




# Indice dei contenuti

| Descrizio       | ne tecnica                                                                            |                                                                                                     |          |
|-----------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------|
| 1 Selezione d   | del cuscinetto                                                                        | 5 Precarico e rigidità                                                                              |          |
|                 | di selezione del cuscinetto2                                                          | 5-1 Finalità del precarico                                                                          |          |
| _               | tipo di cuscinetto                                                                    | 5-2 Metodi di precarico                                                                             |          |
| 2 Durata del    | CUSCINETTO                                                                            | 5-3 Misurazione del precarico                                                                       |          |
|                 | te di carico dinamico base e durata calcolata4                                        | 5-5 Precarico standard e rigidità assiale                                                           |          |
|                 | amico equivalente                                                                     | 6 Lubrificazione                                                                                    |          |
|                 | te di carico statico di base e carico statico equivalente 6                           | 6-1 Funzioni della lubrificazione                                                                   |          |
| 3 Tolleranza    | del cuscinetto                                                                        | 6-2 Sistemi di lubrificazione                                                                       | 22       |
| 3-1 Tolleranze  | del cuscinetto radiale7                                                               | Velocità limite                                                                                     |          |
|                 | e valori ammessi dei cuscinetti obliqui a sfere per carichi                           | 7-1 Correzione della velocità limite                                                                | 26       |
|                 | serie TAH/TBH)                                                                        | 8 Struttura dell'albero e dell'alloggiamento                                                        |          |
|                 | er cuscinetti per supporto di viti con ricircolo di sfere (serie TAB) <b>10</b>       | 8-1 Regolazione dell'albero e dell'alloggiamento8-2 Precisione richiesta per albero e alloggiamento |          |
|                 | er cuscinetti per supporto di viti con ricircolo di sfere (serie TAF) 11              | 8-3 Limiti delle dimensioni dello smusso                                                            |          |
|                 | per cuscinetti a rulli conici (cuscinetti a rulli cilindrici) 11<br>ne del cuscinetto | Gestione del cuscinetto                                                                             |          |
|                 |                                                                                       | 9-1 Conservazione e trasporto dei cuscinetti                                                        | 30       |
|                 | iche cuscinetto doppio                                                                | 9-2 Assemblaggio di cuscinetti                                                                      | 30       |
|                 | obliqui a sfere con "Flush ground"                                                    | 9-3 Test di funzionamento                                                                           |          |
| Tabelle di      | mensionali                                                                            |                                                                                                     |          |
| Tipologie e pro | gettazione di cuscinetti a rulli di precisione                                        |                                                                                                     | 37       |
| inpologic o pro |                                                                                       |                                                                                                     |          |
|                 |                                                                                       |                                                                                                     |          |
|                 |                                                                                       |                                                                                                     |          |
| 41              |                                                                                       |                                                                                                     |          |
|                 |                                                                                       |                                                                                                     | 44<br>46 |
|                 |                                                                                       |                                                                                                     |          |
|                 | Selle DIVII                                                                           |                                                                                                     | 40       |
| 0               | Cuscinetti obliqui a sfere con carico di spinta                                       |                                                                                                     | 50       |
|                 |                                                                                       |                                                                                                     |          |
|                 | Serie TBH                                                                             |                                                                                                     | 54       |
|                 | Cuscinetti a rulli cilindrici a disposizione multip                                   | la                                                                                                  | 56       |
| 10-             | Serie NN3000                                                                          |                                                                                                     | 58       |
| 10              | Serie NNU4900                                                                         |                                                                                                     | 60       |
| 0               | Cuscinetti a rulli conici incrociati                                                  |                                                                                                     | 62       |
| 9               | Serie XRN                                                                             |                                                                                                     | 64       |
|                 | Serie XRG                                                                             |                                                                                                     | 66       |
| 6.              | Cuscinetti per supporto di viti con ricircolo di sf                                   |                                                                                                     |          |
| 6               | Serie TAB                                                                             |                                                                                                     | 70       |
|                 | Serie TAF                                                                             |                                                                                                     | 72       |

## **Descrizione tecnica**



Selezione del cuscinetto

Durata del cuscinetto

Tolleranza del cuscinetto

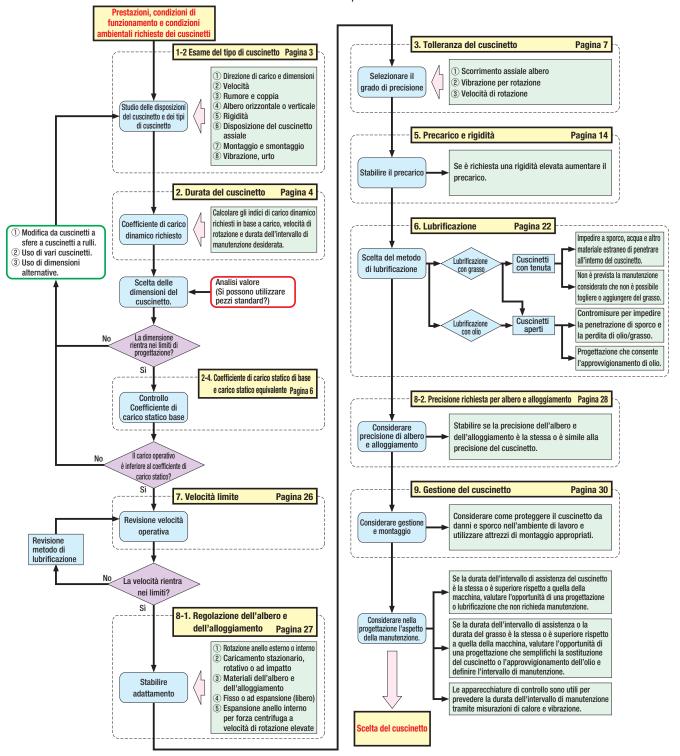
Disposizione del cuscinetto

e rigidità

Lubrificazione

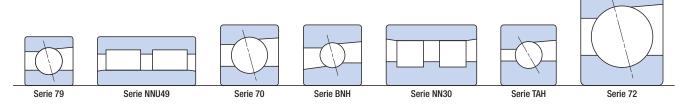
Velocità limite

Struttura dell'albero e dell'alloggiamento




## Selezione del cuscinetto

### Procedura di selezione del cuscinetto


La scelta del tipo e della combinazione di cuscinetti non è un compito facile e non è eccessivo affermare che la scelta stessa del cuscinetto è fondamentale per ottenere le prestazioni di progettazione e la durata desiderate.

Pur non esistendo la procedura "migliore" per la scelta del cuscinetto giusto, il progettista dovrebbe attribuire massima priorità alla soddisfazione dei requisiti più critici dei cuscinetti. Figura 1.1 è un esempio di una procedura basata sulla determinazione delle priorità per le caratteristiche del cuscinetto richieste.



## 1-2 Esame del tipo di cuscinetto

| Fattori                             | Linee guida per la scelta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spazio consentito per i cuscinetti  | <ul> <li>Quando si progetta un sistema con albero, la rigidità e la forza dell'albero sono fattori fondamentali. Il primo passaggio è di stabilire il diametro dell'albero e il diametro del foro.</li> <li>Figura 1.2 mostra le linee guida per i tipi e le dimensioni principali di cuscinetti a contatto volvente utilizzati nelle macchine utensili.</li> </ul>                                                                                                                                                                                                                                    |
| Carico (tipo, direzione, grandezza) | <ul> <li>Scegliere il tipo di cuscinetto ottimale secondo la grandezza del carico radiale e assiale, la direzione del carico (una o entrambe le direzione) e il livello (vibrazione o urto).</li> <li>In generale un cuscinetto a rulli ha una capacità del coefficiente di carico superiore a un cuscinetto a sfere.</li> </ul>                                                                                                                                                                                                                                                                       |
| Velocità di rotazione               | <ul> <li>Scegliere il tipo di cuscinetto ottimale secondo la velocità di rotazione massima per la macchina in cui si utilizza il cuscinetto.</li> <li>Le velocità limite dei cuscinetti dipendono ampiamente dalla grandezza del carico applicato, dalla precisione di scorrimento, dal materiale e dalla progettazione della gabbia. Per cui, è necessario operare con attenta considerazione.</li> <li>In generale, i cuscinetti obliqui a sfere o i cuscinetti a rulli cilindrici, che presentano un aumento minimo della temperatura si utilizzano nelle applicazioni ad alta velocità.</li> </ul> |
| Rigidità                            | <ul> <li>Per migliorare la rigidità dell'asse di rotazione costituisce un aspetto fondamentale la rigidità dell'albero e dell'alloggiamento ma anche la rigidità del cuscinetto.</li> <li>In generale, la rigidità di un cuscinetto a rulli è superiore a quella di un cuscinetto a sfere.</li> <li>La rigidità di cuscinetti obliqui a sfere in combinazione è aumentata applicando un precarico al cuscinetto.</li> </ul>                                                                                                                                                                            |
| Montaggio e smontaggio              | Scegliendo un cuscinetto separabile si aumenta l'efficienza di lavoro durante il montaggio e lo smontaggio per le ispezioni periodiche, ecc.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



• Figura 1.2 Cuscinetti a rulli di precisione principali utilizzati nelle macchine utensili

Durata del cuscinetto

Tolleranza cuscinetto

Disposizione cuscinetto

Precarico e rigidità

Lubrificazione

Velocità

Struttura dell'albero e dell'allog-giamento



## **Durata del cuscinetto**

### Coefficiente di carico dinamico base e durata calcolata

Sebbene le necessità dei cuscinetti volventi varino in relazione alle individuali applicazioni le principali richieste sono:

- Alta capacità di carico
- Basso attrito
- Rotazione uniforme e silenziosa
- Alta precisione
- Alta rigidità

I requisiti di affidabilità e durata servono per stabilire l'intervallo di tempo in cui si debbono preservare anche tutti gli altri requisiti. Il requisito di affidabilità (durata di vita in senso lato) include vita e acustica del grasso così come durata di vita a fatica. L'affidabilità risulta ridotta in seguito a vari tipi di danni e degradazione. Sebbene esistano altre tipologie di danni, la rottura e la usura per esempio, queste devono essere considerate separatamente dalla durata del cuscinetto. La gestione, il montaggio, la lubrificazione e le regolazioni eseguiti in modo inappropriato sono la causa principale di problemi che comportano una durata del cuscinetto inferiore a quella calcolata. I cuscinetti dinamici possono rompersi a volte per la fatica di rotolamento generata dallo stress ripetitivo del carico del cuscinetto e ciò avviene indipendentemente dalle modalità con cui sono sottoposti a manutenzione, montati e gestiti. La durata di vita di un cuscinetto deve essere esaminata da due prospettive: 1) Se da una ispezione, una traccia di fatica risulta visibile, il cuscinetto è danneggiato e non più impiegabile per usi futuri; o 2) la durata di vita in ore o numeri di giri può essere predeterminata come limite oltre il quale il cuscinetto dovrà essere automaticamente rimpiazzato. Poiché il calcolo della durata di vita a fatica varierà per taglia e per tipo di cuscinetto in presenza di identiche condizioni di carico, grande cura deve essere presa nella analisi delle condizioni di carico e nella scelta finale dei cuscinetti per soddisfare le richieste applicative.

La durata a fatica dei singoli cuscinetti si disperde tra gli stessi. Quando un gruppo di cuscinetti identici è usato con le stesse condizioni compare il fenomeno statistico della dispersione. La durata media non è un criterio adequato per la scelta dei cuscinetti con contatto volvente. È più appropriato invece considerare il limite (ore o

numeri di rotazioni) che è in grado di sostenere un'ampia percentuale di cuscinetti funzionanti.

In base a ciò, la durata calcolata e il coefficiente di carico dinamico di base Cr o Ca sono stabiliti usando la seguente definizione:

#### Durata calcolata di base

Numero totale di rotazioni che il 90% di un gruppo di cuscinetti identici utilizzati singolarmente in condizioni identiche è in grado di completare senza subire danni materiali per lo stress da rotolamento.

#### Coefficiente di carico dinamico base (Cr o Ca)

Carico del cuscinetto di direzione e grandezza costante che considera conclusa la durata del cuscinetto dopo un milione di rotazioni.

