante tutti i lavori negli elementi di serraggio si devono osservare le istruzioni di sicurezza e le istruzioni di montaggio rispettivamente vigenti secondo UVV, VDE!

📤 Gli elementi di serraggio non svolgono alcuna funzione di guida. La sostituzione di un pattino con un elemento di serraggio non è pertanto possibile. La posizione ideale dell'elemento di serraggio è tra due pattini. In caso di utilizzo di più elementi di serraggio, essi devono essere distribuiti in modo uniforme sulle due rotaie, per raggiungere la massima rigidità dell'intera struttura.

A Con elementi di bloccaggio e di frenatura idraulici, la pressione di ritorno del tubo del serbatoio deve essere inferiore a 1,5 bar!

A Si devono osservare i tempi di risposta/reazione degli elementi di bloccaggio e di frenatura!

A L'elemento di serraggio non è destinato ad assicurare carichi sospesi!

A Non si deve rimuovere il coperchio del bloccaggio di sicurezza, precarico a molla!

All fermo di trasporto può essere rimosso soltanto se:

- il raccordo idraulico è alimentato regolarmente con pressione di esercizio.
- la connessione aria è alimentata regolarmente con pressione pneumatica di almeno 4,5 bar (MBPS) o 5,5 bar (UBPS, MKS).

🛦 Si può scaricare la pressione dell'elemento di bloccaggio soltanto se tra i profili di contatto si trova la rispettiva rotaia a sfere o il fermo di trasporto!

🗚 L'impiego degli elementi di bloccaggio e di frenatura in combinazione con sistemi di misura integrati non è ammesso sulle rotaie a sfere!

Supplemento per unità di bloccaggio e di frenatura

▲ Le unità di bloccaggio e di frenatura sono indicate per l'impiego in applicazioni rilevanti sotto il profilo della sicurezza per frenare e bloccare. La funzione sicura di tutto il dispositivo in cui vengono impiegate le unità di bloccaggio e di frenatura viene determinata principalmente dal comando di questo dispositivo. Il dimensionamento tecnico di questo dispositivo e il comando devono essere eseguiti dal costruttore del dispositivo superiore, del gruppo di componenti, dell'impianto o della macchina. Qui bisogna tener conto dei requisiti di sicurezza tecnica per la sicurezza funzionale.

Supplemento per unità di bloccaggio

🛕 L'elemento non deve essere utilizzato come elemento frenante! Utilizzo solo ad asse fermo

Alimentazione di pressione soltanto in versione montata sulla rotaia a sfere!

Istruzioni di montaggio generali

Le seguenti istruzioni si applicano al montaggio di tutte le guide a sfere su rotaia. Ci sono diverse specifiche sul parallelismo delle rotaie a sfere e sull'avvitamento e sulla spinatura dei pattini a sfere. Queste sono associate alle singole guide a sfere su rotaia.

📤 In caso di montaggio sopratesta (montaggio sospeso) o montaggio verticale il pattino a sfere può uscire dalla rotaia in seguito a perdita o rottura delle sfere. Fissare il pattino a sfere contro le cadute! Pericolo di morte! Si raccomanda un dispositivo anticaduta!

🛕 Le guide a sfere su rotaia Rexroth sono prodotti di elevata qualità. Durante il trasporto e durante il montaggio alle parti collegate, raccomandiamo, per quanto è possibile, la massima cura e attenzione. Questo è valido anche per il nastro di protezione. Tutte le parti in acciaio sono ricoperte superficialmente da una pellicola di olio protettivo. Il protettivo non deve essere tolto salvo in caso di non compatibilità con il lubrificante consigliato.

Esempi di montaggio

Rotaie a sfere

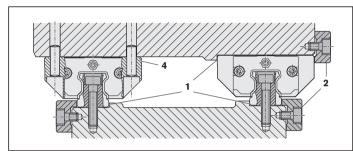
Ogni rotaia a sfere presenta su entrambi i lati superfici di riferimento rettificate.

Possibilità di fissaggio laterale:

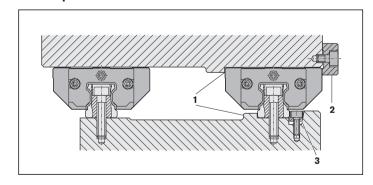
- 1 Laterali di riferimento
- 2 Morsettiere
- 3 Lardoni a sezione rastremata

Avvertenza

- ▶ Se si devono montare le rotaie a sfere senza battuta laterale, si deve ricorrere a una dima da utilizzare anche per correggere il parallelismo.
- ▶ Per i valori indicativi per la forza laterale ammissibile senza fissaggio laterale supplementare, vedere Pattini a sfere e istruzioni di montaggio pag. 206.


Pattini a sfere

Ogni pattino a sfere presenta su un lato un laterale di riferimento rettificato (vedi quota V₁ nei disegni quotati).


Possibilità di fissaggio supplementare:

- 1 Laterali di riferimento
- 2 Morsettiere
- 4 Spinatura

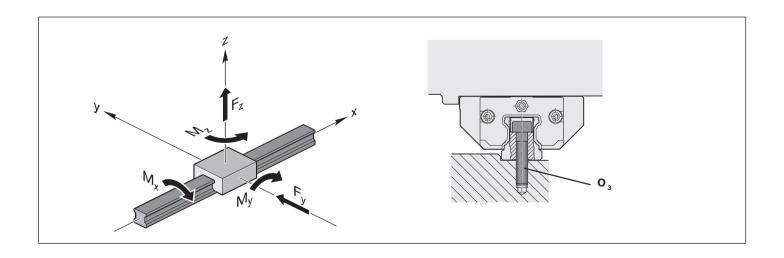
Montaggio con fissaggio di entrambe le rotaie a sfere e di entrambi i pattini a sfere

Montaggio con fissaggio di una rotaia a sfere e di un pattino a sfere

Avvertenze

- ▶ Prima del montaggio, pulire e sgrassare tutte le superfici.
- Richiedere il "Manuale di montaggio per guide a sfere su rotaia".
- Dopo il montaggio il pattino a sfere deve potersi spostare leggermente.

Calcolo dei giunti bullonati


A causa dei giunti bullonati dei pattini e della rotaia di guida si creano massimo due forze di trazione statica $F_{0\,z\,max}$, momento torcente statico massimo $M_{0\,x\,max}$ e massimo carico ai lati $F_{0\,y\,max}$ senza listello di arresto che possono essere trasmessi dalla guida lineare. Il carico massimo di una guida profilata su rotaia quindi non viene determinato soltanto dalle capacità portanti statiche C_0 secondo ISO 14728-2 e dai momenti di carico statici M_{t0} , bensì anche dai collegamenti a vite. Normalmente i pattini a sfere vengono fissati con 4 o 6 viti. Le rotaie a sfere hanno a intervalli regolari un collegamento a vite su fila singola o doppia, in cui le viti, che si trovano direttamente sotto il pattino, sono maggiormente sollecitate. Se pattino e rotaie sono avvitati con viti della stessa classe di resistenza, il collegamento a vite tra la rotaia e la base (O3 o O6) è fondamentale per le forze e momenti massimi trasferibili.

Il calcolo dei valori della tabella specificati per la classe di resistenza 8.8, 10.9 e 12.9 è stato effettuato secondo DIN 637 (agosto 2013): cuscinetto a rotolamento - norme di sicurezza per il dimensionamento e il funzionamento delle guide profilate con circolazione del corpo volvente. Rispetto alla norma, i valori calcolati da Bosch Rexroth comprendono una maggiore sicurezza. Il calcolo dei collegamenti a vite è basato sulle dimensioni riportate nel catalogo (dimensioni delle viti, lunghezza pattino, lunghezze per il serraggio, profondità di avvitamento, diametro del foro, divisione dei fori della rotaia, larghezza rotaie, ecc.). I collegamenti a vite che deviano da questo devono essere ricalcolati secondo VDI 2230. La forma massima di trazione statica nonché il momento torcente statico massimo di una guida a sfere su rotaia sono ottenuti dalla somma delle forze assiali delle viti rotaia nel flusso di alimentazione. Tuttavia la forza laterale statica di massima è determinata dalla somma delle forze di serraggio delle viti rotaia in flusso di alimentazione.

Valori di ingresso nel calcolo:

 Coefficiente d'attrito nella parte filettata 	$\mu_{G} = 0,125$
- Coefficiente di attrito sulla superficie di contatto sotto testa	$\mu_{K} = 0,125$
- Coefficiente di attrito nel giunto di separazione	$\mu_{T} = 0,2$
- Fattore di serraggio per la chiave dinamometrica	α_A = 1,5

I coefficienti di attrito utilizzati e il fattore di serraggio sono valori consueti nella pratica. A secondo dell'applicazione del cliente e della procedura di montaggio, i valori di ingresso effettivo possono differire fortemente da quelli presunti. Ciò deve essere verificato ad ogni dimensionamento ed eventualmente i collegamenti a vite devono essere ricalcolati con i valori effettivi secondo VDI 2230. Già piccole differenze rispetto ai valori presunti nel calcolo di Bosch Rexroth comportano coppie di serraggio diverse e forze di trazione, momenti torcenti e/o forze laterali statiche massime trasferibili.

Fissaggio

Coppie di serraggio per guide profilate

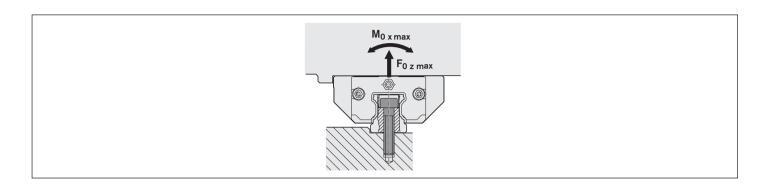
Le coppie di serraggio delle viti in classi di resistenza 8.8, 10.9 e 12.9 sono state calcolate per le dimensioni della guida a sfere su rotaia Rexroth. Descrizioni dettagliate dei possibili collegamenti a vite da O1 a O6 sono riportate alle pagine successive.

Pattini

Grandezza	FKS, FNS	, FLS, FKN, I	FNN, BNS, C	NS					SKS, SNS	, SLS, SKN,	SNN, SNH, S	LH	
	avvitato d	all'alto			avvitato d	lal basso			avvitato dall'alto				
	04				01&02	,			O5				
		8.8	10.9	12.9		8.8	10.9	12.9		8.8	10.9	12.9	
15	M5	6,3	9,2	11	M4	3,3	4,8	4,9	M4	3,1	4,6	5,4	
20	M6	11	16	18	M5	6,5	9,5	11	M5	6,3	9,2	11	
25	M8	26	38	44	M6	8,4	8,4	8,4	M6	11	16	18	
30	M10	51	74	87	M8	27	28	28	M8	26	38	44	
35	M10	51	74	87	M8	27	28	28	M8	26	38	44	
45	M12	87	130	130	M10	52	66	66	M10	51	74	87	
55	M14	140	200	220	M12	81	81	81	M12	87	130	130	
65	M16	210	310	340	M14	140	150	150	M14	210	310	340	

Rotaia di guida

Grandezza	avvitato d	all'alto			avvitato dal basso						
	03				06						
·		8.8	10.9	12.9		8.8	10.9	12.9			
15	M4	3,1	4,6	5,4	M5	6,3	9,2	11			
20	M5	6,4	9,4	11	M6	11	16	18			
25	M6	11	16	18	M6	11	16	18			
30	M8	26	38	44	M8	26	38	44			
35	M8	26	38	44	M8	26	38	44			
45	M12	88	110	110	M12	87	130	140			
55	M14	140	190	190	M14	140	200	230			
65	M16	220	300	300	M16	210	310	360			


Forze massimali statiche di trazione e momenti torcenti di guide profilate

I collegamenti a vite di una guida profilata possono trasferire solo una forza di trazione limitata F, oppure un momento torcente limitato M_v. Se questi valori limite vengono superati, la guida si stacca dalla struttura di collegamento. I valori ammissibili di una guida risultano dalla massima forza assiale possibile di un collegamento a vite della rotaia di guida. Carico alla trazione non consentito!

I valori riportati nella tabella sono valori indicativi per le forze di trazione statiche consentite F_{0 z max} e per i momenti torcenti $M_{0 \times max}$, che sono validi solo se le seguenti condizioni sono soddisfatte:

- Dimensioni delle viti, il numero di bulloni e dimensioni di montaggio contenuti nel catalogo
- Stessa classe di resistenza delle viti di fissaggio di pattino e rotaie
- Struttura di attacco in alluminio
- Si verifica in forma statica una forza di trazione F_z oppure un momento torcente M_x
- Forza di trazione F_z e momento torcente M_x non si verificano contemporaneamente
- Nessuna sovrapposizione con una forza laterale F_{ν} oppure con momenti longitudinali M_{ν} / M_{z}

Se queste condizioni non vengono soddisfatte, il collegamento a vite deve essere calcolato in base a VDI 2230. Se le sollecitazioni risultanti si trovano di poco sotto i valori limite di carico, Bosch Rexroth consiglia di controllare anche i collegamenti a vite.

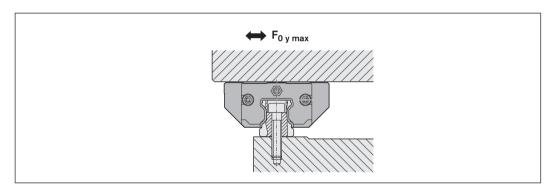
Forze di trazione

Grandezza	Forze di trazio	ne statiche mas	sime F _{0 z max} in [N]							
	Corto			Normale			Lungo				
	хКх			xNx			xLx				
	8.8	10.9	12.9	8.8	10.9	12.9	8.8	10.9	12.9		
15	2410	3900	4700	2410	3900	4700	2410	3900	4700		
20	4220	6690	8010	4220	6690	8010	4600	7300	8730		
25	5520	8740	10500	5520	8740	10500	7340	11600	13900		
30	10100	16000	19200	10100	16000	19200	11300	17900	21500		
35	10500	16400	19600	10500	16400	19600	13900	21700	25900		
45	25400	34900	34900	25400	34900	34900	32300	44300	44300		
55	36500	53700	53700	36500	53700	53700	47400	69800	69800		
65	50600	76400	77500	50600	76400	77500	65800	99400	101000		

Momenti torcenti

Grandezza	Momenti torcenti statici massimi M _{0 x max} in [Nm]													
				T and the state of										
	Corto			Normale			Lungo							
	хКх			xNx			xLx							
	8.8	10.9	12.9	8.8	10.9	12.9	8.8	10.9	12.9					
15	16	26	31	16	26	31	16	26	31					
20	38	60	72	38	60	72	41	66	79					
25	58	92	110	58	92	110	77	120	150					
30	130	210	250	130	210	250	150	230	280					
35	170	260	310	170	260	310	220	350	410					
45	550	750	750	550	750	750	690	950	950					
55	910	1340	1340	910	1340	1340	1190	1740	1740					
65	1490	2250	2290	1490	2250	2290	1940	2930	2970					

Fissaggio


Massimo carico laterale statico senza staffe di arresto

Per garantire un montaggio sicuro Rexroth consiglia di utilizzare staffe di arresto su pattino e rotaia di guida. Se non vengono utilizzate staffe di arresto nel pattino o nella rotaia, con carico ai lati maggiore è possibile uno scivolamento della guida. La forza di fissaggio del collegamento a vite è troppo bassa non appena vengono superate le forze laterali riportate nella tabella.

I valori riportati nella tabella sono valori indicativi per le forze statiche laterali consentite $F_{0 \text{ y max}}$, che sono validi solo se le seguenti condizioni sono soddisfatte:

- Dimensioni delle viti, il numero di bulloni e dimensioni di montaggio contenuti nel catalogo
- Stessa classe di resistenza delle viti di fissaggio di pattino e rotaie
- Struttura di attacco in alluminio
- Nessuna sovrapposizione con forza di trazione F_z , momenti torcenti M_x o momento longitudinali M_v / M_z

Se queste condizioni non vengono soddisfatte, il collegamento a vite deve essere calcolato in base a VDI 2230. Se le sollecitazioni risultanti si trovano di poco sotto i valori limite di carico, Bosch Rexroth consiglia di controllare anche i collegamenti a vite.

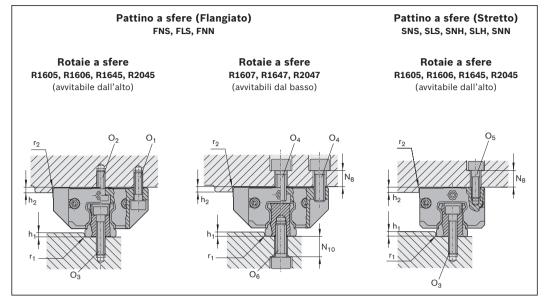
Forze laterali

Grandezza	Forze laterali s	tatiche massim	e F _{0 y max} in [N]						
	Corto			Normale			Lungo		
	хКх			xNx			xLx		
	8.8	10.9	12.9	8.8	10.9	12.9	8.8	10.9	12.9
15	370	600	720	370	600	720	370	600	720
20	640	1010	1210	640	1010	1210	690	1100	1320
25	900	1430	1710	900	1430	1710	1200	1900	2270
30	1630	2600	3110	1630	2600	3110	1830	2910	3480
35	1710	2670	3190	1710	2670	3190	2260	3530	4210
45	4110	5330	5330	4110	5330	5330	5220	6770	6770
55	5920	8220	8220	5920	8220	8220	7700	10700	10700
65	8210	11800	11800	8210	11800	11800	10700	15300	15300

Laterali di riferimento, raggi d'angolo

Esempi per combinazioni

Le combinazioni indicate sono esempi. In linea di massima, si possono combinare tutti


i pattini a sfere con tutte le rotaie a sfere.

Viti di fissaggio

A Se soggette
a sollecitazioni elevate,
controllare sempre la
sicurezza costruttiva
delle viti!

Vedere a tale proposito la sezione "Istruzioni di montaggio generali".

Rotaia a sfere con pattino a sfere normale e lungo

Grandezza	Dimensioni (m	ım)					
	h _{1 min}	h _{1 max} 1)	h_2	N ₈	N ₁₀	r _{1 max}	r _{2 max}
15	2,5	3,5	4	6	7,0	0,4	0,6
20	2,5	4,0	5	9	9,5	0,6	0,6
				103)	_		
25	3,0	5,0	5	10	12,0	0,8	0,8
				11 ³⁾	_		
30	3,0	5,0	6	10	9,0	0,8	0,8
35	3,5	6,0	6	13	13	0,8	0,8
45	4,5	8,0	8	14	13	0,8	0,8
55	7,0	10,0	10	20	23	1,2	1,0
65	7,0	10,0	14	22	26	1,2	1,0

1) Per l'utilizzo delle unità di bloccaggio e di frenatura osservare la quota H1.

Grandezza	Dimensioni delle	viti	'			
	Pattini a sfere				Rotaia a sfere	
	O ₁	O ₂ ²⁾	O ₄ ^{1) 2)}	O ₅	O ₃	O ₆
	ISO 4762	DIN 6912	ISO 4762	ISO 4762	ISO 4762	ISO 4762
	4 pezzi	2 pezzi	6 pezzi	4 pezzi		
15	M4x12	M4x10	M5x12	M4x12	M4x20	M5x12
20	M5x16	M5x12	M6x16	M5x16	M5x25	M6x16
25	M6x20	M6x16	M8x20	M6x18	M6x30	M6x20
30	M8x25	M8x16	M10x20	M8x20	M8x30	M8x20
35	M8x25	M8x20	M10x25	M8x25	M8x35	M8x25
45	M10x30	M10x25	M12x30	M10x30	M12x45	M12x30
55	M12x40	M12x30	M14x40	M12x35	M14x50	M14x40
65	M14x45	M14x35	M16x45	M16x40	M16x60	M16x45

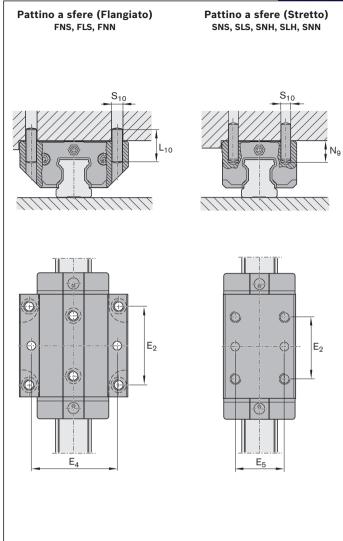
- 1) Per il fissaggio del pattino a sfere dall'alto con solo 4 viti O₄: forza laterale ammessa ridotta di 1/3 e rigidezza inferiore
- 2) Per il fissaggio del pattino a sfere con 6 viti: Stringere le viti centrali con una coppia di serraggio M_△ della classe di resistenza 8.8
- 3) Pattino a sfere SNN

Fissaggio

Fissaggio con viti

A Se la forza applicata lateralmente supera i valori indicativi (vedere Pattini a sfere corrispondenti), è necessario provvedere al bloccaggio del pattino a sfere mediante spinatura!

Per le dimensioni consigliate per i fori di spinatura, vedere il disegno quotato e le dimensioni.


Spine utilizzabili

- Spina conica (temprata)
- Spina cilindrica DIN ISO 8734

Avvertenza

- Nelle posizioni raccomandate per i fori di spinatura possono essere eseguiti dei prefori al centro del pattino a sfere (Ø < S₁₀). Sono adatti per la preforatura.
- ➤ Se fosse necessario, effettuare la spinatura in un'altra posizione (ad es. attacco di lubrificazione centrale), questa non deve essere superata in direzione longitudinale dalla quota E₂ (per la quota E₂ vedere le tabelle dimensionali dei corrispondenti pattini a sfere). Rispettare le quote E₁ e E₄!
- ▶ Ultimare i fori di spinatura soltanto dopo il montaggio.
- Richiedere il "Manuale di montaggio per guide a sfere su rotaia".

Grandezza	Dimensioni (mm)						
	E ₄	E ₅	L ₁₀ 1)	N _{9 max}	S ₁₀ 1)		
15	38	26	18	6,0	4		
20	53 49 ²⁾	32	24	7,5 6,5 ²⁾	5		
25	55 60 ²⁾	35	32	9,0 7,0 ²⁾	6		
30	70	40	36	12,0	8		
35	80	50	40	13,0	8		
45	98	60	50	18,0	10		
55	114	75	60	19,0	12		
65	140	76	60	22,0	14		

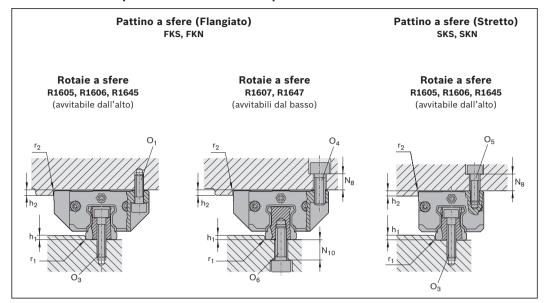
- 1) Spina conica (temprata) o spina cilindrica DIN ISO 8734
- 2) Pattino a sfere FNN e SNN

Angoli di battuta, raggi d'angolo

Esempi per combinazioni

Le combinazioni indicate sono esempi. In linea di massima, si possono combinare tutti i pattini a sfere con tutte le rotaie a sfere.

L'avvitamento dei pattini a sfere con 2 viti è assolutamente sufficiente fino al carico massimo. (Per la capacità portante massima e i momenti di carico, vedere Pattini a sfere corrispondenti).


Viti di fissaggio

▲ Se soggette

a sollecitazioni elevate, controllare sempre la sicurezza costruttiva delle viti!

Vedere a tale proposito la sezione "Istruzioni di montaggio generali".

Rotaia a sfere con pattino a sfere corto e super

Grandezza	Dimensioni (m	ım)					
	h _{1 min}	h _{1 max} 1)	h ₂	N ₈	N_{10}	r _{1 max}	r _{2 max}
15	2,5	3,5	4	6	7,0	0,4	0,6
20	2,5	4,0	5	9	9,5	0,6	0,6
				10 ²⁾	_		
25	3,0	5,0	5	10	12,0	0,8	0,8
				112)	_		
30	3,0	5,0	6	10	9,0	0,8	0,8
35	3,5	6,0	6	13	13,0	0,8	0,8

- 1) Per l'utilizzo delle unità di bloccaggio e di frenatura osservare la quota H1.
- 2) Pattino a sfere SKN

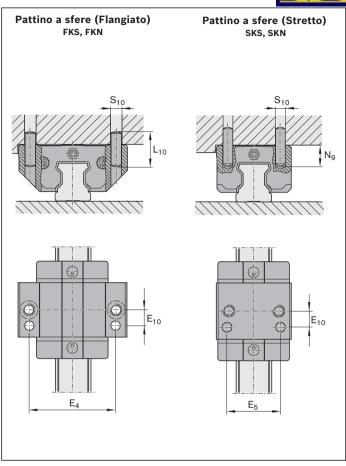
Grandezza	Dimensioni delle viti	· · · · · · · · · · · · · · · · · · ·	'		
	Pattini a sfere		Rot		
	O ₁ ISO 4762 2 pezzi	O ₄ ISO 4762 2 pezzi	O ₅ ISO 4762 2 pezzi	0 ₃ ISO 4762	O ₆ ISO 4762
15	M4x12	M5x12	M4x12	M4x20	M5x12
20	M5x16	M6x16	M5x16	M5x25	M6x16
25	M6x20	M8x20	M6x18	M6x30	M6x20
30	M8x25	M10x20	M8x20	M8x30	M8x20
35	M8x25	M10x25	M8x25	M8x35	M8x25

Fissaggio

Fissaggio con viti

A Se la forza applicata lateralmente supera i valori indicativi (vedere Pattini a sfere corrispondenti), è necessario provvedere al bloccaggio del pattino a sfere mediante spinatura!