La durata calcolata del cuscinetto è ottenuta con la Formula 2.1 e la Formula 2.2.

$$L = \left(\frac{C}{P}\right)^{p}$$
 (Formula 2.1)

$$Lh = \left(\begin{array}{c} C \\ \hline P \end{array}\right)^p \cdot \frac{10^6}{60n}$$
 (Formula 2.2)

- : Coefficiente base durata di vita (106 di giri)
- Lh : Coefficiente base durata di vita (ore)
- C : Coefficiente di carico dinamico di base (N) (Cr per cuscinetti radiali, Ca per cuscinetti di spinta)
- : Carico cuscinetto (carico dinamico equivalente) (N) (Pr per cuscinetti radiali, Pa per cuscinetti di spinta)
- : 3 (cuscinetti a sfere), 10/3 (cuscinetti a rulli)
- : Numero di giri:(min<sup>-1</sup>)

Nel caso di file multiple di disposizioni di cuscinetti a sfera radiali, il coefficiente di carico dinamico di base è calcolato utilizzando i fattori riportati di seguito.

| Disposizione a 2 fi | le Disposizione a 3 file | Disposizione a 4 file |
|---------------------|--------------------------|-----------------------|
| 1,62                | 2,16                     | 2,64                  |

## 2-2 Carico dinamico equivalente

Il carico del cuscinetto P nella Formula 2.1 e nella Formula 2.2 è il carico puramente radiale (carico puramente assiale) di direzione e grandezza costante. In condizioni di funzionamento effettive sono molti i casi in cui i carichi radiali e assiali sono applicati contemporaneamente. In taluni casi, la vita del cuscinetto deve essere calcolata convertendo i carichi radiali e assiali in carico dinamico equivalente.

Il carico dinamico equivalente è calcolato utilizzando la Formula 2.3. Carico del cuscinetto di direzione e grandezza costante che considera conclusa la durata del cuscinetto dopo un milione di rotazioni. La durata calcolata del cuscinetto è ottenuta con la Formula 2.1 e la Formula 2.2.

$$Pr=XFr+YFa$$
 or  $Pa=XFr+YFa$ — (Formula 2.3)

Pr : Carico radiale dinamico equivalente (N)

Pa: Carico assiale dinamico equivalente (N)

Fr : Carico radiale (N)

Fa: Carico assiale (N)

: Fattori di carico radiale (Tabella 2.1)

: Fattori di carico assiale (Tabella 2.1)

#### Tabella 2.1 Fattori di carico

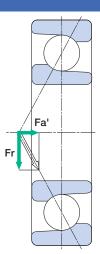
|            | Angolo di            | iFa/  |      |      | etto fila /<br>e singola | Cuscine | etto file/d | lirezioni r | nultiple |  |
|------------|----------------------|-------|------|------|--------------------------|---------|-------------|-------------|----------|--|
|            | contatto<br>nominale | Cor   | е    | Fa/F | r>e                      | Fa/F    | r≤e         | Fa/Fr>e     |          |  |
|            | Hommaic              |       |      | Х    | Υ                        | Х       | Υ           | Х           | Υ        |  |
|            |                      | 0,015 | 0,38 |      | 1,47                     |         | 1,65        |             | 2,39     |  |
|            |                      | 0,029 | 0,40 |      | 1,40                     |         | 1,57        |             | 2,28     |  |
|            |                      | 0,058 | 0,43 |      | 1,30                     | 1       | 1,46        |             | 2,11     |  |
|            |                      | 0,087 | 0,46 |      | 1,23                     |         | 1,38        | 0,72        | 2,00     |  |
| Cuscinetti | 15°                  | 0,12  | 0,47 | 0,44 | 1,19                     |         | 1,34        |             | 1,93     |  |
| a sfera    |                      | 0,17  | 0,50 |      | 1,12                     |         | 1,26        |             | 1,82     |  |
| radiali    |                      | 0,29  | 0,55 |      | 1,02                     |         | 1,14        |             | 1,66     |  |
| raulali    |                      | 0,44  | 0,56 |      | 1,00                     |         | 1,12        |             | 1,63     |  |
|            |                      | 0,58  | 0,56 |      | 1,00                     |         | 1,12        |             | 1,63     |  |
|            | 25°                  | _     | 0,68 | 0,41 | 0,87                     |         | 0,92        | 0,67        | 1,41     |  |
|            | 30°                  | _     | 0,80 | 0,39 | 0,76                     |         | 0,78        | 0,63        | 1,24     |  |
|            | 40°                  |       | 1,14 | 0,35 | 0,57                     |         | 0,55        | 0,57        | 0,93     |  |
| Cuscinetti | 50°                  | _     | 1,49 | 0,73 | 1                        | 1,37    | 0,57        | 0,73        | 1        |  |
| a sfera di | 55°                  |       | 1,79 | 0,81 | 1                        | 1,6     | 0,56        | 0,81        | 1        |  |
| spinta     | 60°                  |       | 2,17 | 0,92 | 1                        | 1,9     | 0,55        | 0,92        | 1        |  |

Nota 1) i = 2 per DB o DF, i = 1 per singolo o DT.

Nota 2) Per singolo o DT, usare Pr=Fr quando Fa/Fr≤e.

Nota 3) Quando l'angolo di contatto nominale è pari a 15°, utilizzare l'interpolazione lineare per stabilire X, Y, ed i valori e di iFa/Cor che non sono inclusi nella tabella.

Nota 4) Per uso ad alta velocità (valore dmn > 800.000), si deve considerare la forza centrifuga del rullo oltre al carico esterno. Per tali applicazioni si prega di contattare NACHI.


## 2-3 Carico dei cuscinetti obliqui a sfere

Nel caso di cuscinetti obliqui a sfere i punti in cui le linee di contatto estese tra il cuscinetto e l'asse come da Figura 2.1 devono essere utilizzati come punti di supporto del cuscinetto (centri di carico). In considerazione di ciò, i cuscinetti obliqui a sfere sono illustrati nelle tabelle dimensionali con dimensioni "a" che indicano le posizioni dei punti di supporto. Tale considerazione è molto importante quando un carico di momento è in azione su una serie di cuscinetti. Le forze assiali del componente sono generate quando un carico radiale agisce su un cuscinetto o obliquo a sfere. Si possono calcolare le forze del componente assiale utilizzando la Formula 2.4.

$$Fa' = \frac{Fr}{2Y} -$$
 (Formula 2.4)

Fa': Carico assiale indotto (N) Fr : Carico radiale (N) Fa : Fattore di carico assiale

In seguito a queste forze del componente, il carico assiale e il carico radiale dinamico equivalente che agiscono sul cuscinetto sono illustrate nella Tabella 2.2.



• Figura 2.1 Carico assiale indotto per cuscinetti obliqui a sfere

#### Tabella 2.2 Carico assiale e Carico dinamico equivalente con Cuscinetti obliqui a sfere

| Disposizione del Cuscinetto | Condizioni di carico                                                                                                                               | Carico assiale                                                                                | Carico radiale dinamico equivalente |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------|
| II I Fa Fri Fri             | Fa $\geq$ 0.5 $\left(\frac{\mathrm{Fr}_{\mathrm{I}}}{\mathrm{Y}_{\mathrm{I}}} - \frac{\mathrm{Fr}_{\mathrm{II}}}{\mathrm{Y}_{\mathrm{II}}}\right)$ | $Fa_{\text{I}}=Fa_{\text{II}}+Fa$ $Fa_{\text{II}}=0.5rac{Fr_{\text{II}}}{Y_{\text{II}}}$     | Prı=XıFrı+Yı(Faı+Fa)<br>Prı=Frı     |
| I II Fa Fri Fri             | $Fa < 0.5 \left( \frac{Fr_I}{Y_I} - \frac{Fr_{II}}{Y_{II}} \right)$                                                                                | $Fa_{I}=0.5\frac{Fr_{I}}{Y_{I}}$ $Fa_{II}=Fa_{I}-Fa$                                          | Pr=Fr<br>Pr=XnFrn+Yn(Fa1-Fa)        |
| II I  Fa  Fri  Fri          | $Fa \ge 0.5 \left( \frac{Fr_{II}}{Y_{II}} - \frac{Fr_{I}}{Y_{I}} \right)$                                                                          | $Fa_{I}$ =0.5 $\frac{Fr_{I}}{Y_{I}}$ $Fa_{II}$ = $Fa_{I}$ + $Fa_{I}$                          | Prı=Frı<br>Prı=XıFrı+Yı(Faı+Fa)     |
| I II Fa Fri Fri             | $Fa < 0.5 \left( \frac{Fr_{II}}{Y_{II}} - \frac{Fr_{I}}{Y_{I}} \right)$                                                                            | Fa <sub>1</sub> =Fa <sub>1</sub> -Fa<br>Fa <sub>1</sub> =0.5 Fr <sub>1</sub> /Y <sub>11</sub> | Prı=XıFrı+Yı(Fa॥-Fa)<br>Pr॥=Fr॥     |

Fr<sub>I</sub>, Fr<sub>II</sub> : Carico radiale (N) applicato ai cuscinetti I e II Fa : Carico assiale esterno (N)

: Fattori di carico assiale dei cuscinetti I e II X<sub>I</sub>, X<sub>II</sub> : Fattori di carico radiale dei cuscinetti I e II

 $Pr_{\rm I},\ Pr_{\rm II}$  : Carico radiale dinamico equivalente (N) dei cuscinetti I e II

Selezione cuscinetto

Durata del

Tolleranza cuscinetto

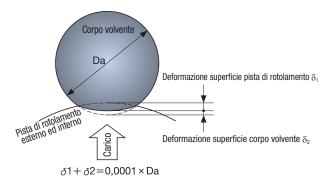
Disposizione cuscinetto

e rigidità

Lubrificazione

Struttura dell'albero e dell'allog-giamento

#### **Durata del cuscinetto**


## 2-4 Coefficiente di carico statico di base e carico statico equivalente

#### 2.4.1 Coefficiente di carico statico di base

Il carico applicato su cuscinetti fermi può creare intaccature permanenti sulle superfici di carico. Mentre si tollerano alcuni livelli di deformazione, un livello di deformazione sarà raggiunto quando rumore e vibrazione, durante l'esercizio del cuscinetto, renderanno il cuscinetto non più usabile. Il termine Coefficiente di carico statico di base (Cor o Coa) si riferisce al massimo valore di carico statico di stress da contatto fra corpi volventi e pista di rotolamento.

Cuscinetti a sfere ——— 4200 MPa Cuscinetti a rulli ——— 4000 MPa

Con questi stress da contatto, la somma delle deformazioni è approssimativamente 1/10.000 del diametro del corpo volvente. (Figura 2.2).



• Figura 2.2 Intaccatura permanente

#### 2.4.2 Carico statico equivalente

Il Carico Statico Equivalente è il carico statico che riflette le condizioni attuali di carico sulla sezione di contatto fra i corpi volventi e la pista di rotolamento che ricevono il massimo stress.

Per i cuscinetti radiali il carico di direzione e grandezza costante è denominato carico radiale statico equivalente e per i cuscinetti assiali, il carico assiale di direzione e grandezza costante è denominato carico assiale statico equivalente.

Per calcolare il carico radiale statico equivalente, si deve utilizzare il più grande dei due valori ottenuti dalla **Formula 2.5** e dalla **Formula 2.6**.

$$Por=Xo Fr + Yo Fa$$
 (Formula 2.5)  
 $Por=Fr$  (Formula 2.6)

Il carico assiale statico equivalente è calcolato utilizzando la Formula 2.7.

$$Poa=Xo\ Fr+Yo\ Fa$$
 (Formula 2.7)

Por : Carico radiale statico equivalente (N)

Fr : Carico radiale (N)
Fa : Carico assiale (N)

Xo : Fattori di carico radiale statico (**Tabella 2.3**) Yo : Fattori di carico assiale statico (**Tabella 2.3**)

Poa : Carico assiale statico equivalente (N)

#### ■ Tabella 2.3 Fattori di carico statico

|                       | Angolo di            | Singol | o o DT | DB o DF |      |  |  |  |
|-----------------------|----------------------|--------|--------|---------|------|--|--|--|
|                       | contatto<br>nominale | Xo     | Yo     | Xo      | Yo   |  |  |  |
|                       | 15°                  | 0,5    | 0,46   | 1       | 0,92 |  |  |  |
| Cuscinetti<br>a sfera | 25°                  | 0,5    | 0,38   | 1       | 0,76 |  |  |  |
| radiali               | 30°                  | 0,5    | 0,33   | 1       | 0,66 |  |  |  |
|                       | 40°                  | 0,5    | 0,26   | 1       | 0,52 |  |  |  |
| Cuscinetti            | 50°                  | 2,74   | 1      | 2,74    | 1    |  |  |  |
| a sfera di            | 55°                  | 3,28   | 1      | 3,28    | 1    |  |  |  |
| spinta                | 60°                  | 3,98   | 1      | 3,98    | 1    |  |  |  |

#### 2.4.3 Fattore di sicurezza

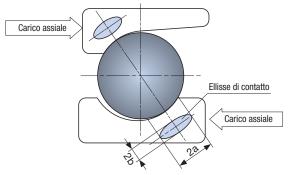
Il coefficiente di carico statico di base è considerato come il carico limite nelle applicazioni in genere.

Un'applicazione potrebbe richiedere un fattore di sicurezza maggiore di 1.

La **Formula 2.8** e la **Tabella 2.4** mostrano la forma di calcolo e il fattore di sicurezza (linee guida).

Po 
$$\max = \frac{Co}{So}$$
 (Formula 2.8)

Po max : Carico statico equivalente ammesso (N)
Co : Coefficiente di carico statico di base (N)
So : Fattore di sicurezza (**Tabella 2.4**)


#### ■ Tabella 2.4 Fattore di sicurezza So

| Condizioni applicative                        | So                 |                    |  |  |  |  |  |  |
|-----------------------------------------------|--------------------|--------------------|--|--|--|--|--|--|
| Condizioni applicative                        | Cuscinetti a sfere | Cuscinetti a rulli |  |  |  |  |  |  |
| È richiesta un'alta precisione di rotolamento | 2                  | 3                  |  |  |  |  |  |  |
| Presenza di vibrazioni/urti                   | 1,5                | 2                  |  |  |  |  |  |  |
| Condizioni di funzionamento normali           | 1                  | 1,5                |  |  |  |  |  |  |

#### 2.4.4 Carico di spinta ammesso

Esiste un carico di spinta ammesso per i cuscinetti che può essere applicato con carico assiale come per i cuscinetti obliqui a sfere. Per i cuscinetti a sfere il carico ammesso è il valore minore tra i due riportati di seguito.

- ① Carico assiale quando il valore della pressione di contatto tra corpo volvente e pista di rotolamento è 4200 MPa o meno
- ② Carico assiale che genera l'ellisse di contatto tra corpo volvente e pista di rotolamento per deviare oltre lo spallamento della pista di rotolamento (Figura 2.3)



• Figura 2.3 Ellisse di contatto

## **Tolleranza del cuscinetto**

## Tolleranze del cuscinetto radiale

La tolleranza dei cuscinetti a contatto volvente comprende la precisione dimensionale e di rotolamento. La tolleranza è classificata in base alla norma ISO 492 e alla JIS B 1514 (cuscinetti a rulli -

tolleranze) con cuscinetti a rulli conformi alla Classe 5, 4 e 2. Le tolleranze dei cuscinetti radiali sono mostrate nella Tabella 3.1 e Tabella 3.2 (pagina 8).

#### ● Tabella 3.1 Tolleranze dell'anello interno (JIS Classe 5, Classe 4, Classe 2)

Unità: µm

|   | Diametro nominale foro del cuscinetto d (mm) Variazione media nel singolo piano del diametro del foro (1) $\Delta d_{\rm mp}$ |                                          |      |       |      |      |      | ametro | Deviazio           | ne del dia $arDelta$ |      | el foro (1)        | Differe | ford | ingolo pi<br>o (1)<br>dsp | Differenza media nel singolo piano del diametro del foro (1) $V_{d  m mp}$ |          |          |          |
|---|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------|-------|------|------|------|--------|--------------------|----------------------|------|--------------------|---------|------|---------------------------|----------------------------------------------------------------------------|----------|----------|----------|
|   |                                                                                                                               |                                          | Clas | sse 5 | Clas | se 4 | Clas | se 2   | Clas               | se 4                 | Clas | se 2               | Clas    | se 5 | Clas                      | se 4                                                                       | Classe 5 | Classe 4 | Classe 2 |
|   | Oltre                                                                                                                         | Fino a                                   |      |       |      |      |      |        | Serie dei diametri |                      | i    | Serie dei diametri |         |      | i                         |                                                                            |          |          |          |
| ' | oille                                                                                                                         | re Fino a Alto Basso Alto Basso Alto Bas |      | Basso |      | 0,   | 2    |        | 9                  | 0,2                  | 9    | 0,2                | Max     | Max  | Max                       |                                                                            |          |          |          |
|   |                                                                                                                               |                                          |      |       |      |      |      |        |                    | Basso                | Alto | Basso              | Max     | Max  | Max                       | Max                                                                        |          |          |          |
|   | 2.5                                                                                                                           | 10                                       | 0    | -5    | 0    | -4   | 0    | -2,5   | 0                  | -4                   | 0    | -2,5               | 5       | 4    | 4                         | 3                                                                          | 3        | 2        | 1,5      |
|   | 10                                                                                                                            | 18                                       | 0    | -5    | 0    | -4   | 0    | -2,5   | 0                  | -4                   | 0    | -2,5               | 5       | 4    | 4                         | 3                                                                          | 3        | 2        | 1,5      |
|   | 18                                                                                                                            | 30                                       | 0    | -6    | 0    | -5   | 0    | -2,5   | 0                  | -5                   | 0    | -2,5               | 6       | 5    | 5                         | 4                                                                          | 3        | 2,5      | 1,5      |
|   | 30                                                                                                                            | 50                                       | 0    | -8    | 0    | -6   | 0    | -2,5   | 0                  | -6                   | 0    | -2,5               | 8       | 6    | 6                         | 5                                                                          | 4        | 3        | 1,5      |
|   | 50                                                                                                                            | 80                                       | 0    | -9    | 0    | -7   | 0    | -4     | 0                  | -7                   | 0    | -4                 | 9       | 7    | 7                         | 5                                                                          | 5        | 3,5      | 2        |
|   | 80                                                                                                                            | 120                                      | 0    | -10   | 0    | -8   | 0    | -5     | 0                  | -8                   | 0    | -5                 | 10      | 8    | 8                         | 6                                                                          | 5        | 4        | 2,5      |
| 1 | 20                                                                                                                            | 150                                      | 0    | -13   | 0    | -10  | 0    | -7     | 0                  | -10                  | 0    | -7                 | 13      | 10   | 10                        | 8                                                                          | 7        | 5        | 3,5      |
| 1 | 50                                                                                                                            | 180                                      | 0    | -13   | 0    | -10  | 0    | -7     | 0                  | -10                  | 0    | -7                 | 13      | 10   | 10                        | 8                                                                          | 7        | 5        | 3,5      |
| 1 | 80                                                                                                                            | 250                                      | 0    | -15   | 0    | -12  | 0    | -8     | 0                  | -12                  | 0    | -8                 | 15      | 12   | 12                        | 9                                                                          | 8        | 6        | 4        |

|            |                               |                                                                                                                                                                |          |          |          |          |          |                                 |                     |                     |                                                 |       |      |                    |      |                                            |                                                             |          | Unità: µm |     |
|------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|---------------------------------|---------------------|---------------------|-------------------------------------------------|-------|------|--------------------|------|--------------------------------------------|-------------------------------------------------------------|----------|-----------|-----|
| foro del c | nominale<br>cuscinetto<br>nm) | Eccentricità radiale dell'anello interno del cuscinetto assemblato $K_{\rm ia}$ Eccentricità della facci di riferimento dell'anel interno con foro $S_{\rm d}$ |          |          |          |          |          | di riferir<br>interno<br>assemb | nento de<br>del cus | cinetto<br>pista di | Deviazione della larghezza di un anello singolo |       |      |                    |      |                                            | Variazione della<br>larghezza dell'anello<br>interno<br>VBs |          |           |     |
|            |                               | Classe 5                                                                                                                                                       | Classe 4 | Classe 2 | Classe 5 | Classe 4 | Classe 2 | Classe 5                        | Classe 4            | Classe 2            | Clas                                            |       |      | /Classe 2          |      | /Classe 4<br>sse 2                         | Classe 5                                                    | Classe 4 | Classe 2  |     |
| Oltre      | Fino a                        | Max                                                                                                                                                            | Max      | Max      | Max      | Max      | Max      | Max                             | Max                 | Max                 | C                                               |       |      | Cuscinetto singolo |      | Cuscinetto in dispo-<br>sizione doppia (3) |                                                             | Max      | Max       | Max |
|            |                               |                                                                                                                                                                |          |          |          |          |          |                                 |                     |                     | Alto                                            | Basso | Alto | Basso              | Alto | Basso                                      |                                                             |          |           |     |
| 2.5        | 10                            | 4                                                                                                                                                              | 2,5      | 1,5      | 7        | 3        | 1,5      | 7                               | 3                   | 1,5                 | 0                                               | -40   | 0    | -40                | 0    | -250                                       | 5                                                           | 2,5      | 1,5       |     |
| 10         | 18                            | 4                                                                                                                                                              | 2,5      | 1,5      | 7        | 3        | 1,5      | 7                               | 3                   | 1,5                 | 0                                               | -80   | 0    | -80                | 0    | -250                                       | 5                                                           | 2,5      | 1,5       |     |
| 18         | 30                            | 4                                                                                                                                                              | 3        | 2,5      | 8        | 4        | 1,5      | 8                               | 4                   | 2,5                 | 0                                               | -120  | 0    | -120               | 0    | -250                                       | 5                                                           | 2,5      | 1,5       |     |
| 30         | 50                            | 5                                                                                                                                                              | 4        | 2,5      | 8        | 4        | 1,5      | 8                               | 4                   | 2,5                 | 0                                               | -120  | 0    | -120               | 0    | -250                                       | 5                                                           | 3        | 1,5       |     |
| 50         | 80                            | 5                                                                                                                                                              | 4        | 2,5      | 8        | 5        | 1,5      | 8                               | 5                   | 2,5                 | 0                                               | -150  | 0    | -150               | 0    | -250                                       | 6                                                           | 4        | 1,5       |     |
| 80         | 120                           | 6                                                                                                                                                              | 5        | 2,5      | 9        | 5        | 2,5      | 9                               | 5                   | 2,5                 | 0                                               | -200  | 0    | -200               | 0    | -380                                       | 7                                                           | 4        | 2,5       |     |
| 120        | 150                           | 8                                                                                                                                                              | 6        | 2,5      | 10       | 6        | 2,5      | 10                              | 7                   | 2,5                 | 0                                               | -250  | 0    | -250               | 0    | -380                                       | 8                                                           | 5        | 2,5       |     |
| 150        | 180                           | 8                                                                                                                                                              | 6        | 5        | 10       | 6        | 4        | 10                              | 7                   | 5                   | 0                                               | -250  | 0    | -250               | 0    | -380                                       | 8                                                           | 5        | 4         |     |
| 180        | 250                           | 10                                                                                                                                                             | 8        | 5        | 11       | 7        | 5        | 13                              | 8                   | 5                   | 0                                               | -300  | 0    | -300               | 0    | -500                                       | 10                                                          | 6        | 5         |     |

Nota 1) Si applica ai cuscinetti a rulli cilindrici.

Nota 2) Si applica a tutti i cuscinetti a sfere.

Nota 3) Si applica agli anelli dei singoli cuscinetti realizzati per i cuscinetti montati.

Osservazione: L'alta deviazione del diametro del foro del cuscinetto a rulli cilindrici in Tabella 3.1 non deve essere applicata fra la distanza della faccia della pista di rotolamento dell'anello di 1,2 x r (max) dello smusso.