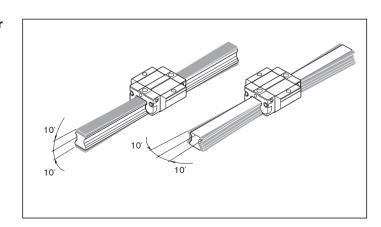
Per le dimensioni consigliate per i fori di spinatura, vedere il disegno quotato e le dimensioni.


Spine utilizzabili

- Spina conica (temprata)
- Spina cilindrica DIN ISO 8734

Avvertenza

- Nelle posizioni raccomandate per i fori di spinatura possono essere eseguiti dei prefori al centro del pattino a sfere (Ø < S₁₀) sono adatti per la preforatura. Rispettare le quote E₄ e E₅!
- ► Ultimare i fori di spinatura soltanto dopo il montaggio. Richiedere il "Manuale di montaggio per guide a sfere su rotaia".



Grandezza	Dimensio	ni (mm)				
	E ₄	E ₅	E ₁₀	L ₁₀ 1)	N _{9 max}	S ₁₀ 1)
15	38	26	9	18	3,0	4
20	53 49 ²⁾	32	10	24	3,5 2,0 ²⁾	5
25	55 60 ²⁾	35	11	32	7,0 5,0 ²⁾	6
30	70	40	14	36	10,0	8
35	80	50	15	40	12,0	8

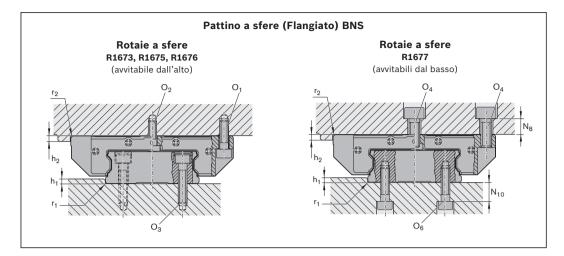
- 1) Spina conica (temprata) o spina cilindrica DIN ISO 8734
- 2) Pattino a sfere FKN e SKN

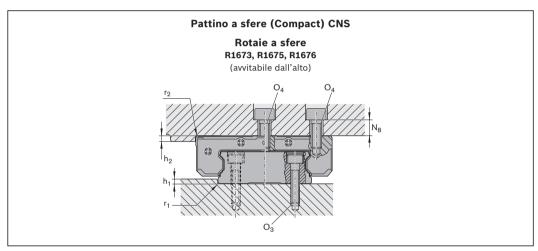
Errore di allineamento consentito nei pattini a sfere super

Sulla rotaia a sfere e sul pattino a sfere

Angoli di battuta, raggi d'angolo, dimensioni delle viti

Esempi per combinazioni


Le combinazioni indicate sono esempi. In linea di massima, si possono combinare tutti i pattini a sfere con tutte le rotaie a sfere.


Viti di fissaggio

A Se soggette a sollecitazioni elevate, controllare sempre la sicurezza costruttiva delle viti!

> Vedere a tale proposito la sezione "Istruzioni di montaggio generali".

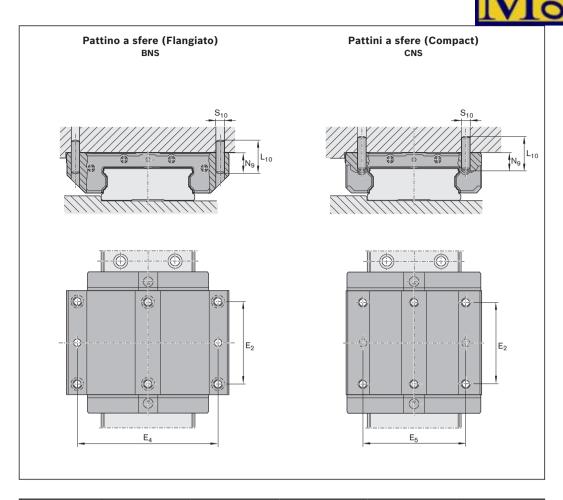
Rotaia a sfere con pattino a sfere largo

Grandezza	Dimensioni	Dimensioni (mm)								
	h _{1 min}	h _{1 max} 1)	h_2	N ₈	N ₈ ²⁾	N_{10}	$\mathbf{r_{1max}}$	r _{2 max}		
20/40	2,0	2,5	4	9,5	11	5,5	0,5	0,5		
25/70	3,0	4,5	5	10,0	13	9,0	0,8	0,8		
35/90	3,5	6,0	6	13,0	-	11,0	0,8	0,8		

Grandezza	Dimensioni delle viti	'				
	Pattini a sfere		F	Rotaia a sfere		
	O ₁ ISO 4762 4 pezzi	O ₂ ³⁾ DIN 6912 2 pezzi	O ₄ ³⁾ ISO 4762 6 pezzi	O ₃ ISO 4762	O ₆ ISO 4762	
20/40	M5x16	-	M6x16	M4x20	M5x12	
25/70	M6x20	M6x16	M8x20	M6x30	M6x20	
35/90	M8x25	M8x20	M10x25	M8x35	M8x25	

- 1) Per l'utilizzo delle unità di bloccaggio e di frenatura osservare la quota H1.
- 2) Pattino a sfere CNS
- 3) Per il fissaggio del pattino a sfere con 6 viti: Stringere le viti centrali con una coppia di serraggio M₁ della classe di resistenza 8.8 In linea di massima, dovrebbero essere utilizzate anche le viti di fissaggio centrali, altrimenti sussiste il rischio di perdita di precarico.

Fissaggio


Fissaggio con viti

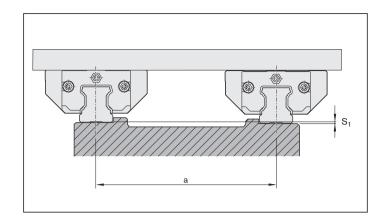
A Se la forza applicata lateralmente supera i valori indicativi (vedere Pattini a sfere corrispondenti), è necessario provvedere al bloccaggio del pattino a sfere mediante spinatura!

Per le dimensioni consigliate per i fori di spinatura, vedere il disegno quotato e le dimensioni.

Spine utilizzabili

- Spina conica (temprata)o
- ► Spina cilindrica DIN ISO 8734

Grandezza	Dimensioni (mm)				
	E ₄	E ₅	L ₁₀ 1)	N _{9 max}	S ₁₀ 1)
20/40	70	46	24	7	5
25/70	107	76	32	8	6
35/90	144	_	32	8	8


1) Spina conica (temprata) o spina cilindrica DIN ISO 8734

Avvertenza

- Nelle posizioni raccomandate per i fori di spinatura possono essere eseguiti dei prefori al centro del pattino a sfere (Ø < S₁₀).
 - Sono adatti per la preforatura.
- ▶ Se fosse necessario, effettuare la spinatura in un'altra posizione (ad es. attacco di lubrificazione centrale), questa non deve essere superata in direzione longitudinale dalla quota E₂ (per la quota E₂ vedere le tabelle dimensionali dei corrispondenti pattini a sfere). Rispettare le quote E₄ e E₅!
- ▶ Ultimare i fori di spinatura soltanto dopo il montaggio.
- ► Richiedere il "Manuale di montaggio per guide a sfere su rotaia".

(-)

Attenendosi allo scostamento in altezza ammesso S₁ e S₂ l'influsso del valore sulla durata di vita è generalmente trascurabile.

Scostamento in altezza ammesso in senso trasversale S_1

Dal massimo scostamento in altezza ammissibile S₁ delle rotaie a sfere si deve detrarre la tolleranza per la quota H in base alla tabella con le classi di precisione riportata nel capitolo "Descrizione generale del prodotto".

Se S₁<0, selezionare un'altra tolleranza con la combinazione di classi di precisione nel capitolo "Descrizione generale del prodotto".

Pattini a sfere	Fattore di calcolo Y per classe di precarico						
	C0 C1 C2 C3						
in acciaio	4,3 · 10 -4	2,8 · 10 ⁻⁴	$1,7 \cdot 10^{-4}$	1,2 · 10 -4			
Corto in acciaio	5,2 · 10 -4	3,4 · 10 -4	_	_			
Pattini a sfere	8,0 · 10 -4	6,0 · 10 ⁻⁴	_	_			
super							
in alluminio	7,0 · 10 -4	$5,0 \cdot 10^{-4}$	-	_			

$$S_1 = a \cdot Y$$

Legenda

S₁ = Scostamento in altezza ammesso delle rotaie a sfere a = Interasse delle rotaie a sfere (mm) (mm)

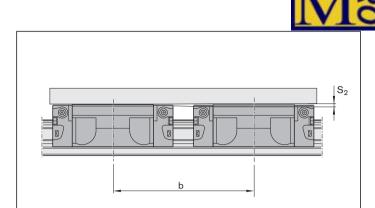
= Fattore di calcolo direzione trasversale

Classi di precarico

C0 = Senza precarico (gioco)

C1 = Precarico leggero

C2 = Precarico medio


C3 = Precarico elevato

Tolleranze di montaggio

Scostamento in altezza ammesso in senso longitudinale S₂

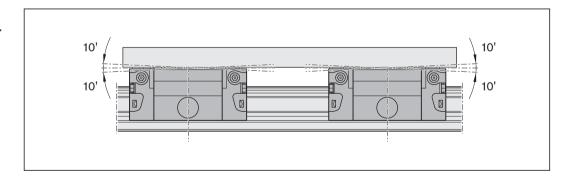
Dal massimo scostamento in altezza ammissibile S_2 dei pattini a sfere si deve detrarre la tolleranza "Differenza max. della quota ΔH su una rotaia" in base alla tabella con le classi di precisione riportata nel capitolo "Descrizione generale del prodotto".

Se S₂<0, selezionare un'altra tolleranza con la combinazione di classi di precisione nel capitolo "Descrizione generale del prodotto".

Pattini a sfere	Fattore di calcolo X per lunghezza del pattino a sfere						
	Corto (K) Normale (N) Lungo (L)						
in acciaio	6,0 · 10 ⁻⁵	4,3 · 10 ⁻⁵	3,0 · 10 -5				
in alluminio	_	6,0 · 10 ⁻⁵	_				

$$S_2 = b X$$

Legenda


 S_2 = Scostamento in altezza ammesso dei pattini a sfere (mm) b = Interasse delle pattini a sfere (mm)

X = Fattore di calcolo direzione longitudinale

(-)

Asperità consentita in direzione longitudinale per due pattini a sfere super consecutivi

I pattini a sfere possono compensare autonomamente asperità di 10' in direzione longitudinale.

Avvertenze generali

Le seguenti istruzioni di montaggio valgono per tutte le guide a sfere su rotaia.

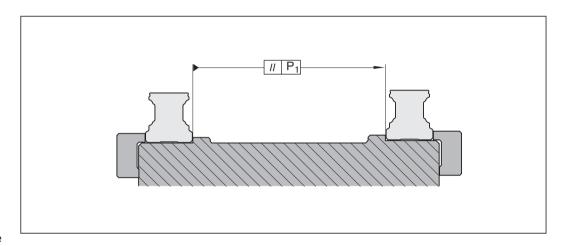
Le guide a sfere su rotaia Rexroth sono prodotti di elevata qualità.

Durante il trasporto e durante il montaggio alle parti collegate, raccomandiamo, per quanto è possibile, la massima cura e attenzione. Questo è valido anche per il nastro di protezione.

Tutte le parti in acciaio sono ricoperte superficialmente da una pellicola di olio protettivo.

Il protettivo non deve essere tolto salvo in caso di non compatibilità con il lubrificante consigliato.

🛦 In caso di montaggio sopratesta (montaggio sospeso), il pattino a sfere può uscire dalla rotaia di guida in seguito a perdita o rottura delle sfere. Assicurare il pattino a sfere contro la caduta!


Parallelismo delle rotaie montate

Valori misurati sulle rotaie a sfere e sui pattini a sfere

I valori per lo scostamento di parallelismo P1 sono validi per tutti i pattini a sfere del programma standard.

A causa dello scostamento di parallelismo P₁, il precarico viene leggermente aumentato.

Attenendosi ai valori indicati in tabella, l'influsso del valore sulla durata di vita è generalmente trascurabile.

Pattini a sfere	Grandezza	Scostamento	di parallelism	o P ₁ (mm)		
		per classe di precarico				
		CO	C1	C2	C3	
velocità in acciaio	15	0,015	0,009	0,005	0,004	
in montaggio di precisione ¹⁾	20	0,018	0,011	0,006	0,004	
	25	0,019	0,012	0,007	0,005	
	30	0,021	0,014	0,009	0,006	
	35	0,023	0,015	0,010	0,007	
	45	0,028	0,019	0,012	0,009	
	55	0,035	0,025	0,016	0,011	
	65	0,048	0,035	0,022	0,016	
Pattino a sfere Corto in	15	0,018	0,011	-	-	
acciaio	20	0,022	0,013	-	-	
	25	0,023	0,014	-	-	
	30	0,025	0,017	_	-	
	35	0,028	0,018	_	_	
Pattini a sfere super	15	0,025	0,017	_	-	
	20	0,029	0,021	-	_	
	25	0,032	0,023	_	_	
	30	0,035	0,026	-	_	
	35	0,040	0,030	-	_	
Pattino a sfere in alluminio	15	0,021	0,014	_	_	
	25	0,026	0,017	_	-	
	30	0,029	0,019	-	=	
	35	0,035	0,022	_		

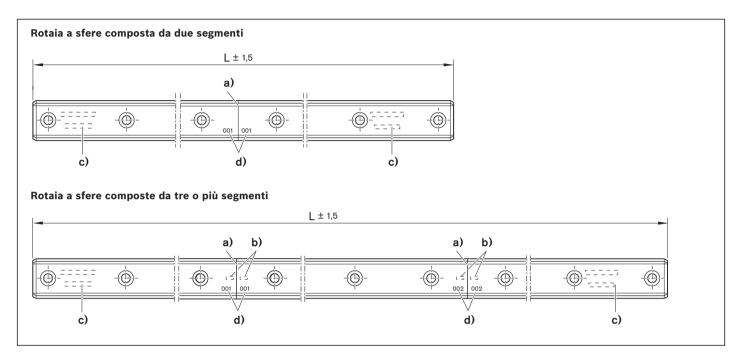
Classi di precarico

C0 = Senza precarico (gioco)

C1 = Precarico leggero

C2 = Precarico medio

C3 = Precarico elevato


1) Per montaggio di precisione si intende una costruzione adiacente rigida ed altamente precisa. Nel montaggio standard la costruzione adiacente è costruita flessibilmente e può essere lavorata a valori di tolleranza doppi rispetto all'errore di parallelismo.

Rotaia a sfere in più tratti

Avvertenza per la rotaia a sfere

- ▶ Le parti appartenenti a una rotaia a sfere composta da più tratti si possono immediatamente distinguere dall'etichetta posta sull'imballaggio. Tutti i tratti che compongono una rotaia hanno lo stesso numero di identificazione.
- ▶ L'etichetta si trova sulla superficie della testa della rotaia a sfere.

- L = Lunghezza rotaia n_R = numero dei fori
- (mm)
- a) Giunzione
- b) Numero di identificazione della rotaia
- c) Appellativo completo sul primo e sull'ultimo tratto
- d) Numero di riferimento della giunzione

Avvertenza sul nastro di protezione

- ▶ Il nastro di protezione delle rotaie a sfere composte da più tratti viene fornito separatamente in un unico pezzo per la lunghezza totale L.
- ► Fissare il nastro di protezione!

Avvertenza sulla struttura di attacco

Tolleranze ammissibili della posizione dei fori di fissaggio per la costruzione annessa

Grandezza	Tolleranza della posizione dei fori (mm)	
15 - 35		Ø 0,2
45 - 65		Ø 0,3

In caso di rotaie a sfere in più tratti, le tolleranze effettive dei tratti possono sommarsi. I fori di fissaggio nella struttura di attacco possono inoltre trovarsi all'esterno delle tolleranze e può essere necessaria una rielaborazione della struttura di attacco.

Avvertenze per la lubrificazione

- ▶ Tutti i dati relativi alla lubrificazione si basano su valori sperimentali ed esperienze sul campo e sono raccomandazioni di Bosch Rexroth.
- ▶ La durata di vita della guida a sfere su rotaia viene influenzata in maniera determinante dalla lubrificazione. È inoltre necessario aver letto completamente e compreso la documentazione e, in particolare, il capitolo "Lubrificazione".
- ▶ Il gestore è personalmente responsabile della scelta della guida a sfere su rotaia e della sua alimentazione con una quantità sufficiente di lubrificante adatto. Queste avvertenze non esonerano il gestore dal verificare personalmente la conformità e l'idoneità del lubrificante alla sua applicazione.
- ▶ Per i lubrificanti raccomandati, vedere il capitolo "Avvertenze su Dynalub".
- 🛕 Per garantire l'alimentazione di lubrificante si devono utilizzare i raccordi di lubrificazione riportati nel capitolo "Accessori". Per l'utilizzo di altri raccordi di lubrificazione bisogna far attenzione che siano dello stesso tipo dei raccordi di lubrificazione Rexroth.
- 📤 Se si utilizza un distributore progressivo per lubrificazione a grasso, attenersi alla quantità di dosaggio minima per la rilubrificazione secondo la tabella 9.
- 🛕 Consigliamo di eseguire la lubrificazione iniziale con un ingrassatore a mano separatamente prima di procedere al collegamento con il sistema di lubrificazione centralizzato.
 - Se si utilizza un sistema di lubrificazione centralizzato, accertarsi che l'intera rete di distribuzione costituita da condotte, raccordi e dosatori sia interamente riempita di lubrificante fino alle utenze finali (pattini a sfere) e non vi siano bolle d'aria.
 - In questo modo il numero di impulsi risulterà dalla quantità e dalla dimensione del distributore volumetrico.
- ▶ Per la lubrificazione con grasso fluido secondo la tabella 9
- ▶ Per la lubrificazione a olio secondo la tabella 14
- **A** Le guarnizioni del pattino a sfere devono essere oliate o ingrassate con il rispettivo lubrificante prima del montaggio.
- 🗚 L'utilizzo di lubrificanti diversi da quelli indicati comporta la riduzione degli intervalli di rilubrificazione e delle prestazioni in termini di corsa breve e rapporti di carico nonché possibili interazioni chimiche tra plastiche, lubrificanti e conservanti. Inoltre, deve esserne garantita l'erogazione all'interno dei sistemi di alimentazione centralizzata.
- Al serbatoi di pompe o i serbatoi di riserva per il lubrificante devono essere equipaggiati con agitatore per garantire che il lubrificante rimanga fluido e omogeneo (evitare la formazione di mulinelli nel serbatoio).
- $oldsymbol{\Lambda}$ Non è consentito l'utilizzo di lubrificanti con additivi solidi (quali, ad esempio, grafite e ${
 m MoS}_2$)!
- ⚠ In caso di lubrificazione iniziale eseguita dallo stabilimento, è possibile sia la lubrificazione a grasso che quella a olio. In caso di rilubrificazione, il passaggio dalla lubrificazione a grasso alla lubrificazione a olio non è possibile, in quanto i canali di lubrificazione sono già riempiti con grasso e non permettono il flusso dell'olio.
- 🛕 I pattini a sfere senza lubrificazione iniziale eseguita dallo stabilimento devono essere lubrificati prima della messa in funzione.
- 📤 Se si usano refrigeranti/lubrificanti, per la lubrificazione iniziale o la lubrificazione dopo un prolungato periodo di inattività, immettere l'olio da 2 a 5 impulsi consecutivi. Durante il funzionamento vengono raccomandati come valore indicativo da 3 a 4 impulsi all'ora indipendentemente dalla percorrenza. Se possibile, lubrificare con una corsa di lubrificazione. Eseguire corse di pulitura (vedi "Manutenzione").
- 🛕 Una scelta inappropriata dei refrigeranti/lubrificanti può provocare l'eventuale danneggiamento della guida a rulli su rotaia. Si consiglia di contattare il produttore del refrigerante/lubrificante. Bosch Rexroth non si assume alcuna responsabilità al riguardo. Il lubrificante e il refrigerante/lubrificante devono essere armonizzati fra di loro.
- 📤 In presenza di influssi ambientali quali sporco, vibrazioni, carico d'urto ecc. consigliamo intervalli di rilubrificazione adeguatamente brevi. Anche in condizioni normali di funzionamento si deve procedere alla rilubrificazione al più tardi dopo 2 anni, a causa dell'invecchiamento del grasso.

- Qualora l'applicazione richieda elevati requisiti ambientali (come ad es. camera bianca, applicazioni sotto vuoto, uso alimentare, uso di fluidi forti o aggressivi, temperature estreme), vi preghiamo di contattarci. In questo caso sarà necessario un controllo separato ed eventualmente una selezione alternativa di lubrificante. Requisiti specifici richiedono guarnizioni e raschiatori specifici (vedere il capitolo "Accessori per pattini a sfere"). Si prega di rendere disponibili tutte le informazioni riguardanti la vostra applicazione. Tenere in considerazione il capitolo "Manutenzione".
- ▶ Rexroth raccomanda i distributori volumetrici della ditta SKF. Essi dovrebbero essere installati quanto più vicino possibile agli attacchi di lubrificazione del pattino a sfere. Si devono evitare lunghezze elevate e diametri ridotti delle condotte. Installare le tubazioni in pendenza verso l'alto.
- ▶ Per una scelta dei possibili raccordi di lubrificazione vedere il capitolo "Accessori per pattini a sfere" (a questo scopo contattare anche il produttore del vostro sistema di lubrificazione).
- ▶ In un impianto di lubrificazione monotubo a consumo a cui sono collegate altre utenze, gli intervalli di rilubrificazione risultano determinati dagli elementi che richiedono una lubrificazione più frequente.

Avvertenze relative a Dynalub

(omologato solo per Paesi dell'Unione Europea, non autorizzato al di fuori dall'UE)

A Osservare l'attribuzione per la guida a sfere su rotaia.

Il grasso omogeneo a fibre corte è perfettamente indicato per la lubrificazione di elementi lineari a condizioni ambientali normali:

- ▶ per carichi fino al 50 % C
- per applicazioni con corse brevi > 1 mm
- ▶ Per l'intervallo di velocità ammissibile nelle guide a sfere su rotaia

Il Foglio delle specifiche del prodotto e la Scheda informativa di sicurezza "Dynalub" sono disponibili sul nostro sito Internet al seguente indirizzo www.boschrexroth.com.

Dvnalub 510 **Grasso lubrificante**

Proprietà:

- Grasso ad alte prestazioni saponificato al litio della classe NLGI 2 secondo DIN 51818 (KP2K-20 secondo DIN 51825)
- ► Buona resistenza all'acqua
- ▶ Protezione anticorrosione
- ► Range di temperatura: da -20 a +80 °C

Numeri di identificazione per Dynalub 510:

- ► R3416 037 00 (cartuccia da 400 g)
- ► R3416 035 00 (fusto da 25 kg)

Grassi alternativi:

► Castrol Tribol GR 100-2 PD*) oppure Elkalub GLS 135/N2*).

Dynalub 520 Grasso fluido

Proprietà:

- Grasso ad alte prestazioni saponificato al litio della classe NLGI 00 secondo DIN 51818 (GP00K-20 secondo DIN 51826)
- Buona resistenza all'acqua
- ▶ Protezione anticorrosione
- ► Range di temperatura: da -20 a +80 °C

Numeri di identificazione per Dynalub 520:

- ► R3416 043 00 (cartuccia da 400 g)
- ► R3416 042 00 (secchio da 5 kg)

Grassi alternativi:

► Castrol Tribol GR 100-00 PD*) oppure Elkalub GLS 135/N00*)

Avvertenze relative all'olio lubrificante

Consigliamo l'uso di Shell Tonna S3 M 220*) o di prodotti di pari prestazioni con le seguenti proprietà:

- ▶ olio speciale demulsificante CLP o CGLP secondo norma DIN 51517-3 per guide bancali e guide per attrezzi
- Miscela composta di oli minerali altamente raffinati e additivi. utilizzabile anche in caso di intensa miscelazione con refrigeranti/lubrificanti
- *) Non viene assunta alcuna responsabilità per eventuali modifiche alle caratteristiche del prodotto di questi lubrificanti.

Lubrificazione a grasso con ingrassatori a siringa o impianti progressivi

A Vedere il capitolo Note per la lubrificazione Grasso lubrificante: Consigliamo Dynalub 510. Per ulteriori informazioni si rimanda al capitolo Note per la lubrificazione.

A Non mettere mai in esercizio i pattini a sfere senza aver eseguito la lubrificazione di base. In caso di ingrassaggio dallo stabilimento, la prima lubrificazione non è necessaria. Le guide a sfere Rexroth vengono fornite con trattamento protettivo.