Selezione cuscinetto

Durata del cuscinetto Tolleranza

Disposizione del cuscinetto Precarico e rigidità

Lubrificazione

Velocità

Struttura dell'albero e dell'allog-giamento Gestione cuscinetto

### Tolleranza del cuscinetto

#### • Tabella 3.2 Tolleranze dell'anello esterno (JIS Classe 5, Classe 4, Classe 2)

Unità: µm

| esteri | nominale<br>no del<br>inetto               | Variazione media nel singolo piano del diametro esterno dell'anello esterno $\Delta D_{ m mp}$ |       |      |      |          |     |                    | Deviazione del diametro esterno $\Delta D_{ m S}$ |      |                    |          | Variazione diametro esterno in un singolo piano radiale (1) $V_{D{ m sp}}$ |                   |     |          |          | Variazione media del diametro esterno $V_{D_{mp}}$ |          |  |
|--------|--------------------------------------------|------------------------------------------------------------------------------------------------|-------|------|------|----------|-----|--------------------|---------------------------------------------------|------|--------------------|----------|----------------------------------------------------------------------------|-------------------|-----|----------|----------|----------------------------------------------------|----------|--|
|        | mm)                                        | Clas                                                                                           | se 5  | Clas | se 4 | Classe 2 |     | Clas               | Classe 4 Classe 2                                 |      | sse 2              | Classe 5 |                                                                            | Classe 5 Classe 4 |     | Classe 2 | Classe 5 | Classe 4                                           | Classe 2 |  |
|        |                                            |                                                                                                |       |      |      |          |     | Serie dei diametri |                                                   |      | Serie dei diametri |          |                                                                            |                   |     |          |          |                                                    |          |  |
| Oltre  | re Fino a Alto Basso Alto Basso Alto Basso |                                                                                                | Basso |      | 0,   | 2        |     | 9                  | 0,2                                               | 9    | 0,2                | 0,2      | Max                                                                        | Max               | Max |          |          |                                                    |          |  |
|        |                                            |                                                                                                |       |      |      |          |     | Alto               | Basso                                             | Alto | Basso              | Max      | Max                                                                        | Max               | Max | Max      |          |                                                    |          |  |
| 18     | 30                                         | 0                                                                                              | -6    | 0    | -5   | 0        | -4  | 0                  | -5                                                | 0    | -4                 | 6        | 5                                                                          | 5                 | 4   | 4        | 3        | 2,5                                                | 2        |  |
| 30     | 50                                         | 0                                                                                              | -7    | 0    | -6   | 0        | -4  | 0                  | -6                                                | 0    | -4                 | 7        | 5                                                                          | 6                 | 5   | 4        | 4        | 3                                                  | 2        |  |
| 50     | 80                                         | 0                                                                                              | -9    | 0    | -7   | 0        | -4  | 0                  | -7                                                | 0    | -4                 | 9        | 7                                                                          | 7                 | 5   | 4        | 5        | 3,5                                                | 2        |  |
| 80     | 120                                        | 0                                                                                              | -10   | 0    | -8   | 0        | -5  | 0                  | -8                                                | 0    | -5                 | 10       | 8                                                                          | 8                 | 6   | 5        | 5        | 4                                                  | 2,5      |  |
| 120    | 150                                        | 0                                                                                              | -11   | 0    | -9   | 0        | -5  | 0                  | -9                                                | 0    | -5                 | 11       | 8                                                                          | 9                 | 7   | 5        | 6        | 5                                                  | 2,5      |  |
| 150    | 180                                        | 0                                                                                              | -13   | 0    | -10  | 0        | -7  | 0                  | -10                                               | 0    | -7                 | 13       | 10                                                                         | 10                | 8   | 7        | 7        | 5                                                  | 3,5      |  |
| 180    | 250                                        | 0                                                                                              | -15   | 0    | -11  | 0        | -8  | 0                  | -11                                               | 0    | -8                 | 15       | 11                                                                         | 11                | 8   | 8        | 8        | 6                                                  | 4        |  |
| 250    | 315                                        | 0                                                                                              | -18   | 0    | -13  | 0        | -8  | 0                  | -13                                               | 0    | -8                 | 18       | 14                                                                         | 13                | 10  | 8        | 9        | 7                                                  | 4        |  |
| 315    | 400                                        | 0                                                                                              | -20   | 0    | -15  | 0        | -10 | 0                  | -15                                               | 0    | -10                | 20       | 15                                                                         | 15                | 11  | 10       | 10       | 8                                                  | 5        |  |

|       | nominale<br>no del | dell'a   | entricità ra<br>nello ester<br>netto asser | no del   | della super                            | e della inc<br>generatrice<br>ficie esterr | e della<br>na con | riferiment<br>del cuscir        | icità della t<br>to dell'anel<br>netto assen | lo esterno<br>nblato con | Deviazione della<br>larghezza di un | Variazione della larghezza<br>dell'anello esterno |          |          |  |
|-------|--------------------|----------|--------------------------------------------|----------|----------------------------------------|--------------------------------------------|-------------------|---------------------------------|----------------------------------------------|--------------------------|-------------------------------------|---------------------------------------------------|----------|----------|--|
|       | inetto<br>mm)      | 000011   | <b>K</b> ea                                |          | riferimento anello esterno $S_{\it D}$ |                                            |                   | pista di rotolamento (2)<br>Sea |                                              |                          | anello singolo                      | <b>V</b> Cs                                       |          |          |  |
|       |                    | Classe 5 | Classe 4                                   | Classe 2 | Classe 5                               | Classe 4                                   | Classe 2          | Classe 5                        | Classe 4                                     | Classe 2                 | $\Delta C$ s                        | Classe 5                                          | Classe 4 | Classe 2 |  |
| Oltre | Fino a             | Max      | Max                                        | Max      | Max                                    | Max                                        | Max               | Max                             | Max                                          | Max                      |                                     | Max                                               | Max      | Max      |  |
| 18    | 30                 | 6        | 4                                          | 2,5      | 8                                      | 4                                          | 1,5               | 8                               | 5                                            | 2,5                      |                                     | 5                                                 | 2,5      | 1,5      |  |
| 30    | 50                 | 7        | 5                                          | 2,5      | 8                                      | 4                                          | 1,5               | 8                               | 5                                            | 2,5                      |                                     | 5                                                 | 2,5      | 1,5      |  |
| 50    | 80                 | 8        | 5                                          | 4        | 8                                      | 4                                          | 1,5               | 10                              | 5                                            | 4                        |                                     | 6                                                 | 3        | 1,5      |  |
| 80    | 120                | 10       | 6                                          | 5        | 9                                      | 5                                          | 2,5               | 11                              | 6                                            | 5                        | Corrisponde ai valori di            | 8                                                 | 4        | 2,5      |  |
| 120   | 150                | 11       | 7                                          | 5        | 10                                     | 5                                          | 2,5               | 13                              | 7                                            | 5                        | $\Delta B$ s dell'anello interno    | 8                                                 | 5        | 2,5      |  |
| 150   | 180                | 13       | 8                                          | 5        | 10                                     | 5                                          | 2,5               | 14                              | 8                                            | 5                        | abbinato ad esso.                   | 8                                                 | 5        | 2,5      |  |
| 180   | 250                | 15       | 10                                         | 7        | 11                                     | 7                                          | 4                 | 15                              | 10                                           | 7                        |                                     | 10                                                | 7        | 4        |  |
| 250   | 315                | 18       | 11                                         | 7        | 13                                     | 8                                          | 5                 | 18                              | 10                                           | 7                        |                                     | 11                                                | 7        | 5        |  |
| 315   | 400                | 20       | 13                                         | 8        | 13                                     | 10                                         | 7                 | 20                              | 13                                           | 8                        |                                     | 13                                                | 8        | 7        |  |

Nota 1) Si applica a tutti i cuscinetti di tipo aperto.

Nota 2) Si applica a tutti i cuscinetti a sfere.

Osservazione: La deviazione bassa del diametro esterno dei cuscinetti in Tabella 3.2 non si applica entro la distanza dalla faccia dell'anello di 1,2 x r (max) dello smusso.

## Tolleranze e valori ammessi dei cuscinetti obliqui a sfere per carichi di spinta (serie TAH/TBH)

Tranne per il diametro esterno del diametro esterno dell'anello esterno, la precisione dei cuscinetti obliqui a sfere per carichi di spinta conformi a JIS Classe 4. Il diametro esterno delle tolleranze dell'anello esterno corrisponde a quanto illustrato nella Tabella 3.3.

#### ● Tabella 3.3 Tolleranza del diametro esterno

| -                                                     |     |                                                        |       |  |  |  |  |  |  |  |
|-------------------------------------------------------|-----|--------------------------------------------------------|-------|--|--|--|--|--|--|--|
| Diametro nominale<br>esterno del cuscinetto<br>D (mm) |     | Deviazione del diametro esterno $\Delta D_{	extsf{S}}$ |       |  |  |  |  |  |  |  |
| Oltre Fino a                                          |     | Alto                                                   | Basso |  |  |  |  |  |  |  |
| 50                                                    | 80  | -30                                                    | -49   |  |  |  |  |  |  |  |
| 80                                                    | 120 | -36                                                    | -58   |  |  |  |  |  |  |  |
| 120                                                   | 180 | -43                                                    | -68   |  |  |  |  |  |  |  |
| 180                                                   | 250 | -50                                                    | -79   |  |  |  |  |  |  |  |
| 250                                                   | 315 | -56                                                    | -88   |  |  |  |  |  |  |  |

## 3-3 Tolleranze dei cuscinetti a rulli conici incrociati

Le tolleranze per i cuscinetti a rulli conici incrociati sono illustrate nella Tabella 3.4 e nella Tabella 3.5.

| Cuscinetto n. | Variazione media nel singolo piano del diametro del foro $\Delta d$ mp |       | Variazione media nel singolo piano del diametro esterno dell'anello esterno $\Delta D_{\rm mp}$ |       | Variazione dell'altezza<br>assemblata Ts |       | Eccentricità anello esterno (Max) |                              |  |
|---------------|------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------|-------|------------------------------------------|-------|-----------------------------------|------------------------------|--|
|               | Alto                                                                   | Basso | Alto                                                                                            | Basso | Alto                                     | Basso | Eccentricità radiale              | Eccentricità faccia laterale |  |
| 50XRN23       | 0                                                                      | -13   | 0                                                                                               | -15   | +350                                     | -250  | 7                                 | 7                            |  |
| 00XRN28       | 0                                                                      | -15   | 0                                                                                               | -18   | +350                                     | -250  | 7                                 | 7                            |  |
| 50XRN33       | 0                                                                      | -15   | 0                                                                                               | -18   | +350                                     | -250  | 7                                 | 7                            |  |
| 50XRN35       | 0                                                                      | -10   | 0                                                                                               | -13   | +350                                     | -250  | 9                                 | 9                            |  |
| 00XRN40       | 0                                                                      | -13   | 0                                                                                               | -15   | +350                                     | -250  | 7                                 | 7                            |  |
| 10XRN42       | 0                                                                      | -13   | 0                                                                                               | -15   | +350                                     | -250  | 7                                 | 7                            |  |
| 330XRN045     | +25                                                                    | 0     | +25                                                                                             | 0     | +350                                     | -250  | 8                                 | 8                            |  |
| 50XRN47       | 0                                                                      | -13   | 0                                                                                               | -15   | +350                                     | -250  | 9                                 | 9                            |  |
| 75XRN49       | 0                                                                      | -13   | 0                                                                                               | -15   | +350                                     | -250  | 7                                 | 7                            |  |
| 00XRN55       | 0                                                                      | -13   | 0                                                                                               | -18   | +350                                     | -250  | 9                                 | 9                            |  |
| 457XRN060     | +25                                                                    | 0     | +25                                                                                             | 0     | +380                                     | -380  | 9                                 | 9                            |  |
| 80XRN76       | +25                                                                    | 0     | +38                                                                                             | 0     | +406                                     | -406  | 10                                | 10                           |  |
| 685XRN091     | +38                                                                    | 0     | +38                                                                                             | 0     | +508                                     | -508  | 12                                | 12                           |  |

950XRN117

| labella 3.5 lolleraliz | Tabella 3.5 Tolleranze dell'anello interno e dell'anello esterno serie XRG (XRGV) |                                                     |                  |                                                               |                      |                          |                                   |                              |  |  |  |  |
|------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------|------------------|---------------------------------------------------------------|----------------------|--------------------------|-----------------------------------|------------------------------|--|--|--|--|
| Cuscinetto n.          | piano del diar                                                                    | dia nel singolo<br>netro del foro<br><sup>Imp</sup> | diametro esterno | el singolo piano del<br>dell'anello esterno<br><sub>Omp</sub> | Variazione<br>assemb | dell'altezza<br>olata Ts | Eccentricità anello interno (Max) |                              |  |  |  |  |
|                        | Alto                                                                              | Basso                                               | Alto             | Basso                                                         | Alto                 | Basso                    | Eccentricità radiale              | Eccentricità faccia laterale |  |  |  |  |
| 130XRG23               | 0                                                                                 | -10                                                 | 0                | -15                                                           | +350                 | -250                     | 6                                 | 7                            |  |  |  |  |
| 140XRGV20              | 0                                                                                 | -13                                                 | 0                | -15                                                           | +350                 | -350                     | 5                                 | 5                            |  |  |  |  |
| 150XRG23               | 0                                                                                 | -13                                                 | 0                | -15                                                           | +350                 | -250                     | 6                                 | 7                            |  |  |  |  |
| 200XRGV028             | 0                                                                                 | -15                                                 | 0                | -18                                                           | +350                 | -350                     | 7                                 | 7                            |  |  |  |  |
| 320XRG43               | 0                                                                                 | -13                                                 | 0                | -15                                                           | +350                 | -250                     | 7                                 | 7                            |  |  |  |  |
| 480XRGV66              | 0                                                                                 | -45                                                 | -70              | -100                                                          | +450                 | -450                     | 11                                | 11                           |  |  |  |  |

-750

Selezione cuscinetto

Durata del

Tolleranza

Disposizione cuscinetto

Precarico e rigidità

Lubrificazione

Velocità

Gestione

cuscinetto

14

Diametro nominale

foro del cuscinetto

d (mm)

Fino a

18

30

50

80

Oltre

10

18

30

50

#### Tolleranza del cuscinetto

## Tolleranze per cuscinetti per supporto di viti con ricircolo di sfere (serie TAB)

Le tolleranze per i cuscinetti per supporto di viti con ricircolo di sfere (serie TAB) sono illustrate nella Tabella 3.6 e nella Tabella 3.7.