R16.. ... 10

R16.. ... 11

R16.. ... 60

Lubrificazione iniziale dei pattini a sfere (lubrificazione iniziale)

Corsa $\geq 2 \cdot \text{lughezza pattino a sfere B}_1$ (corsa normale)

▶ Un attacco di lubrificazione per pattino a sfere, approntare a scelta sulla guida a sfere sinistra

La prima lubrificazi la quantità parziale tabella 1:

- 1. Ingrassare il pat prima quantità p tabella 1 preme l'ingrassatore a
- 2. Spostare il patti corse di 3 · lunghe
- 3. Ripetere ancora due volte il punto 1. e 2.
- 4. Controllare se sulla rotaia a sfere sia visibile un film di lubrificante.

ntare a scelta sulla guida a o destra e lubrificare!		Quantit	R20 07	R16 23	R20 90	R16 73
zione avviene tre volte con	15 20		0,4 (3x) 0,7 (3x)			•
le in conformità con la	25	1,4 (3x) 2,2 (3x) 2,2 (3x)		Prima lubrificazione di fabbrica con Dynalub 510		
	30 35					
attino a sfere con una	45		-	-		
parziale secondo la endo lentamente	55 65	9,4 (3x) 15,4 (3x)		_		
a siringa. 20/40				orificazione di fal Dynalub 510	obrica con	
tino a sfere con tre doppie ghezza pattino a sfere B ₁ .	35/90		2,7 (3x)		-	

Prima lubrificazione (corsa normale)

R20.. ... 05

(con prima lubrificazione)

R16.. ... 21

R20.. ... 06/0Y R16.. ... 22/2Y R20.. ... 32/3Y

R20.. ... 04/0Z | R16.. ... 20/2Z | R20.. ... 30/3Z | R16.. ... 70/7Z

R20.. ... 31

R16.. ... 71

R16..... 72/7Y

Codici materiale (non completi)

(senza prima lubrificazione)

Tabella 1

Gran-

dezza

Corsa < 2 · lughezza pattino a sfere B₁ (corsa breve)

▶ Due attacchi di lubrificazione per pattino a sfere, approntare un attacco sulla guida a sfere sinistra e destra e lubrificare!

La prima lubrificazione avviene tre volte per attacco con la quantità parziale in conformità con la tabella 2:

- 1. Ingrassare il pattino a sfere con una prima quantità parziale secondo la tabella 2 premendo lentamente l'ingrassatore a siringa.
- 2. Spostare il pattino a sfere con tre doppie corse di 3 · lunghezza pattino a sfere B₁.
- 3. Ripetere ancora due volte il punto 1. e 2.
- 4. Controllare se sulla rotaia a sfere sia visibile un film di lubrificante.

Gran-	Prima lubrificazione (corsa breve)						
dezza	Codici materiale (non completi)						
	(senza prima	lubrificazione)	(con prima lubr	ificazione)			
	R16 10	R20 04/0Z	R16 20/2Z	R20 30/3Z	R16 70/7Z		
	R16 11	R20 05	R16 21	R20 31	R16 71		
	R16 60	R20 06/0Y	R16 22/2Y	R20 32/3Y	R16 72/7Y		
		R20 07	R16 23	R20 33	R16 73		
		_		R20 90			
	sinistra	destra					
15	0,4 (3x)	0,4 (3x)					
20	0,7 (3x)	0,7 (3x)					
25	1,4 (3x)	1,4 (3x)	Prima lub	rificazione di fab	brica con		
30	2,2 (3x)	2,2 (3x)		Dynalub 510			
35	2,2 (3x)	2,2 (3x)					
45		_					
55	9,4 (3x)	9,4 (3x)					
65	15,4 (3x)	15,4 (3x)		_			
20/40			Prima lubrificazione di fabbrica con				
25/70		_	Dynalub 510				
35/90	2,7 (3x)	2,7 (3x)		_			

Tabella 2

Lubrificazione a grasso con ingrassatori a siringa o impianti progressivi (prosecuzione)

Rilubrificazione dei pattini a sfere

Corsa $\geq 2 \cdot \text{lughezza}$ pattino a sfere B₁ (corsa normale)

► Una volta raggiunto l'intervallo di rilubrificazione come da diagramma 1 o 2 🖛 🖹 216, introdurre la quantità di rilubrificazione come da tabella 3.

Gran-	Rilubrificaz	Rilubrificazione (corsa normale)							
dezza	Codici mate	Codici materiale (non completi)							
	R16 10	R20 04/0Z	R16 20/2Z	R20 30/3Z	R16 70/7Z				
	R16 11	R20 05	R16 21	R20 31	R16 71				
	R16 60	R20 06/0Y	R16 22/2Y	R20 32/3Y	R16 72/7Y				
		R20 07	R16 23	R20 33	R16 73				
				R20 90					
	Quantita	à parziale (cm³)		Quantit	à parziale (cm³)				
15		0,4 (1x)			0,4 (2x)				
20		0,7 (1x)		0,7 (2x)					
25		1,4 (1x)			1,4 (2x)				
30		2,2 (1x)			2,2 (2x)				
35		2,2 (1x)			2,2 (2x)				
45		-			4,7 (2x)				
55		9,4 (1x)							
65	15,4 (1x)			_					
20/40					1,0 (2x)				
25/70		_		·	1,4 (2x)				
35/90	2,7 (1x) -								

Tabella 3

Corsa < 2 · lughezza pattino a sfere B₁ (corsa breve)

- ► Una volta raggiunto l'intervallo di rilubrificazione come da diagramma 1 o 2 🖛 216, introdurre la quantità di rilubrificazione come da tabella 4 per ogni attacco di lubrificazione.
- ▶ Per ogni ciclo di lubrificazione il pattino a sfere deve essere spostato facendo compiere una corsa doppia pari a 3 lunghezze del pattino a sfere B₁, la corsa minima, tuttavia, deve essere pari alla lunghezza del pattino a sfere B₁.

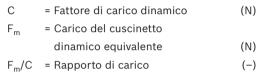
Gran-	Rilubrificaz	ione (corsa brev	e)			
dezza	Codici mate	riale (non comp	leti)			
	R16 10	R20 04/0Z	R16 20/2Z	R20	30/3Z	R16 70/7Z
	R16 11	R20 05	R16 21	R20	. 31	R16 71
	R16 60	R20 06/0Y	R16 22/2Y	R20	32/3Y	R16 72/7Y
		R20 07	R16 23	R20	. 33	R16 73
				R20	. 90	
	Quantità parziale per		er Quantità parziale per attacco (cr			r attacco (cm³)
		attacco (cm3)				
	sinistra	destra		sinistra		destra
15	0,4 (1x)	0,4 (1x)		0,4 (2x)		0,4 (2x)
20	0,7 (1x)	0,7 (1x)		0,7 (2x)		0,7 (2x)
25	1,4 (1x)	1,4 (1x)		1,4 (2x)		1,4 (2x)
30	2,2 (1x)	2,2 (1x)		2,2 (2x)		2,2 (2x)
35	2,2 (1x)	2,2 (1x)		2,2 (2x)		2,2 (2x)
45		_		4,7 (2x)		4,7 (2x)
55	9,4 (1x)	9,4 (1x)				
65	15,4 (1x)	15,4 (1x)		_	-	
20/40				1,0 (2x)		1,0 (2x)
25/70		_		1,4 (2x)		1,4 (2x)
35/90	2,7 (1x)	2,7 (1x)		_	-	

Tabella 4

224

H M ORO

Lubrificazione a grasso con ingrassatori a siringa o impianti progressivi (prosecuzione)


Intervalli di rilubrificazione in funzione del carico

Vale alle condizioni seguenti:

- Grasso lubrificante Dynalub 510 in alternativa Castrol Tribol GR 100-2 PD oppure Elkalube GLS 135/N2
- ► Nessun utilizzo di fluidi
- ► Guarnizioni standard (SS)
- ► Temperatura ambiente:

$$T = 10 - 40 \, ^{\circ}C$$

Legenda

s = Nellintervallo di

rilubrificazione come tratto (km)

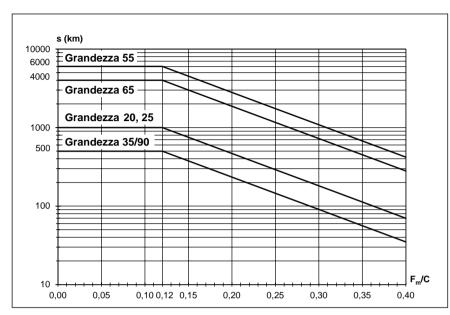


Diagramma 1

Numero di identificazione		
R16 10	R16 11	R16 60

Richiedere intervalli di rilubrificazione:

- ► In caso di alimentazione con refrigeranti/lubrificanti
- ► In caso di presenza di polveri (legno, carta,...)
- ► In caso di utilizzo di guarnizione a doppio labbro (DS)
- In caso di guarnizione standard (SS) in combinazione con guarnizione di testa oppure guarnizione FKM oppure kit guarnizioni
- ► In caso di velocità di traslazione bassa media v_m
- In caso di aumento della temperatura ambiente
- ► In caso di carichi elevati F_m/C > 0,4

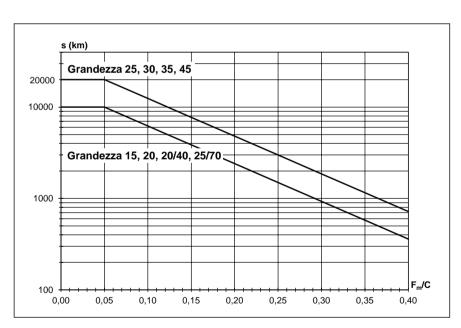


Diagramma 2

Numero di identificazione							
R20 04	R16 20	R20 30	R16 70	R20 90			
R20 05	R16 21	R20 31	R16 71				
R20 06	R16 22	R20 32	R16 72				
R20 07	R16 23	R20 33	R16 73				

Attenersi alle avvertenze per la lubrificazione!

Lubrificazione con grasso fluido con impianti di lubrificazione monotubo a consumo attraverso distributori volumetrici

▲ Vedere il capitolo Note per la lubrificazione

Grasso lubrificante: Consigliamo Dynalub 520. Per ulteriori informazioni si rimanda al capitolo Note per la lubrificazione.

A Non mettere mai in esercizio i pattini a sfere senza aver eseguito la lubrificazione di base. In caso di ingrassaggio dallo stabilimento, la prima lubrificazione non è necessaria. Le guide a sfere Rexroth vengono fornite con trattamento protettivo.

Lubrificazione iniziale dei pattini a sfere (lubrificazione iniziale)

Corsa $\geq 2 \cdot lughezza$ pattino a sfere B_1 (corsa normale)

► Un attacco di lubrificazione per pattino a sfere, approntare a scelta sulla guida a sfere sinistra o destra e lubrificare!

La prima lubrificazione avviene tre volte con la quantità parziale in conformità con la tabella 5:

- Ingrassare il pattino a sfere con una prima quantità parziale secondo la tabella 5 premendo lentamente l'ingrassatore a siringa.
- 2. Spostare il pattino a sfere con tre doppie corse di 3 · lunghezza pattino a sfere B₁.
- 3. Ripetere ancora due volte il punto 1. e 2.
- 4. Controllare se sulla rotaia a sfere sia visibile un film di lubrificante.

Gran-	Prima lubrificazione (corsa normale)							
dezza	Codici materiale (non completi)							
	(senza prima lubrificazione) (con prima lubrificazione)							
	R16 10	R20 04/0Z	R16 20/2Z	R20 30/3Z	R16 70/7Z			
	R16 11	R20 05	R16 21	R20 31	R16 71			
	R16 60	R20 06/0Y	R16 22/2Y	R20 32/3Y	R16 72/7Y			
		R20 07	R16 23	R20 33	R16 73			
				R20 90				
	Quantit	à parziale (cm³)						
15	0,4 (3x)							
20		0,7 (3x)						
25		1,4 (3x)	Prima lubrificazione di fabbrica con					
30		2,2 (3x)	Dynalub 510					
35		2,2 (3x)						
45		_						
55	9,4 (3x)							
65		15,4 (3x)	⁻					
20/40			Prima lubrificazione di fabbrica con					
25/70		_	Dynalub 510					
35/90		2,7 (3x)		-				

Tabella 5

Corsa < 2 · lughezza pattino a sfere B₁ (corsa breve)

Due attacchi di lubrificazione per pattino a sfere, approntare un attacco sulla guida a sfere sinistra e destra e lubrificare!

La prima lubrificazione avviene tre volte per attacco con la quantità parziale in conformità con la tabella 6:

- Ingrassare il pattino a sfere con una prima quantità parziale secondo la tabella 6 premendo lentamente l'ingrassatore a siringa.
- 2. Spostare il pattino a sfere con tre doppie corse di 3 · lunghezza pattino a sfere B₁.
- 3. Ripetere ancora due volte il punto 1. e 2.
- 4. Controllare se sulla rotaia a sfere sia visibile un film di lubrificante.