Variazione

diametro del

foro in un

singolo piano

radiale

 $V_{dp}$ 

Max

3

4

5

5

Max

4

5

6

Tabella 3.6 Tolleranze dell'anello interno (larghezza dell'anello esterno ed eccentricità della faccia laterale dell'anello esterno riferita alla pista di scorrimento)

foro

Max

3

3

4

5

Eccentricità faccia Deviazione della **Eccentricità** laterale riferita alla Variazione larghezza di un Deviazione radiale pista di scorrimento Eccentricità media del anello singolo della larghezza dell'anello dell'anello interno faccia laterale dell'anello del cuscinetto diametro del (oppure larghezza interno del S<sub>d</sub> riferita al esterna di un interno cuscinetto assemblato  $S_{\mathrm{ia}}$  e foro  $V_{d^{\mathsf{mp}}}$ anello singolo)  $V_{Bs}$ assemblato dell'anello esterno Kia del cuscinetto  $\Delta B$ s,  $\Delta C$ s assemblato  $S_{ea}$ Classe 5 Classe 4 Max Alto Basso Max Max Max Max Max Max Max Max 2 0 -80 5 2.5 4 2.5 7 3 4 2 0 -120 2,5 5 2.5 4 3 8 4 5 2,5 -120 5 5 8 3 0 3 4 4 6 2.5

5

4

8

5

2,5

#### ● Tabella 3.7 Tolleranze per l'anello esterno

Classe 5

Basso

-5

-6

-8

-9

Alto

0

0

0

0

Variazione del foro e variazione

media nel singolo piano del foro

 $\Delta d$ mp,  $\Delta d$ s

Classe 4

Basso

-4

-5

-6

-7

Alto

 $\cap$ 

0

 $\cap$ 

0

Unità: µm Variazione della Variazione inclinazione della Eccentricità radiale Variazione media nel singolo piano del generatrice della Inclinazione esterna diametro esterno Variazione media del dell'anello esterno Diametro nominale diametro esterno dell'anello esterno in un singolo piano diametro esterno superficie esterna del cuscinetto dell'anello esterno esterno del radiale  $V_{D^{\mathsf{mp}}}$ con riferimento assemblato  $\Lambda D$ mp,  $\Lambda D$ s cuscinetto  $V_{Dp}$ anello esterno Kea D (mm) V<sub>C</sub>s Classe 5 Classe 4 Classe 5 | Classe 4 Classe 5 Classe 4 Classe 5 | Classe 4 Classe 5 | Classe 4 Classe 5 Classe 4 Oltre Fino a Alto Basso Alto Basso Max 30 50  $\cap$ 5 5 2.5 4 0 -6 80 -9 -7 5 4 50 0 0 5 3,5 6 8 5 8 3 80 120 -10 -8 8 6 5 0 0 4 8 10 5

3,5

0

-150

6

4

Per il tipo con "Flush ground" della serie TAB si stabiliscono dei rigorosi valori di tolleranza per il diametro esterno e il diametro del foro per ridurre le differenze all'interno dei cuscinetti accoppiati. (Tabella 3.8, Tabella 3.9)

## ■ Tabella 3.8 Tolleranze per diametro del foro dell'anello interno

|       | (Classe 4 "Flush ground") |                                                                                      |       |  |  |  |  |  |  |
|-------|---------------------------|--------------------------------------------------------------------------------------|-------|--|--|--|--|--|--|
|       | nominale<br>suscinetto    | Variazione media nel singolo piano del diametro del foro $\Delta d$ mp, $\Delta d$ s |       |  |  |  |  |  |  |
| d (r  | nm)                       | Classe 4 "Flush ground"                                                              |       |  |  |  |  |  |  |
| Oltre | re Fino a Alto            |                                                                                      | Basso |  |  |  |  |  |  |
| 10    | 18                        | 0                                                                                    | -4    |  |  |  |  |  |  |
| 18    | 30                        | 0                                                                                    | -4    |  |  |  |  |  |  |
| 30    | 50                        | 0                                                                                    | -4    |  |  |  |  |  |  |
| 50    | 80                        | 0                                                                                    | -5    |  |  |  |  |  |  |

Tolleranze per altri elementi diversi dal diametro del foro conformi alla Classe 4 nella Tabella 3.6.

## ■ Tabella 3.9 Tolleranze per diametro esterno dell'anello esterno

|                                 | (Classe 4 "Flush ground") |                                                                                                                                         |       |  |  |  |  |  |  |
|---------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|--|--|--|--|
| Diametro<br>esterno del<br>D (n | cuscinetto                | /ariazione media nel singolo piano del diametro esterno dell'anello esterno $\Delta D_{ m mp}, \Delta D_{ m s}$ Classe 4 "Flush ground" |       |  |  |  |  |  |  |
| וו) ע                           | 11111)                    | Classe 4 Flush ground                                                                                                                   |       |  |  |  |  |  |  |
| Oltre                           | Fino a                    | Alto                                                                                                                                    | Basso |  |  |  |  |  |  |
| 30                              | 50                        | 0                                                                                                                                       | -4    |  |  |  |  |  |  |
| 50                              | 80                        | 0                                                                                                                                       | -5    |  |  |  |  |  |  |
| 80                              | 120                       | 0                                                                                                                                       | -6    |  |  |  |  |  |  |

Tolleranze per altri elementi diversi dal diametro esterno conformi alla Classe 4 nella Tabella 3.7.

Selezione cuscinetto Durata del

cuscinetto

e rigidità

Lubrificazione

Velocità

Gestione

cuscinetto

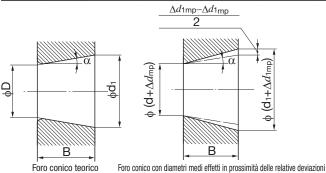
## 3-5 Tolleranze per cuscinetti per supporto di viti con ricircolo di sfere (serie TAF)

Le tolleranze per i cuscinetti per supporto di viti con ricircolo di sfere (serie TAF) sono illustrate nella Tabella 3.10 e nella Tabella 3.11.

● Tabella 3.10 Tolleranze dell'anello interno (larghezza anello esterno compresa, JIS Classe 5)

Unità: um

| Diametro nominale<br>foro del cuscinetto<br>d (mm) |       | singolo piano<br>del | media nel<br>del diametro<br>foro<br>Imp | Variazione diametro del foro in un singolo piano radiale $V_{d_{ m P}}$ | Variazione<br>media del<br>diametro del<br>foro<br>$Vd_{mp}$ | dell'anello<br>inte | ariazione della larghezza dell'anello esterno ed interno $\Delta B_{\rm S}, \Delta C_{\rm S}$ |       | Eccentricità radiale dell'anello inter- no del cuscinetto assemblato Kia | riferita al foro | Eccentricità faccia<br>laterale riferita alla<br>pista di scorrimento<br>dell'anello interno del<br>cuscinetto assemblato<br>Sia |     |
|----------------------------------------------------|-------|----------------------|------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------|-------|--------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                    | Oltre | Fino a               | Alto                                     | Basso                                                                   | Max                                                          | Max                 | Alto                                                                                          | Basso | Max                                                                      | Max              | Max                                                                                                                              | Max |
|                                                    | 18    | 30                   | 0                                        | -6                                                                      | 5                                                            | 3                   | 0                                                                                             | -120  | 5                                                                        | 4                | 8                                                                                                                                | 8   |
|                                                    | 30    | 50                   | 0                                        | -8                                                                      | 6                                                            | 4                   | 0                                                                                             | -120  | 5                                                                        | 5                | 8                                                                                                                                | 8   |
|                                                    | 50    | 80                   | 0                                        | -9                                                                      | 7                                                            | 5                   | 0                                                                                             | -150  | 6                                                                        | 5                | 8                                                                                                                                | 8   |
|                                                    | 80    | 120                  | 0                                        | -10                                                                     | 8                                                            | 5                   | 0                                                                                             | -200  | 7                                                                        | 6                | a                                                                                                                                | g   |


|                 | • Tabella 3.11 Tolleranze dell'anello esterno (JIS Classe 5)  Unità: μm  Diametro nominale Variazione media nel singolo piano diametro esterno diametro estern |        |                         |       |     |                                                 |     |                                |                                                 |     |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------|-------|-----|-------------------------------------------------|-----|--------------------------------|-------------------------------------------------|-----|--|
| esteri<br>cusci |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | del diametro es<br>este |       |     | Variazione media del diametro esterno $V_{Dmp}$ |     | radiale<br>dell'anello esterno | nazione della genera-<br>trice della superficie |     |  |
|                 | Oltre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fino a | Alto                    | Basso | Max | Max                                             | Max | Max                            | Max                                             | Max |  |
|                 | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80     | 0                       | -9    | 7   | 5                                               | 6   | 8                              | 8                                               | 10  |  |
|                 | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120    | 0                       | -10   | 8   | 5                                               | 8   | 10                             | 9                                               | 11  |  |
|                 | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 150    | 0                       | -11   | 8   | 6                                               | 8   | 11                             | 10                                              | 13  |  |
|                 | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180    | 0                       | -13   | 10  | 7                                               | 8   | 13                             | 10                                              | 14  |  |
|                 | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250    | 0                       | -15   | 11  | 8                                               | 10  | 15                             | 11                                              | 15  |  |
|                 | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 315    | 0                       | -18   | 14  | 9                                               | 11  | 18                             | 13                                              | 18  |  |

## Tolleranze per cuscinetti a rulli conici (cuscinetti a rulli cilindrici)

Le tolleranze dei cuscinetti a rulli conici (cuscinetti a rulli cilindrici) sono specificate da JIS. Considerato che le tolleranze JIS sono piuttosto ampie, NACHI ha definito una propria gamma ristretta per cuscinetti di precisione.

Tabella 3.12 Tolleranze per cuscinetti a rulli conici (cuscinetti a rulli cilindrici)

| • Iubciii | tabella 5.12 folicitatize per describeta a fulli contott a fulli cinitation) |       |                   |        |                                                          |      |                |          |       |          |          |  |
|-----------|------------------------------------------------------------------------------|-------|-------------------|--------|----------------------------------------------------------|------|----------------|----------|-------|----------|----------|--|
|           | nominale                                                                     | Devia | zione media d     | conico | Variazione diametro del foro in un piano singolo radiale |      |                |          |       |          |          |  |
|           | cuscinetto<br>mm)                                                            |       | $\Delta \epsilon$ | dmp    |                                                          |      | $\Delta d$ 1mp | $V_{dp}$ |       |          |          |  |
| <u> </u>  |                                                                              | Clas  | se 5              | Clas   | Classe 4                                                 |      | Classe 5 Cla   |          | se 4  | Classe 5 | Classe 4 |  |
| Oltre     | Fino a                                                                       | Alto  | Basso             | Alto   | Basso                                                    | Alto | Basso          | Alto     | Basso | Max      | Max      |  |
| 18        | 30                                                                           | +10   | 0                 | +6     | 0                                                        | +5   | 0              | +3       | 0     | 3        | 3        |  |
| 30        | 50                                                                           | +12   | 0                 | +8     | 0                                                        | +5   | 0              | +4       | 0     | 4        | 3        |  |
| 50        | 80                                                                           | +15   | 0                 | +9     | 0                                                        | +6   | 0              | +4       | 0     | 5        | 4        |  |
| 80        | 120                                                                          | +20   | 0                 | +10    | 0                                                        | +7   | 0              | +5       | 0     | 5        | 4        |  |
| 120       | 180                                                                          | +25   | 0                 | +13    | 0                                                        | +10  | 0              | +7       | 0     | 7        | 5        |  |
| 180       | 250                                                                          | +30   | 0                 | +15    | 0                                                        | +12  | 0              | +9       | 0     | 8        | 6        |  |
| 250       | 315                                                                          | +35   | 0                 | +18    | 0                                                        | +15  | 0              | +11      | 0     | 9        | 9        |  |
| 315       | 400                                                                          | +40   | 0                 | +23    | 0                                                        | +16  | 0              | +12      | 0     | 12       | 12       |  |



: Diametro nominale foro del cuscinetto

: diametro base in prossimità del foro grande teorico del conico

$$d_1 = d + \frac{1}{12} B$$

: Deviazione del diametro medio del foro in prossimità del foro piccolo teorico del conico : Deviazione del diametro medio del foro in prossimità del foro grande teorico del conico

В : Larghezza anello interno nominale del cuscinetto : Angolo nominale di conicità (metà dell'angolo del cono)

• Figura 3.1 Fori conici di cuscinetti a rulli cilindrici



## Disposizione del cuscinetto

## 4-1 Caratteristiche cuscinetto doppio

Oltre alla disposizione in coppia, i cuscinetti obliqui a sfere e i cuscinetti per supporto di viti con ricircolo di sfere sono disponibili a coppia con disposizione di 3 e di 4. I cuscinetti in queste combinazioni sono prodotti in serie con precarico desiderato, laddove è controllata la variazione dimensionale del diametro esterno e del

diametro del foro nelle serie di cuscinetti. A causa di ciò, si consiglia di evitare di scambiare i cuscinetti in disposizione a coppia di una serie con altri cuscinetti.