Gran-	Drima lubrit	ionziono (norsa	heave)				
	Prima lubrificazione (corsa breve)						
dezza	Codici materiale (non completi)						
	(senza prim	a lubrificazione)	(con prima lubr	ificazione)			
	R16 10	R20 04/0Z	R16 20/2Z	R20 30/3Z	R16 70/7Z		
	R16 11	R20 05	R16 21	R20 31	R16 71		
	R16 60	R20 06/0Y	R16 22/2Y	R20 32/3Y	R16 72/7Y		
		R20 07	R16 23	R20 33	R16 73		
				R20 90			
	Quan	ı tità parziale per	r				
		attacco (cm³)					
	sinistra	destra					
15	0,4 (3x)	0,4 (3x)					
20	0,7 (3x)	0,7 (3x)					
25	1,4 (3x)	1,4 (3x)	Prima lub	rificazione di fal	obrica con		
30	2,2 (3x)	2,2 (3x)		Dynalub 510			
35	2,2 (3x)	2,2 (3x)					
45		_					
55	9,4 (3x)	9,4 (3x)					
65	15,4 (3x)	15,4 (3x)	<u>-</u>				
20/40			Prima lubrificazione di fabbrica con				
25/70	1	_	Dynalub 510				
35/90	2,7 (3x)	2,7 (3x)		_			

Tabella 6

Lubrificazione con grasso fluido con impianti di lubrificazione a consumo attraverso distributori volumetrici (prosecuzione

Rilubrificazione dei pattini a sfere

Corsa $\geq 2 \cdot lughezza$ pattino a sfere B₁ (corsa normale)

► Una volta raggiunto l'intervallo di rilubrificazione come da diagramma 3 o 4, introdurre la quantità di rilubrificazione come da tabella 7.

Avvertenza

Il numero di impulsi necessario corrisponde al quoziente a numero intero risultante dalla quantità di rilubrificazione minima come da tabella 7 e dalle dimensioni minime ammesse del distributore volumetrico (quantità di impulsi minima ≙) come da tabella 9.

La dimensione minima ammessa del distributore volumetrico dipende anche dalla posizione di montaggio. Il ciclo di lubrificazione risulta dalla divisione dell'intervallo di rilubrificazione per il numero di impulsi rilevato (cfr. esempio di dimensionamento).

Gran-	Dilubrificazi	ione (corsa norm	12(0)					
dezza		Codici materiale (non completi)						
	R16 10		R16 20/2Z	R20 30/3Z	R16 70/7Z			
	R16 11	R20 05	R16 21	R20 31	R16 71			
	R16 60	R20 06/0Y	R16 22/2Y	R20 32/3Y	R16 72/7Y			
		R20 07	R16 23	R20 33	R16 73			
				R20 90				
	Quantit	à parziale (cm³)		Quantit	à parziale (cm³)			
15		0,4 (1x)			0,4 (2x)			
20		0,7 (1x)	0,7 (2x)					
25		1,4 (1x)			1,4 (2x)			
30		2,2 (1x)			2,2 (2x)			
35		2,2 (1x)			2,2 (2x)			
45		_			4,7 (2x)			
55		9,4 (1x)						
65		15,4 (1x)		_				
20/40					1,0 (2x)			
25/70]	_			1,4 (2x)			
35/90		2,7 (1x) –						

Tabella 7

Corsa < 2 · lughezza pattino a sfere B₁ (corsa breve)

- ► Una volta raggiunto l'intervallo di rilubrificazione come da diagramma 3 o 4, introdurre la quantità di rilubrificazione come da tabella 8 per ogni attacco di lubrificazione.
- ▶ Il numero di impulsi necessario e il ciclo di lubrificazione devono essere stabiliti allo stesso modo di quanto avviene per la rilubrificazione (corsa normale).
- ▶ Per ogni ciclo di lubrificazione il pattino a sfere deve essere spostato facendo compiere una corsa doppia pari a 3 lunghezze del pattino a sfere B₁, la corsa minima, tuttavia, deve essere pari alla lunghezza del pattino a sfere B₁.

Gran-	Rilubrificazione (corsa breve)						
dezza	Codici mate	riale (non comp	oleti)				
	R16 10	R20 04/0Z	R16 20/2Z	R20	30/3Z	R16 70/7Z	
	R16 11	R20 05	R16 21	R20	31	R16 71	
	R16 60	R20 06/0Y	R16 22/2Y	R20	32/3Y	R16 72/7Y	
		R20 07	R16 23	R20	33	R16 73	
				R20	90		
	Quant	ità parziale per	Qua	antità par	ziale pe	er attacco (cm³)	
		attacco (cm³)					
	sinistra	destra		sinistra		destra	
15	0,4 (1x)	0,4 (1x)		0,4 (2x)		0,4 (2x)	
20	0,7 (1x)	0,7 (1x)		0,7 (2x)		0,7 (2x)	
25	1,4 (1x)	1,4 (1x)		1,4 (2x)		1,4 (2x)	
30	2,2 (1x)	2,2 (1x)		2,2 (2x)		2,2 (2x)	
35	2,2 (1x)	2,2 (1x)		2,2 (2x)		2,2 (2x)	
45		-		4,7 (2x)		4,7 (2x)	
55	9,4 (1x)	9,4 (1x)					
65	15,4 (1x)	15,4 (1x)			-		
20/40				1,0 (2x)		1,0 (2x)	
25/70				1,4 (2x)		1,4 (2x)	
35/90	2,7 (1x)	2,7 (1x)		-	-		

Tabella 8

Attenersi alle avvertenze per la lubrificazione!

Lubrificazione con grasso fluido con impianti di lubrificazione a consumo attraverso distributori volumetrici (prosecuzione)

Intervalli di rilubrificazione in funzione del carico

Vale alle condizioni seguenti:

- Grasso fluido Dynalub 520 in alternativa Castrol Tribol GR 100-00 PD oppure Elkalube GLS 135/N00
- ▶ Nessun utilizzo di fluidi
- ► Guarnizioni standard (SS)
- ► Temperatura ambiente:

T = 10 - 40 °C

C = Fattore di carico dinamico (N)

F_m = Carico del cuscinetto dinamico equivalente (N)

 F_m/C = Rapporto di carico (-)

s = Nellintervallo di

rilubrificazione come tratto (km)

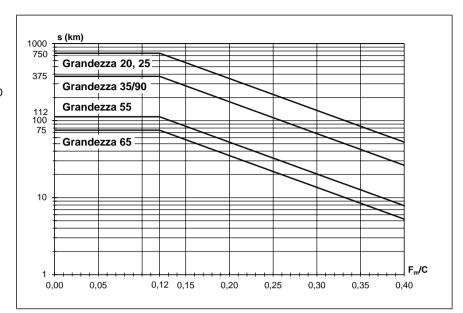


Diagramma 3

Numero di identificazione		
R16 10	R16 11	R16 60

Richiedere intervalli di rilubrificazione:

- ► In caso di alimentazione con refrigeranti/lubrificanti
- In caso di presenza di polveri (legno, carta,...)
- In caso di utilizzo di guarnizione a doppio labbro (DS)
- In caso di guarnizione standard (SS) in combinazione con guarnizione di testa oppure guarnizione FKM oppure kit guarnizioni
- $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$
- In caso di aumento della temperatura ambiente
- ► In caso di carichi elevati F_m/C > 0,4

Attenersi alle avvertenze per la lubrificazione!

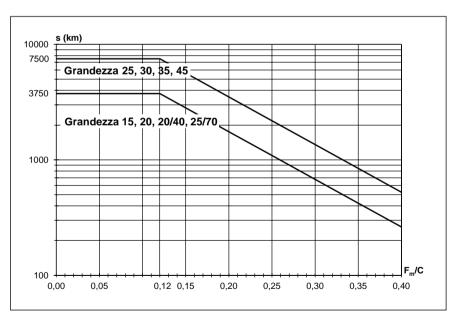
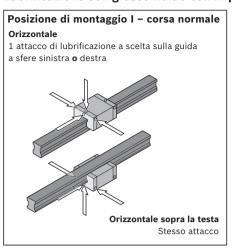
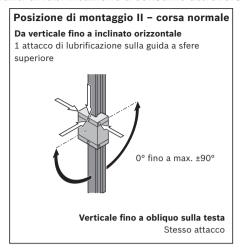
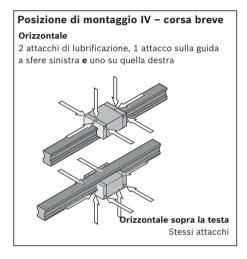
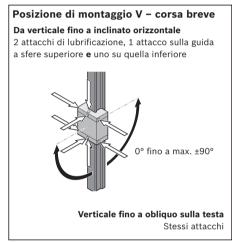
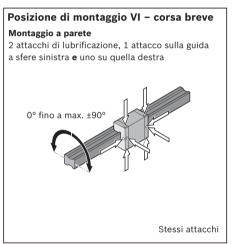




Diagramma 4


Numero di identificazione						
R20 04	R16 20	R20 30	R16 70	R20 90		
R20 05	R16 21	R20 31	R16 71			
R20 06	R16 22	R20 32	R16 72			
R20 07	R16 23	R20 33	R16 73			


Lubrificazione con grasso fluido con impianti di lubrificazione a consumo attraverso distributori volumetrici (prosecuzione)



Dimensione minima ammessa del distributore volumetrico per lubrificazione a grasso fluido tramite impianto di lubrificazione monotubo a consumo¹⁾

Pattini a sfere		(≙ M	inima	quanti	tà di ir	npulsi))			umetrico ILGI 00	1	
		Gran	dezza									
Numero di identificazione	Posizioni di	15	20	25	30	35	45	55	65	20/40	25/70	35/90
	montaggio											
R16 10	Orizzontale I, IV											
R16 11	Verticale II, V] -	0,30	0,30	-	_	-	0,30	0,30	_	-	0,30
R16 60	Montaggio											
	a parete III, VI											
R20 04 R16 20 R20 30 R16 7	Orizzontale I, IV		0,03	0,03	0,06	0,10	0.10			0.03	0,03	
R20 0Z R16 2Z R20 3Z R16 7	verticale ii, v		0,03	0,03	0,06	0,10	0,10			0,03	0,03	
R20 05 R16 21 R20 31 R16 7		1						1				
R20 06 R16 22 R20 32 R16 7	Montaggio	0,03						_	_			_
R20 0Y R16 2Y R20 3Y R16 7	a parete III. VI		0,06	0,06	0,10	0,20	0,20			0,06	0,06	
R20 07 R16 23 R20 33 R16 7	a parete III, vi											
R20 90												

Tabella 9

- 1) Vale alle condizioni seguenti:
 - Grasso fluido Dynalub 520 (in alternativa Castrol Tribol GR 100-00 PD oppure Elkalube GLS 135/N00) e distributori volumetrici della ditta SKF
 - I canali di lubrificazione devono essere riempiti
 - Temperatura ambiente T = 10 40 °C

Lubrificazione a olio con impianti di lubrificazione monotubo a consumo attraverso distributori volumetrici

A Vedere il capitolo Note per la lubrificazione
Olio lubrificante: Consigliamo Shell Tonna S3 M220. Per ulteriori informazioni si rimanda al capitolo Note per la lubrificazione.

A Non mettere mai in esercizio i pattini a sfere senza aver eseguito la lubrificazione di base. In caso di ingrassaggio dallo stabilimento, la prima lubrificazione non è necessaria. Le guide a sfere Rexroth vengono fornite con trattamento protettivo.

Lubrificazione iniziale dei pattini a sfere (lubrificazione iniziale)

Corsa $\geq 2 \cdot \text{lunghezza pattino a sfere B}_1$ (corsa normale)

► Un attacco di lubrificazione per pattino a sfere, approntare a scelta sulla guida a sfere sinistra o destra e lubrificare!

La prima lubrificazione avviene due volte con la quantità parziale in conformità con la tabella 10:

- Ingrassare il pattino a sfere con una prima quantità parziale secondo la tabella 10.
- Spostare il pattino a sfere con tre doppie corse di 3 · lunghezza pattino a sfere B₁.
- 3. Ripetere ancora una volta il punto 1. e 2.
- 4. Controllare se sulla rotaia a sfere sia visibile un film di lubrificante.

Gran-	Prima lubrif	Prima lubrificazione (corsa normale)							
dezza	Codici mate	riale (non comp	leti)						
	(senza prima	a lubrificazione)	(con prima lubrificazione)						
	R16 10	R20 04/0Z	R16 20/2Z	R20 30/3Z	R16 70/7Z				
	R16 11	R20 05	R16 21	R20 31	R16 71				
	R16 60	R20 06/0Y	R16 22/2Y	R20 32/3Y	R16 72/7Y				
		R20 07	R16 23	R20 33	R16 73				
				R20 90					
	Quant	ità parziale (cm³)							
15		0,4 (2x)		`	`				
20		0,7 (2x)							
25		1,0 (2x)	Prima lubrificazione di fabbrica con						
30		1,1 (2x)	1	Dynalub 510					
35		1,2 (2x)	1						
45		_							
55		3,6 (2x)							
65		6,0 (2x)							
20/40			Prima lubrificazione di fabbrica con						
25/70			Dynalub 510						
35/90		1,8 (2x)		_					

Tabella 10

Corsa < 2 · lunghezza pattino a sfere B₁ (corsa breve)

Due attacchi di lubrificazione per pattino a sfere, approntare un attacco sulla guida a sfere sinistra e destra e lubrificare!