**Tabella 4.1** mostra le combinazioni principali e descrive le relative caratteristiche.

#### ● Tabella 4.1 Combinazioni principali e caratteristiche

| Combinazioni<br>principali     | Vista in sezione              | Capacità di<br>carico | Rigidità con<br>momenti ribaltanti | Velocità | Caratteristiche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------|-------------------------------|-----------------------|------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spalla a<br>spalla<br>(DB)     | Distanza dal centro di carico | <b>1</b>              | 0                                  | ©        | <ul> <li>Si possono applicare carichi radiali e assiali in entrambe le direzioni.</li> <li>La distanza dal centro di carico è lunga per cui la capacità dei momenti ribaltanti è alta.</li> <li>Il mancato allineamento o altri errori di montaggio aumentano il carico interno e tendono a generare scheggiature premature.</li> </ul>                                                                                                                                                                                |
| Faccia a<br>faccia<br>(DF)     | Distanza dal centro di carico | 1                     | 0                                  | ©        | <ul> <li>La distanza dal centro di carico è minore per cui la capacità dei momenti ribaltanti è bassa.</li> <li>Poiché la capacità dei momenti ribaltanti è bassa, si deve tenere sotto controllo l'aumento del carico interno per mancato allineamento. In seguito a ciò questa combinazione è idonea quando non è possibile evitare il mancato allineamento o quando la deflessione dell'albero è ampia in seguito al carico.</li> </ul>                                                                             |
| Tandem<br>(DT)                 |                               | <b>-</b>              | Δ                                  | ©        | <ul> <li>Si possono applicare carichi radiali e assiali in una direzione.</li> <li>Poiché la capacità di carico assiale è doppia rispetto alla disposizione singola, questa combinazione è idonea per carichi assiali elevati in una direzione.</li> </ul>                                                                                                                                                                                                                                                             |
| Disposizione<br>di 3<br>(FFB)  | Precarico                     | <b>1</b>              | 0                                  | Δ        | <ul> <li>Si possono applicare carichi radiali e assiali in tutte e due le direzioni.</li> <li>La capacità di carico assiale è doppia rispetto alla disposizione singola ma il precarico non è distribuito in modo uniforme su ciascun cuscinetto e la configurazione a disposizione singola è doppia rispetto alla configurazione con disposizione di due. Questa distribuzione non uniforme del precarico rende difficile impostare in modo appropriato il precarico in caso di rotazioni a velocità alta.</li> </ul> |
| Disposizione<br>di 4<br>(FFBB) |                               | 1                     | 0                                  | 0        | <ul> <li>Si possono applicare carichi radiali e assiali in entrambe le direzioni.</li> <li>Rispetto alla configurazione spalla a spalla per lo stesso giuoco di precarico, il precarico è doppio e la rigidità e maggiore.</li> </ul>                                                                                                                                                                                                                                                                                  |

## Montaggio e simboli per il montaggio

I simboli utilizzati per ciascun tipo di combinazione sono mostrati nella Tabella 4.1. La sequenza di disposizione e la direzione del carico sono dei fattori fondamenti per i cuscinetti a coppia. In seguito a ciò, la superficie esterna dell'anello esterno dei cuscinetti a coppia

in Figura 4.1 presenta un simbolo di combinazione ([<]) che può essere utilizzato per controllare la sequenza della disposizione. Se i cuscinetti vengono disposti nella sequenza giusta, i simboli sulla superficie esterna di ciascun cuscinetto corrispondono a "<"

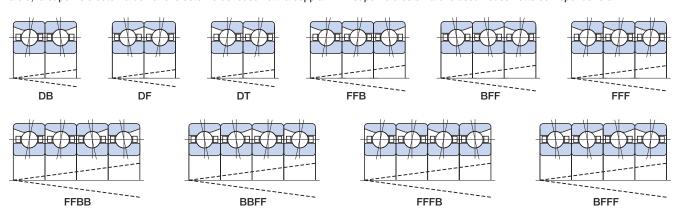
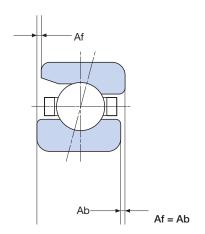
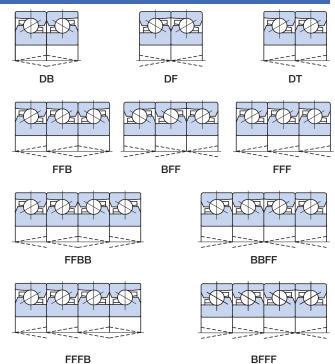




Figura 4.1 Combinazioni di serie e simboli di combinazione dell'anello esterno


## Cuscinetti obliqui a sfere con "Flush ground"

Nel caso dei cuscinetti obliqui a sfere con "flush ground" la dimensione della larghezza laterale della faccia (Af) e la dimensione della larghezza laterale posteriore (Ab) sono controllate per corrispondere allo stesso valore. Pertanto, con qualsiasi serie di combinazione si ottiene il precarico desiderato. (Figura 4.2). I cuscinetti obliqui a sfere con "flush ground" vengono forniti singolarmente (simbolo suffisso: U) o in coppia (simbolo suffisso: DU). Le serie in coppia presentano una variazione dimensionale piccola del diametro del foro e del diametro esterno. Se si utilizza la serie U in una combinazione, selezionare un cuscinetto i cui valori effettivamente misurati del diametro esterno e del diametro del foro sono simili tra loro.

Per la serie TAB con "flush ground" dei cuscinetti per supporto di viti con ricircolo di sfere, sulla superficie esterna dell'anello esterno è riportato il simbolo di combinazione ([<]). Per maggiori informazioni riquardo le combinazioni e i relativi simboli, vedere la Figura 4.3.



• Figura 4.2 Cuscinetti obliqui a sfere con "flush ground"



• Figura 4.3 Combinazioni di serie di cuscinetti con "flush ground" e simboli di combinazione

Selezione cuscinetto

Durata del cuscinetto

Tolleranza

cuscinetto

Precarico e rigidità

Lubrificazione

Velocità

Gestione

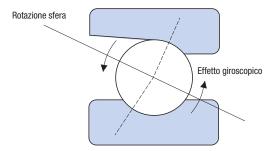
cuscinetto



## Precarico e rigidità

## 5-1 Finalità del precarico

Generalmente, i cuscinetti volventi vengono montati in modo che abbiano un giuoco interno ridotto durante il funzionamento, anche i cuscinetti obliqui a sfere possono essere montati applicando un giuoco negativo prestabilito, appropriato (precarico assiale). Tale valore è noto come "precarico". Per stabilire il precarico è richiesta molta attenzione. Un precarico inadeguato può aumentare la coppia di attrito, la temperatura, può avere effetti negativi sulla rumorosità e ridurre la durata del cuscinetto provocando anche altri problemi. Si riporta di seguito un elenco di quello che si può ottenere quando si esegue il precarico.


- Ridotto spostamento assiale in seguito a forza esterna e maggiore rigidità assiale
- Contribuisce a evitare le vibrazioni e a ridurre il rumore e ad ottenere velocità superiori in seguito alla maggiore rigidità assiale
- Evita la corrosione da attrito dovuta a vibrazioni esterne
- Rotazione uniforme
- Contribuisce a ridurre il rumore e la formazione del calore in seguito alla forza centrifuga delle sfere e all'effetto giroscopico

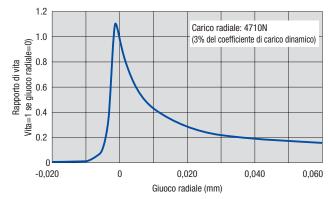
#### Effetto giroscopico

Le sfere dei cuscinetti obliqui ruotato attorno agli assi di rotazione girando attorno a un asse orbitale (linea dell'asse). Tra l'asse di rotazione e l'asse orbitale si genera un angolo e un momento angolare quando una sfera tenta di girare attorno al centro dei due

assi differenti. Tale fenomeno è noto come "effetto giroscopico" (Figura 5.1).

La dimensione dell'effetto giroscopico è proporzionale alla velocità angolare della rotazione e alla velocità angolare orbitale. Alle basse velocità di rotazione l'effetto giroscopico è talmente minimo da poter essere ignorato ma la generazione del calore in seguito allo slittamento provocato dall'effetto giroscopico in corrispondenza di velocità di rotazione elevate non può essere trascurata. Per ridurre lo slittamento provocato dall'effetto giroscopico si deve preservare l'attrito (carico sfera x coefficiente di attrito) tra le sfere e la superficie della pista di scorrimento. Ciò significa che a volte è possibile scegliere il precarico minimo.




• Figura 5.1 Effetto giroscopico

## 5-2 Metodi di precarico

I cuscinetti con combinazione di precarico possono essere ampiamente suddivisi in precarico a posizione fissa e a pressione costante

**Tabella 5.1** (pagina 15) mostra alcuni esempi grafici e descrive le caratteristiche di ciascun tipo di precarico.

Anche un cuscinetto a rulli cilindrici con foro conico può essere utilizzato con precarico radiale (giuoco radiale negativo) applicato. Tuttavia è richiesta un'attenzione estrema poiché un precarico radiale troppo elevato riduce drasticamente la durata del cuscinetto (Figura 5.2).



• Figura 5.2 Cuscinetti a rulli cilindrici (NN3020) - giuoco radiale e durata

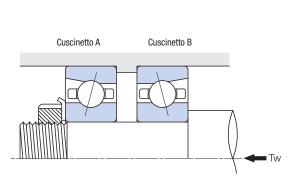
## **5-3** Misurazione del precarico

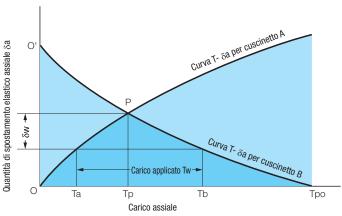
- Metodo di misurazione con uso di carico assiale Se il precarico viene effettuato mediante molle (precarico a pressione costante) il precarico viene determinato se lo spostamento delle molle è noto.
  - Se il precarico viene effettuato mediante ghiere di serraggio (precarico a posizione fissa)il precarico viene determinato in base al rapporto tra la coppia di serraggio della ghiera e la forza di serraggio. Tuttavia si richiede molta attenzione perché nel rapporto tra la coppia di serraggio della ghiera e la forza di serraggio è presente una variazione ampia insieme alla precisione e alla ruvidità della parte filettata.
- ② Metodo di misurazione basato sullo spostamento assiale Il valore di precarico è determinato in base al rapporto tra il carico assiale sul cuscinetto e lo spostamento assiale.
- ③ Metodo di misurazione basato sulla coppia di attrito alla partenza del cuscinetto

Per utilizzare questo sistema si deve creare innanzitutto un grafico del carico e della coppia iniziale del cuscinetto esterno. Tuttavia, è richiesta molta attenzione in seguito alla variazione dovuta al tipo di cuscinetto e alle condizioni di lubrificazione, ecc.

#### Tabella 5.1 Metodi di precarico

| Sistemi di<br>precarico              | Esempio di strutturazione                                                                                               | Caratteristiche                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Precarico a                          | Sistema che utilizza un cuscinetto a coppia con precarico pre-regolato o un distanziale regolato a livello dimensionale | <ul> <li>Dato che si utilizza la dispersione del cuscinetto, il precarico prescritto può essere ottenuto semplicemente tramite il serraggio di una ghiera.</li> <li>La regolazione provoca inconsistenza di precarico.</li> <li>La generazione di calore provoca inconsistenza di precarico.</li> <li>Applicando un carico assiale eccessivo si può provocare la perdita di precarico.</li> </ul> |
| fissa                                | Sistema di regolazione del precarico con ghiera di serraggio                                                            | <ul> <li>Precarico uniforme anche se la regolazione è inconsistente</li> <li>Possibilità di praticare ulteriore serraggio</li> <li>La generazione di calore provoca inconsistenza di precarico.</li> <li>Applicando un carico assiale eccessivo si può provocare la perdita di precarico.</li> </ul>                                                                                              |
| Precarico a<br>pressione<br>costante | Sistema con molla                                                                                                       | <ul> <li>Precarico uniforme e costante durante il funzionamento</li> <li>Nessuna perdita di precarico</li> <li>Idoneo per le velocità elevato</li> <li>In linea di principio si possono applicare carichi assiali in una direzione</li> <li>Minore rigidità rispetto al precarico a posizione fissa per la stessa quantità di precarico</li> </ul>                                                |


## **5-4** Effetto del precarico


Di seguito si descrive l'analisi del grafico di distribuzione del carico e spostamento assiale su due cuscinetti quando il precarico è applicato con un carico esterno, come illustrato in **Figura 5.3**.

- (1) Disegnare la curva del carico assiale T deflessione assiale  $\delta a$  per il cuscinetto A.
- ② Prendere il precarico Tp sull'asse T, determinare l'intersezione P con la curva del cuscinetto A, disegnare la curva T-  $\delta a$  del cuscinetto B attraverso il punto P.
- ③ Collegare le due curve orizzontalmente lungo l'asse T con una lunghezza equivalente al valore del carico esterno Tw.
- 4 I carichi Ta e Tb, che corrispondo alle intersezioni delle due linee diventeranno i carichi dei singoli cuscinetti sottoposti alle condizioni di carico esterno.

⑤ Lo spostamento assiale si ottiene come lo spostamento δw del cuscinetto B. (Lo spostamento del cuscinetto B si ottiene sottraendo lo spostamento di Tp dallo spostamento per Tb) Il motivo è che se i due cuscinetti sono precaricati, lo spostamento di entrambi non è uniforme all'interno di un intervallo in cui il precarico non diventa zero per un carico esterno. (In Figura 5.3 è uniforme). In altri termini, il cuscinetto A viene spostato quanto il cuscinetto B è spostato dal carico esterno.

Se il carico esterno aumenta e il precarico viene eliminato, il carico Tb sul cuscinetto B sarà uguale al carico esterno Tw e il carico sul cuscinetto A diventa zero. L'entità del carico esterno che causa perdita di precarico è indicata in Figura 5.3 con Tpo.





• Figura 5.3 Precarico a posizione fissa

Selezione del cuscinetto

Durata del cuscinetto

Tolleranza del cuscinetto

Disposizione del cuscinetto

> Precarico e rigidità

Lubrificazione

Velocità limite

Struttura dell'albero e dell'alloggiamento

## Precarico e rigidità

## 5-5 Precarico standard e rigidità assiale

#### 5.5.1 Cuscinetti obliqui a sfere

I valori di precarico e rigidità assiale per disposizioni a coppia, faccia a faccia e spalla a spalla sono illustrati nella **Tabella 5.3** da **1** a **6** (pagine da 16 a 18). I valori di precarico per disposizioni multiple si ottengono moltiplicando per i coefficienti nella **Tabella 5.2**.

#### ● Tabella 5.2 Fattori di precarico per disposizioni multiple

| Disposizione a 3 file | Disposizio | ne a 4 file |
|-----------------------|------------|-------------|
| FFB·BFF               | FFFB-BFFF  | FFBB·BBFF   |
| 1,36                  | 1,57       | 2           |

#### ● Tabella 5.3

1 Serie 7900C con angolo di contatto a 15°

| Numero del diametro | E (precarico     | ultra leggero)             | L (precario      | o leggero)                 | M (precar        | ico medio)                 |
|---------------------|------------------|----------------------------|------------------|----------------------------|------------------|----------------------------|
| del foro            | Precarico<br>(N) | Rigidità assiale<br>(N/µm) | Precarico<br>(N) | Rigidità assiale<br>(N/µm) | Precarico<br>(N) | Rigidità assiale<br>(N/µm) |
| 00                  | 5                | 10                         | 15               | 15                         | 30               | 20                         |
| 01                  | 7                | 12                         | 20               | 18                         | 40               | 24                         |
| 02                  | 8                | 13                         | 25               | 21                         | 50               | 28                         |
| 03                  | 8                | 13                         | 25               | 21                         | 50               | 28                         |
| 04                  | 15               | 19                         | 40               | 27                         | 80               | 36                         |
| 05                  | 15               | 19                         | 50               | 33                         | 100              | 43                         |
| 06                  | 15               | 21                         | 50               | 36                         | 100              | 48                         |
| 07                  | 25               | 28                         | 70               | 41                         | 140              | 56                         |
| 08                  | 25               | 28                         | 80               | 44                         | 155              | 60                         |
| 09                  | 35               | 35                         | 100              | 53                         | 195              | 70                         |
| 10                  | 35               | 35                         | 100              | 56                         | 195              | 72                         |

#### 2 Serie 7900AC con angolo di contatto a 25°

| Numero del diametro | L (precario      | co leggero)                | M (precar        | ico medio)                 | H (precario      | co pesante)                |
|---------------------|------------------|----------------------------|------------------|----------------------------|------------------|----------------------------|
| del foro            | Precarico<br>(N) | Rigidità assiale<br>(N/µm) | Precarico<br>(N) | Rigidità assiale<br>(N/µm) | Precarico<br>(N) | Rigidità assiale<br>(N/µm) |
| 00                  | 20               | 33                         | 88               | 59                         | 196              | 82                         |
| 01                  | 20               | 33                         | 98               | 65                         | 216              | 90                         |
| 02                  | 29               | 42                         | 108              | 67                         | 235              | 94                         |
| 03                  | 29               | 42                         | 118              | 74                         | 255              | 102                        |
| 04                  | 59               | 65                         | 235              | 107                        | 490              | 149                        |
| 05                  | 69               | 69                         | 265              | 120                        | 560              | 169                        |
| 06                  | 78               | 78                         | 294              | 134                        | 628              | 190                        |
| 07                  | 88               | 88                         | 323              | 147                        | 785              | 212                        |
| 08                  | 88               | 98                         | 412              | 165                        | 1.000            | 244                        |
| 09                  | 98               | 109                        | 470              | 188                        | 1.040            | 260                        |
| 10                  | 118              | 118                        | 520              | 208                        | 1.140            | 284                        |

#### 3 Serie 7000C con angolo di contatto a 15°

| Numero del diametro | E (precarico     | ultra leggero)             | L (precario      | co leggero)                | M (precar        | ico medio)                 | H (precario      | co pesante)                |
|---------------------|------------------|----------------------------|------------------|----------------------------|------------------|----------------------------|------------------|----------------------------|
| del foro            | Precarico<br>(N) | Rigidità assiale<br>(N/µm) |
| 00                  | 20               | 13                         | 50               | 20                         | 100              | 29                         | 145              | 37                         |
| 01                  | 20               | 14                         | 50               | 21                         | 100              | 31                         | 145              | 39                         |
| 02                  | 20               | 15                         | 50               | 23                         | 100              | 34                         | 145              | 42                         |
| 03                  | 20               | 16                         | 50               | 25                         | 100              | 35                         | 145              | 43                         |
| 04                  | 50               | 23                         | 100              | 33                         | 195              | 48                         | 295              | 59                         |
| 05                  | 50               | 26                         | 100              | 36                         | 195              | 50                         | 295              | 63                         |
| 06                  | 50               | 27                         | 100              | 38                         | 195              | 53                         | 390              | 75                         |
| 07                  | 70               | 33                         | 145              | 46                         | 295              | 64                         | 390              | 75                         |
| 08                  | 70               | 34                         | 145              | 49                         | 295              | 68                         | 590              | 98                         |
| 09                  | 70               | 34                         | 145              | 49                         | 295              | 68                         | 590              | 98                         |
| 10                  | 70               | 36                         | 145              | 51                         | 295              | 70                         | 590              | 100                        |
| 11                  | 100              | 43                         | 195              | 56                         | 390              | 78                         | 785              | 112                        |
| 12                  | 100              | 43                         | 195              | 58                         | 390              | 82                         | 785              | 115                        |
| 13                  | 100              | 47                         | 195              | 61                         | 390              | 85                         | 785              | 123                        |
| 14                  | 145              | 57                         | 295              | 75                         | 590              | 105                        | 1170             | 149                        |
| 15                  | 145              | 57                         | 295              | 77                         | 590              | 107                        | 1170             | 153                        |
| 16                  | 145              | 57                         | 295              | 75                         | 590              | 105                        | 1170             | 149                        |
| 17                  | 195              | 65                         | 390              | 89                         | 785              | 125                        | 1470             | 171                        |
| 18                  | 195              | 65                         | 390              | 87                         | 785              | 121                        | 1470             | 165                        |
| 19                  | 195              | 68                         | 390              | 91                         | 785              | 125                        | 1470             | 171                        |
| 20                  | 195              | 70                         | 390              | 93                         | 785              | 127                        | 1470             | 173                        |

#### 4 Serie 7000AC con angolo di contatto a 25°

| Numara dal diamatra             | L (precario      | o leggero)                 | M (precari       | co medio)                  | H (precario      | co pesante)                |
|---------------------------------|------------------|----------------------------|------------------|----------------------------|------------------|----------------------------|
| Numero del diametro<br>del foro | Precarico<br>(N) | Rigidità assiale<br>(N/µm) | Precarico<br>(N) | Rigidità assiale<br>(N/µm) | Precarico<br>(N) | Rigidità assiale<br>(N/µm) |
| 00                              | 39               | 39                         | 118              | 62                         | 314              | 95                         |
| 01                              | 39               | 44                         | 127              | 67                         | 343              | 104                        |
| 02                              | 49               | 49                         | 157              | 83                         | 353              | 118                        |
| 03                              | 59               | 59                         | 216              | 98                         | 520              | 144                        |
| 04                              | 59               | 59                         | 274              | 110                        | 608              | 152                        |
| 05                              | 108              | 83                         | 392              | 140                        | 804              | 187                        |
| 06                              | 118              | 91                         | 441              | 158                        | 892              | 208                        |
| 07                              | 127              | 98                         | 539              | 174                        | 1.156            | 236                        |
| 08                              | 147              | 113                        | 617              | 193                        | 1.176            | 256                        |
| 09                              | 216              | 135                        | 745              | 213                        | 1.646            | 300                        |
| 10                              | 225              | 141                        | 784              | 224                        | 1.744            | 317                        |
| 11                              | 314              | 157                        | 1.040            | 254                        | 2.078            | 341                        |
| 12                              | 333              | 167                        | 1.098            | 268                        | 2.205            | 362                        |
| 13                              | 363              | 191                        | 1.225            | 299                        | 2.450            | 402                        |
| 14                              | 392              | 196                        | 1.460            | 332                        | 3.010            | 443                        |
| 15                              | 412              | 206                        | 1.530            | 348                        | 3.155            | 464                        |
| 16                              | 529              | 230                        | 1.900            | 373                        | 3.880            | 504                        |
| 17                              | 549              | 239                        | 1.990            | 390                        | 4.080            | 530                        |
| 18                              | 676              | 260                        | 2.185            | 405                        | 4.600            | 555                        |
| 19                              | 706              | 272                        | 2.300            | 427                        | 4.810            | 580                        |
| 20                              | 745              | 287                        | 2.400            | 445                        | 5.050            | 608                        |

Selezione del cuscinetto

Durata del cuscinetto

Tolleranza del cuscinetto Disposizione del cuscinetto

Precarico e rigidità

Lubrificazione

Velocità limite

Struttura dell'albero e dell'alloggiamento Gestione del cuscinetto

## Precarico e rigidità

 $\fine 5$  Serie 7200C con angolo di contatto a 15°

| Numero del diametro | E (precarico     | ultra leggero)             | L (precario      | co leggero)                | M (precar        | ico medio)                 | H (precario      | co pesante)                |
|---------------------|------------------|----------------------------|------------------|----------------------------|------------------|----------------------------|------------------|----------------------------|
| del foro            | Precarico<br>(N) | Rigidità assiale<br>(N/µm) |
| 00                  | 30               | 16                         | 70               | 24                         | 145              | 36                         | 195              | 42                         |
| 01                  | 30               | 16                         | 70               | 24                         | 145              | 36                         | 195              | 42                         |
| 02                  | 30               | 17                         | 70               | 25                         | 145              | 38                         | 195              | 44                         |
| 03                  | 30               | 17                         | 70               | 25                         | 145              | 37                         | 195              | 44                         |
| 04                  | 70               | 25                         | 145              | 37                         | 295              | 53                         | 490              | 71                         |
| 05                  | 70               | 29                         | 145              | 41                         | 295              | 58                         | 490              | 77                         |
| 06                  | 70               | 29                         | 145              | 41                         | 295              | 58                         | 590              | 83                         |
| 07                  | 100              | 35                         | 195              | 47                         | 490              | 74                         | 590              | 82                         |
| 08                  | 100              | 36                         | 195              | 49                         | 490              | 77                         | 785              | 98                         |
| 09                  | 100              | 36                         | 195              | 50                         | 490              | 77                         | 785              | 98                         |
| 10                  | 100              | 39                         | 195              | 52                         | 490              | 80                         | 785              | 102                        |
| 11                  | 145              | 46                         | 295              | 63                         | 590              | 88                         | 980              | 114                        |
| 12                  | 145              | 46                         | 295              | 61                         | 590              | 84                         | 980              | 109                        |
| 13                  | 145              | 47                         | 295              | 64                         | 590              | 88                         | 980              | 113                        |
| 14                  | 195              | 54                         | 390              | 73                         | 785              | 102                        | 1470             | 139                        |
| 15                  | 195              | 56                         | 390              | 75                         | 785              | 105                        | 1470             | 144                        |
| 16                  | 195              | 58                         | 390              | 77                         | 785              | 105                        | 1470             | 143                        |
| 17                  | 295              | 68                         | 490              | 85                         | 980              | 117                        | 1960             | 166                        |
| 18                  | 295              | 67                         | 490              | 83                         | 980              | 114                        | 1960             | 161                        |
| 19                  | 295              | 68                         | 490              | 85                         | 980              | 114                        | 1960             | 159                        |
| 20                  | 295              | 68                         | 490              | 85                         | 980              | 115                        | 1960             | 159                        |