La prima lubrificazione avviene due volte per attacco con la quantità parziale in conformità con la tabella 11:

- Ingrassare il pattino a sfere per ogni attacco con una prima quantità parziale secondo la tabella 11.
- 2. Spostare il pattino a sfere con tre doppie corse di 3 · lunghezza pattino a sfere B₁.
- 3. Ripetere ancora una volta il punto 1. e 2.
- 4. Controllare se sulla rotaia a sfere sia visibile un film di lubrificante.

Скоп	Prima lubrificazione (corsa breve)										
Gran-											
dezza	Codici mater	Codici materiale (non completi)									
	(senza prima	lubrificazione)	(con prima lubr	ificazione)							
	R16 10	R20 04/0Z	R16 20/2Z	R20 30/3Z	R16 70/7Z						
	R16 11	R20 05	R16 21	R20 31	R16 71						
	R16 60	R20 06/0Y	R16 22/2Y	R20 32/3Y	R16 72/7Y						
		R20 07	R16 23	R20 33	R16 73						
				R20 90							
	Quantità pa	rziale per attacco									
		(cm ³)									
	sinistra	destra									
15	0,4 (2x)	0,4 (2x)		`							
20	0,7 (2x)	0,7 (2x)									
25	1,0 (2x)	1,0 (2x)	Prima lub	rificazione di fab	brica con						
30	1,1 (2x)	1,1 (2x)		Dynalub 510							
35	1,2 (2x)	1,2 (2x)									
45		_									
55	3,6 (2x)	3,6 (2x)									
65	6,0 (2x)	6,0 (2x)	_								
20/40			Prima lubrificazione di fabbrica con								
25/70	1	_	Dynalub 510								
35/90	1,8 (2x)	1,8 (2x)	-								

Tabella 11

Lubrificazione a olio con impianti di lubrificazione monotubo a consumo attraverso distributori volumetrici (prosecuzione

Rilubrificazione dei pattini a sfere

Corsa ≥ 2 · lunghezza pattino a sfere B₁ (corsa normale)

▶ Una volta raggiunto l'intervallo di rilubrificazione come da diagramma 5 o 6, introdurre la quantità di rilubrificazione come da tabella 12.

Avvertenza

Il numero di impulsi necessario corrisponde Quoziente intero risultante dalla quantità di rilubrificazione minima secondo la tabella 12 e dalle dimensioni minime ammesse del distributore volumetrico (

quantità di impulsi minima) secondo la tabella 14.

La dimensione minima ammessa del distributore volumetrico dipende anche dalla posizione di montaggio. Il ciclo di lubrificazione risulta dalla divisione dell'intervallo di rilubrificazione per il numero di impulsi rilevato (cfr. esempio di dimensionamento).

Gran-	Rilubrificazi	Rilubrificazione (corsa normale)									
dezza	Codici mate	Codici materiale (non completi)									
	R16 10	R20 04/0Z	R16 20/2Z	R20 30/3Z	R16 70/7Z						
	R16 11	R20 05	R16 21	R20 31	R16 71						
	R16 60	R20 06/0Y	R16 22/2Y	R20 32/3Y	R16 72/7Y						
		R20 07	R16 23	R20 33	R16 73						
				R20 90							
	Quantit	à parziale (cm³)		Quantit	à parziale (cm³)						
15		0,4 (1x)			0,4 (1x)						
20		0,7 (1x)		0,7 (1x							
25		1,0 (1x)			1,0 (1x)						
30		1,1 (1x)			1,1 (1x)						
35		1,2 (1x)			1,2 (1x)						
45		_			2,2 (1x)						
55		3,6 (1x)									
65		6,0 (1x)		_							
20/40					0,7 (1x)						
25/70	1	_			1,1 (1x)						
35/90		1,8 (1x)		_							

Tabella 12

Corsa < 2 · lunghezza pattino a sfere B₁ (corsa breve)

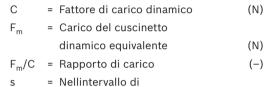
- ▶ Una volta raggiunto l'intervallo di rilubrificazione come da diagramma 5 o 6, introdurre la quantità di rilubrificazione come da tabella 13 per ogni attacco di lubrificazione.
- ▶ Il numero di impulsi necessario e il ciclo di lubrificazione devono essere stabiliti allo stesso modo di quanto avviene per la rilubrificazione (corsa normale).
- ► Per ogni ciclo di lubrificazione il pattino a sfere deve essere spostato facendo compiere una corsa doppia pari a 3 lunghezze del pattino a sfere B₁, la corsa minima, tuttavia, deve essere pari alla lunghezza del pattino a sfere B₁.

Attenersi alle avvertenze per la lubrificazione!

Gran-	Rilubrificazi	one (corsa brev	e)		Rilubrificazione (corsa breve)						
dezza	Codici mate	riale (non comp	leti)								
	R16 10	R20 04/0Z	R16 20/2Z	R20 30/3Z	R16 70/7Z						
	R16 11	R20 05	R16 21	R20 31	R16 71						
	R16 60	R20 06/0Y	R16 22/2Y	R20 32/3Y	R16 72/7Y						
		R20 07	R16 23	R20 33	R16 73						
				R20 90							
	Quantità par	ziale per attacco		Quantità parziale	per attacco (cm ³)						
		(cm ³)									
	sinistra	destra		sinistra	destra						
15	0,4 (1x)	0,4 (1x)		0,4 (1x)	0,4 (1x)						
20	0,7 (1x)	0,7 (1x)		0,7 (1x)	0,7 (1x)						
25	1,0 (1x)	1,0 (1x)		1,0 (1x)	1,0 (1x)						
30	1,1 (1x)	1,1 (1x)		1,1 (1x)	1,1 (1x)						
35	1,2 (1x)	1,2 (1x)		1,2 (1x)	1,2 (1x)						
45		_		2,2 (1x)	2,2 (1x)						
55	3,6 (1x)	3,6 (1x)		_							
65	6,0 (1x)	6,0 (1x)	1								
20/40				0,7 (1x)	0,7 (1x)						
25/70	1	_		1,1 (1x)	1,1 (1x)						
35/90	1,8 (1x)	1,8 (1x)		<u>-</u>							

Tabella 13

Lubrificazione a olio con impianti di lubrificazione monotubo a consumo attraverso distributori volumetrici (prosecuzione)


Intervalli di rilubrificazione in funzione del carico per lubrificazione a olio con impianti di lubrificazione monotubo a consumo mediante distributori volumetrici ("assi asciutti")

Vale alle condizioni seguenti:

- ▶ Olio lubrificante Shell Tonna S3 M220
- Nessun utilizzo di fluidi
- ► Guarnizioni standard (SS)
- ► Temperatura ambiente:

 $T = 10 - 40 \, ^{\circ}C$

Legenda

rilubrificazione come tratto

- ► In caso di alimentazione con refrigeranti/lubrificanti
- ► In caso di presenza di polveri (legno, carta,...)
- ► In caso di utilizzo di guarnizione a doppio labbro (DS)
- In caso di guarnizione standard (SS) in combinazione con guarnizione di testa oppure guarnizione FKM oppure kit guarnizioni
- ► In caso di velocità di traslazione bassa media v_m
- ► In caso di aumento della temperatura ambiente
- ► In caso di carichi elevati F_m/C > 0,4

Attenersi alle avvertenze per la lubrificazione!

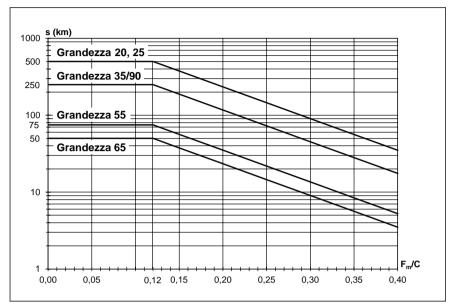


Diagramma 5

(km)

Numero di identificazione		
R16 10	R16 11	R16 60

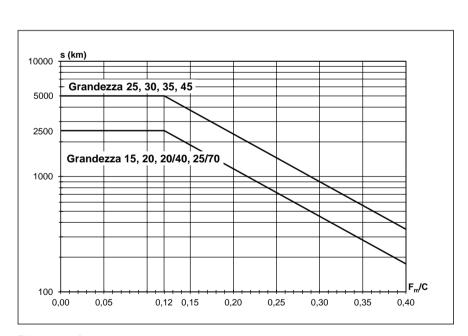
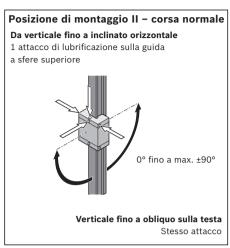
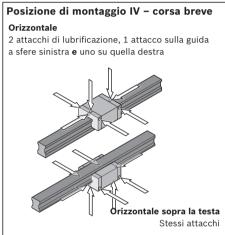
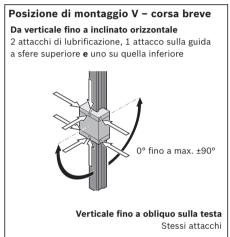
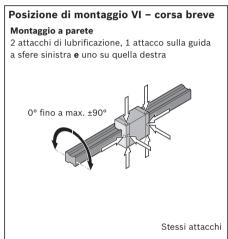



Diagramma 6


Numero di ide	ntificazione			
R20 04	R16 20	R20 30	R16 70	R20 90
R20 05	R16 21	R20 31	R16 71	
R20 06	R16 22	R20 32	R16 72	
R20 07	R16 23	R20 33	R16 73	


Lubrificazione a olio con impianti di lubrificazione monotubo a consumo attraverso distributori volumetrici (prosecuzione



Dimensione minima ammessa del distributore volumetrico per lubrificazione a olio tramite impianto di lubrificazione monotubo a consumo¹⁾

Pattini a sf	ere				Dimensioni minime ammesse del distributore volumetrico (* Minima quantità di impulsi) per attacco (cm³) con viscosità dell'olio 220 mm²/s										
					Gran	dezza									
Numero di	identificazio	one		Posizioni di montaggio	15	20	25	30	35	45	55	65	20/40	25/70	35/90
R16 10				Orizzontale I, IV											
R16 11				Verticale II, V	-	0,	60	-		1,	1,50		-	0,60	
R16 60				Montaggio											
				a parete III, VI											
			R16 70]	0,03	0,03	0,06	0.10	0,10			0,03	0,03	
			R16 7Z	voi tiouio ii, v		0,03	0,03	0,00	0,10	0,10			0,03	0,03	
			R16 71]										
			R16 72	Montaggio	0,03						_	_			_
			R16 7Y	a parete III, VI		0,06	0,06	0,10	0,16	0,16			0,06	0,06	
R20 07	R16 23	R20 33	R16 73	a parete III, VI											
		R20 90													

Tabella 14

- 1) Vale alle condizioni seguenti:
 - Olio lubrificante Shell Tonna S3 M 220 e distributore volumetrico della ditta SKF
 - I canali di lubrificazione devono essere riempiti
 - Temperatura ambiente T = 10 40 °C

Esempio di dimensionamento per la lubrificazione di un'applicazione tipica a 2 assi con lubrificazione centralizzata Asse X

Elemento o parametro	Specifiche
Pattini a sfere	Grandezza 35; 4 pezzi; C = 51 800 N; codici materiale: R1651 323 20
Rotaia a sfere	Grandezza 35; 2 pezzi; L = 1 500 N; codici materiale: R1605 333 61
Carico del cuscinetto dinamico equivalente	F _m = 12 570 N (per pattino) tenendo conto del precarico (qui C2)
Corsa	500 mm
Velocità media	v _m = 1 m/s
Temperatura	20 – 30 °C
Posizione di montaggio	Orizzontale
Lubrificazione	Impianto di lubrificazione monotubo a consumo per tutti gli assi con grasso fluido Dynalub 520
Alimentazione	Nessuna alimentazione di fluidi o immissione di trucioli o polvere

Grandezze di dimensionamento 1. Corsa normale o corsa breve?	Dimensionamento (per pattino a sfere) Corsa normale: Corsa $\geq 2 \cdot \text{lunghezza}$ pattino a sfere B ₁ 500 mm $\geq 2 \cdot 77$ mm 500 mm ≥ 154 mm! quindi corsa normale corretta!	 Fonti di informazione Formula della corsa normale, Lunghezza pattino a sfere B₁
2. Quantità di prima lubrificazione	1 attacco di lubrificazione, quantità di prima lubrificazione: prima lubrificazione di fabbrica con Dynalub 510	 Quantità prima lubrificazione da tabella 5
3. Quantità rilubrificazione	1 attacco di lubrificazione, quantità di rilubrificazione: 2,2 cm³ (2x)	 Quantità rilubrificazione da tabella 7
4. Posizione di montaggio	Posizione di montaggio I – corsa normale (orizzontale)	 Posizione di montaggio dalla panoramica
5. Dimensioni del distributore volumetrico	Grandezza del distributore volumetrico ammessa: 0,1 cm ³	 Dimensioni del distributore volumetrico da tabella 9 Grandezza 35, posizione di montaggio I (orizzontale)
6. Numero di impulsi	Numero di impulsi = $\frac{2 \cdot 2,2 \text{ cm}^3}{0,1 \text{ cm}^3} = 44$	Numero di impulsi = Numero · Quantità di rilubrificazione Amm. Dimensioni del distributore volumetrico
7. Rapporto di carico	Rapporto di carico = $\frac{12570 \text{ N}}{51800 \text{ N}} = 0.24$	 ▶ Rapporto di carico = F_m/C F_m e C in base alle specifiche
8 Nellintervallo di rilubrificazione	Intervallo di rilubrificazione: 2 150 km	► Intervallo di rilubrificazione da diagramma 4: Gr. curva 35 per rapporto di carico 0,24
9. Ciclo di lubrificazione	Ciclo di lubrificazione = $\frac{2 150 \text{ km}}{44}$ = 48 km	► Ciclo di lubrificazione = Nellintervallo di rilubrificazione Numero di impulsi
Risultato intermedio (asse X)	Per l'asse X occorre alimentare per ogni pattino a sfere ogni 48 km una quantità minima di 0,1 cm³ di Dynalub 520.	

Elemento o parametro	Specifiche Grandezza 25; 4 pezzi; C = 28 600 N; codici materiale: R1651 223 20	
Pattini a sfere		
Rotaia a sfere	Grandezza 25; 2 pezzi; L = 1 000 mm; Numeri di identificazione: R1605 232 31	
Carico del cuscinetto dinamico equivalente	F _m = 3 420 N (per pattino) tenendo conto del precarico (qui C2)	
Corsa	50 mm (corsa breve)	
Velocità media	v _m = 1 m/s	
Temperatura	20 - 30 °C	
Posizione di montaggio	Verticale	
Lubrificazione	Impianto di lubrificazione monotubo a consumo per tutti gli assi con grasso fluido Dynalub 520	
Alimentazione	Nessuna alimentazione di fluidi o immissione di trucioli o polvere	

Grandezze di dimensionamento	Dimensionamento (per pattino a sfere)	Fonti di informazione
1. Corsa normale o corsa breve?	Corsa normale: Corsa ≥ 2 · lunghezza pattino a sfere B ₁ 50 mm ≥ 2 · 57,8 mm 50 mm ≥ 115,6 mm! quindi corsa breve corrette!	► Formula della corsa normale, Lunghezza pattino a sfere B ₁
2. Quantità di prima lubrificazione	2 attacchi di lubrificazione, quantità prima lubrificazione per attacco: prima lubrificazione di fabbrica con Dynalub 510	 Quantità prima lubrificazione da tabella 6
3. Quantità rilubrificazione	2 attacchi di lubrificazione, quantità di rilubrificazione per attacco: 1,4 cm³ (2x)	 Quantità rilubrificazione da tabella 8
4. Posizione di montaggio	Posizione di montaggio V – corsa breve (Da verticale fino a inclinato orizzontale)	Posizione di montaggio dalla panoramica
5. Dimensioni del distributore volumetrico	Grandezza del distributore volumetrico ammessa: 0,03 cm ³	 Grandezza distributore volumetrico da tabella 9, grandezza 25, posizione di montaggio V (da verticale fino a inclinato orizzontale)
6. Numero di impulsi	Numero di impulsi = $\frac{2 \cdot 1,4 \text{ cm}^3}{0,03 \text{ cm}^3} = 94$	Numero di impulsi = Numero · Quantità di rilubrificazione Amm. Dimensioni del distributore volumetrico
7. Rapporto di carico	Rapporto di carico = $\frac{3 420 \text{ N}}{28 600 \text{ N}} = 0.12$	 ▶ Rapporto di carico = F_m/C F_m e C in base alle specifiche
8 Nellintervallo di rilubrificazione	Intervallo di rilubrificazione: 7 500 km	 Intervallo di rilubrificazione da diagramma 4: Gr. curva 25 per rapporto di carico 0,12
9. Ciclo di lubrificazione	Ciclo di lubrificazione = $\frac{7500 \text{ km}}{94}$ = 80 km	► Ciclo di Nellintervallo di rilubrificazione Numero di impulsi
Risultato intermedio (asse Y)	Per l'asse Y occorre alimentare per ogni pattino a sfere e per ogni attacco di lubrificazione ogni 80 km una quantità minima di 0,03 cm ³ di Dynalub 520.	
Risultato finale (Lubrificazione a due assi)	Dal momento che in questo esempio entrambi gli assi devono essere alimentati da un impianto di lubrificazione monotubo a consumo, l'asse X stabilisce con il rispettivo ciclo di lubrificazione più breve di 48 km il ciclo complessivo	Il numero di attacchi definito per ogni asse e le quantità minime rimangono invariati.

dell'impianto, vale a dire anche l'asse Y viene

lubrificato ogni 48 km.

Lubrificazione dall'alto senza adattatore per lubrificazione

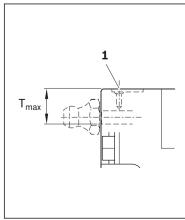
Per tutti i pattini a sfere con preparazione per lubrificazione dall'alto (Eccezioni: pattini a sfere elevati SNH R1621 e SLH R1624) Nell'incavo dell'o-ring è stato sbozzato un altro piccolo incavo (1). Non aprire il foro con un trapano. Pericolo di imbrattamento!

- 1. Riscaldare la punta metallica (2) con diametro di 0,8 mm.
- Aprire con cautela e perforare l'incavo (1) con la punta metallica. Tenere conto della profondità massima ammissibile T_{max} indicata in tabella!
- Inserire l'o-ring (3) nell'incavo (l'o-ring non è compreso nella fornitura del pattino a sfere. Accessori per pattini a sfere)

con adattatore per lubrificazione

(Accessori per pattini a sfere)
Un adattatore per la lubrificazione è
necessario in caso di pattini a sfere alti,
laddove la lubrificazione debba essere
eseguita dalla tavola.
Nell'incavo dell'o-ring è
stato sbozzato un altro piccolo incavo (1).
Non aprire il foro con un trapano.

1. Riscaldare la punta metallica (2) con diametro di 0,8 mm.


Pericolo di imbrattamento!

- Aprire con cautela e perforare l'incavo

 (1) con la punta metallica.
 Tenere conto della profondità massima ammissibile T_{max} indicata in tabella!
- 3. Inserire l'o-ring (3) nell'incavo (l'o-ring è compreso nella fornitura dell'adattatore per lubrificazione).
- 4. Inserire l'adattatore di lubrificazione obliquamente nell'incavo e spingerlo sul componente in acciaio (5) con il lato diritto (4). Per il fissaggio utilizzare del grasso.
- Inserire l'o-ring (6) nell'adattatore per lubrificazione (l'o-ring è compreso nella fornitura dell'adattatore per lubrificazione).

Gran- dezza	Apertura di lubrificazione dall'alto: Profondità massima ammissibile per la perforazione T _{max} (mm)		
	Pattino a sfere		
	Altezza	Basso	
	standard/Alto		
15	3,6	-	
20	3,9	4,4	
25	3,3	4,9	
30	6,6	-	
35	7,5	_	
45	8,8	-	
20/40	4,0	-	
25/70	2,1	_	
35/90	7,9	-	

Manutenzione

Corsa di pulitura

Lo sporco può depositarsi e fissarsi soprattutto sulle rotaie a sfere libere.

Per garantire il funzionamento delle guarnizioni e dei nastri di protezione, rimuovere regolarmente lo sporco.

Per questo motivo, almeno due volte al giorno, al più tardi dopo ogni 8 ore di normale lavoro è necessario eseguire almeno una volta una "corsa completa di pulitura".

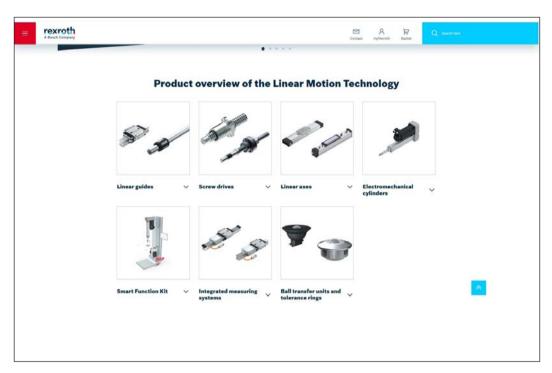
Prima di ogni accensione della macchina eseguire una corsa di pulizia.

Intervalli di rilubrificazione più brevi in caso di alimentazione con refrigerante/lubrificante.

Manutenzione e accessori

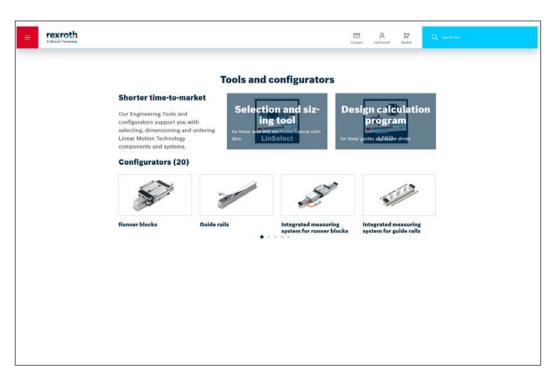
Tutti gli accessori utilizzati con funzione raschiante sulla rotaia a sfere devono essere regolarmente sottoposti a manutenzione.

In ambienti con elevata presenza di polvere è consigliabile sostituire gli accessori nella zona a contatto con la polvere.


Consigliamo un controllo degli accessori almeno una volta all'anno.

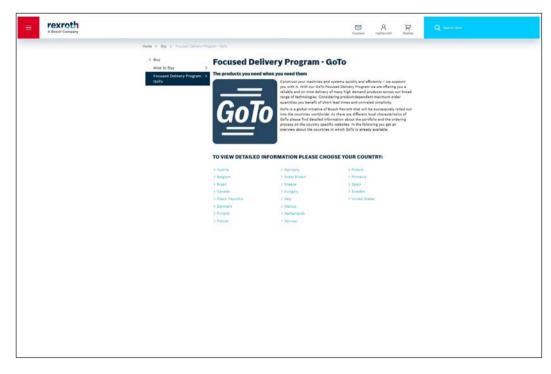
Homepage Bosch Rexroth tecnica del movimento lineare

https://www.boschrexroth.com/en/xc/products/product-groups/linear-motion-technology/index



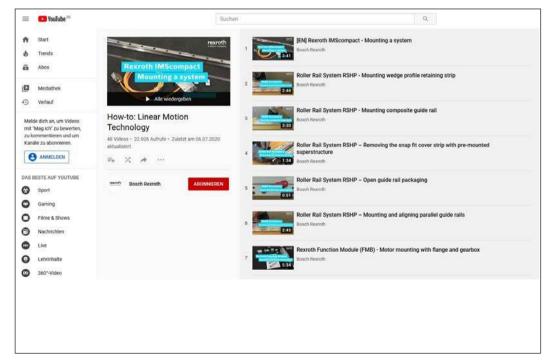
Configuratori e strumenti

https://www.boschrexroth.com/en/xc/products/engineering/econfigurators-and-tools/econfigurators



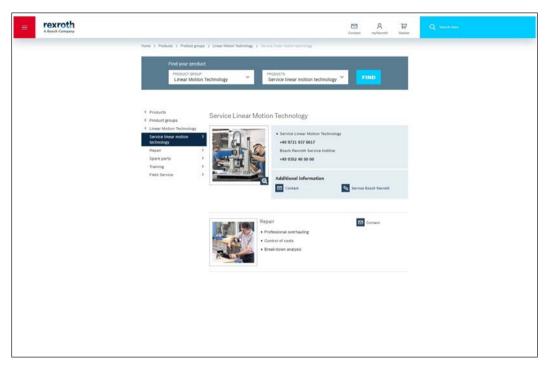
GoTo Europe

http://www.boschrexroth.com/goto



How-to: Linear Motion Technology

https://www.youtube.com/playlist?list=PLRO3LeFQeLyMF6evW4E7kR93JHzpJlV4r



https://www.boschrexroth.com/en/xc/products/product-groups/linear-motion-technology/service-linear-motion-technology

Formazioni

https://www.boschrexroth.com/en/xc/training/training

Bosch Rexroth AG

Ernst-Sachs-Straße 100 97424 Schweinfurt, Germania

Tel. +49 9721 937-0 Fax +49 9721 937-275 www.boschrexroth.com

www.boschrexroth.com/contact