#### 6 Serie 7200AC con angolo di contatto a 25°

| Numero del diametro | L (precario      | co leggero)                | M (precari       | ico medio)                 | H (precario      | co pesante)                |
|---------------------|------------------|----------------------------|------------------|----------------------------|------------------|----------------------------|
| del foro            | Precarico<br>(N) | Rigidità assiale<br>(N/µm) | Precarico<br>(N) | Rigidità assiale<br>(N/µm) | Precarico<br>(N) | Rigidità assiale<br>(N/µm) |
| 00                  | 39               | 44                         | 186              | 78                         | 412              | 108                        |
| 01                  | 39               | 44                         | 196              | 78                         | 421              | 111                        |
| 02                  | 69               | 57                         | 265              | 95                         | 530              | 129                        |
| 03                  | 78               | 60                         | 274              | 98                         | 628              | 143                        |
| 04                  | 118              | 74                         | 420              | 120                        | 853              | 164                        |
| 05                  | 147              | 92                         | 430              | 139                        | 922              | 188                        |
| 06                  | 157              | 92                         | 628              | 165                        | 1.314            | 227                        |
| 07                  | 225              | 119                        | 853              | 194                        | 1.890            | 270                        |
| 80                  | 255              | 127                        | 950              | 216                        | 1.960            | 288                        |
| 09                  | 333              | 145                        | 1.200            | 241                        | 2.470            | 321                        |
| 10                  | 353              | 153                        | 1.295            | 259                        | 2.655            | 345                        |
| 11                  | 460              | 177                        | 1.500            | 278                        | 3.145            | 379                        |
| 12                  | 540              | 186                        | 1.600            | 280                        | 3.410            | 383                        |
| 13                  | 600              | 206                        | 2.069            | 328                        | 4.175            | 440                        |
| 14                  | 610              | 210                        | 2.108            | 335                        | 4.260            | 444                        |
| 15                  | 650              | 223                        | 2.255            | 358                        | 4.310            | 464                        |
| 16                  | 800              | 241                        | 2.725            | 389                        | 5.730            | 531                        |
| 17                  | 940              | 262                        | 2.970            | 407                        | 6.090            | 549                        |
| 18                  | 1.200            | 285                        | 3.745            | 441                        | 7.620            | 591                        |
| 19                  | 1.235            | 294                        | 3.870            | 450                        | 8.140            | 612                        |
| 20                  | 1.588            | 324                        | 4.930            | 503                        | 9.950            | 677                        |

#### 5.5.2 Cuscinetti obliqui a sfere ad alta velocità

#### ● Tabella 5.4 Serie BNH000 con angolo di contatto a 15°

| Numero del           | Diametro del | L (precaric      | o standard)                |
|----------------------|--------------|------------------|----------------------------|
| diametro del<br>foro | foro<br>(mm) | Precarico<br>(N) | Rigidità assiale<br>(N/µm) |
| 07                   | 35           | 78,5             | 44                         |
| 08                   | 40           | 98,1             | 49                         |
| 09                   | 45           | 98,1             | 52                         |
| 10                   | 50           | 98,1             | 54                         |
| 11                   | 55           | 147              | 61                         |
| 12                   | 60           | 147              | 64                         |
| 13                   | 65           | 147              | 67                         |
| 14                   | 70           | 245              | 88                         |
| 15                   | 75           | 245              | 91                         |
| 16                   | 80           | 294              | 98                         |
| 17                   | 85           | 294              | 98                         |
| 18                   | 90           | 392              | 115                        |
| 19                   | 95           | 392              | 119                        |
| 20                   | 100          | 392              | 123                        |
| 21                   | 105          | 490              | 136                        |
| 22                   | 110          | 588              | 144                        |
| 24                   | 120          | 588              | 147                        |
| 26                   | 130          | 785              | 163                        |
| 28                   | 140          | 834              | 174                        |
| 30                   | 150          | 1080             | 200                        |
| 32                   | 160          | 1180             | 206                        |
| 34                   | 170          | 1370             | 221                        |

#### 5.5.3 Cuscinetti obliqui a sfere con carico di spinta

#### ● Tabella 5.5

Serie TAH con angolo di contatto a 30°

| Diametro nominale M (precarico medio) |                  |                            |  |  |  |  |  |  |  |  |
|---------------------------------------|------------------|----------------------------|--|--|--|--|--|--|--|--|
| Diametro nominale                     | M (precari       | ico medio)                 |  |  |  |  |  |  |  |  |
| del foro<br>(mm)                      | Precarico<br>(N) | Rigidità assiale<br>(N/µm) |  |  |  |  |  |  |  |  |
| 50                                    | 294              | 226                        |  |  |  |  |  |  |  |  |
| 55                                    | 392              | 262                        |  |  |  |  |  |  |  |  |
| 60                                    | 392              | 280                        |  |  |  |  |  |  |  |  |
| 65                                    | 392              | 280                        |  |  |  |  |  |  |  |  |
| 70                                    | 588              | 327                        |  |  |  |  |  |  |  |  |
| 75                                    | 588              | 327                        |  |  |  |  |  |  |  |  |
| 80                                    | 686              | 361                        |  |  |  |  |  |  |  |  |
| 85                                    | 686              | 361                        |  |  |  |  |  |  |  |  |
| 90                                    | 1080             | 449                        |  |  |  |  |  |  |  |  |
| 95                                    | 1080             | 449                        |  |  |  |  |  |  |  |  |
| 100                                   | 1080             | 469                        |  |  |  |  |  |  |  |  |
| 105                                   | 1180             | 490                        |  |  |  |  |  |  |  |  |
| 110                                   | 1370             | 528                        |  |  |  |  |  |  |  |  |
| 120                                   | 1470             | 566                        |  |  |  |  |  |  |  |  |
| 130                                   | 1860             | 621                        |  |  |  |  |  |  |  |  |
| 140                                   | 1960             | 654                        |  |  |  |  |  |  |  |  |
| 150                                   | 2450             | 721                        |  |  |  |  |  |  |  |  |
| 160                                   | 2650             | 779                        |  |  |  |  |  |  |  |  |
| 170                                   | 3040             | 800                        |  |  |  |  |  |  |  |  |

#### 2 Serie TBH con angolo di contatto a 40°

| Diametro nominale | M (precari       | ico medio)                 |
|-------------------|------------------|----------------------------|
| del foro<br>(mm)  | Precarico<br>(N) | Rigidità assiale<br>(N/µm) |
| 50                | 539              | 415                        |
| 55                | 686              | 458                        |
| 60                | 686              | 490                        |
| 65                | 686              | 528                        |
| 70                | 1080             | 599                        |
| 75                | 1080             | 599                        |
| 80                | 1270             | 671                        |
| 85                | 1270             | 671                        |
| 90                | 1860             | 776                        |
| 95                | 1860             | 810                        |
| 100               | 1860             | 847                        |
| 105               | 2060             | 858                        |
| 110               | 2450             | 943                        |
| 120               | 2550             | 1.020                      |
| 130               | 3330             | 1.111                      |
| 140               | 3530             | 1.177                      |
| 150               | 4310             | 1.269                      |
| 160               | 4510             | 1.367                      |
| 170               | 5300             | 1.431                      |

Selezione del cuscinetto

Durata del cuscinetto Tolleranza

del cuscinetto Disposizione del cuscinetto

> Precarico e rigidità

Lubrificazione Velocità

Struttura dell'albero e dell'alloggiamento

## Precarico e rigidità

#### 5.5.4 Cuscinetti per supporto di viti con ricircolo di sfere

#### ● Tabella 5.6

1 Serie TBH con angolo di contatto a 60° Precario standard: M (medio)

|               | Disp             | osizione a 2                  | file                         | Disp             | osizione a 3                  | file                         |                  |                               | Disposizio                   | ne a 4 file      |                               |                              |
|---------------|------------------|-------------------------------|------------------------------|------------------|-------------------------------|------------------------------|------------------|-------------------------------|------------------------------|------------------|-------------------------------|------------------------------|
|               |                  | DB/DF                         |                              |                  | BFF/FFB                       |                              |                  | BBFF/FFBB                     |                              |                  | BFFF/FFFB                     |                              |
| Cuscinetto n. | Precarico<br>(N) | Rigidità<br>assiale<br>(N/µm) | Coppia<br>iniziale<br>(N·cm) |
| 15TAB04       | 2160             | 735                           | 15                           | 2940             | 1080                          | 20                           | 4310             | 1470                          | 30                           | 3430             | 1320                          | 25                           |
| 17TAB04       | 2160             | 735                           | 15                           | 2940             | 1080                          | 20                           | 4310             | 1470                          | 30                           | 3430             | 1320                          | 25                           |
| 20TAB04       | 2160             | 735                           | 15                           | 2940             | 1080                          | 20                           | 4310             | 1470                          | 30                           | 3430             | 1320                          | 25                           |
| 25TAB06       | 3330             | 981                           | 20                           | 4510             | 1470                          | 27                           | 6670             | 1960                          | 40                           | 5200             | 1910                          | 30                           |
| 30TAB06       | 3330             | 981                           | 20                           | 4510             | 1470                          | 27                           | 6670             | 1960                          | 40                           | 5200             | 1910                          | 30                           |
| 35TAB07       | 3920             | 1230                          | 25                           | 5300             | 1770                          | 35                           | 7840             | 2350                          | 50                           | 6180             | 2300                          | 40                           |
| 40TAB07       | 3920             | 1230                          | 25                           | 5300             | 1770                          | 35                           | 7840             | 2350                          | 50                           | 6180             | 2300                          | 40                           |
| 40TAB09       | 5200             | 1320                          | 50                           | 7060             | 1910                          | 68                           | 10400            | 2550                          | 100                          | 8140             | 2500                          | 80                           |
| 45TAB07       | 4120             | 1270                          | 30                           | 5590             | 1910                          | 40                           | 8240             | 2550                          | 60                           | 6470             | 2500                          | 45                           |
| 45TAB10       | 5980             | 1470                          | 60                           | 8140             | 2160                          | 82                           | 12000            | 2890                          | 120                          | 9410             | 2790                          | 95                           |
| 50TAB10       | 6280             | 1520                          | 65                           | 8530             | 2260                          | 88                           | 12600            | 3040                          | 130                          | 9810             | 2940                          | 100                          |
| 55TAB10       | 6280             | 1520                          | 65                           | 8530             | 2260                          | 88                           | 12600            | 3040                          | 130                          | 9810             | 2940                          | 100                          |
| 55TAB12       | 7060             | 1770                          | 70                           | 9610             | 2550                          | 95                           | 14100            | 3480                          | 140                          | 11100            | 3380                          | 110                          |
| 60TAB12       | 7060             | 1770                          | 70                           | 9610             | 2550                          | 95                           | 14100            | 3480                          | 140                          | 11100            | 3380                          | 110                          |

Nota) La coppia iniziale mostra i valori per un tipo aperto e un tipo con guarnizione non a contatto con lubrificazione con grasso.

#### 2 Serie TAF con angolo di contatto a 50° o 55° Precario standard: M (medio)

| Z OCHC IAI C  |                  |                               |                              |                       |                               |                              |                       |                               |                              |                  |                               |                              |
|---------------|------------------|-------------------------------|------------------------------|-----------------------|-------------------------------|------------------------------|-----------------------|-------------------------------|------------------------------|------------------|-------------------------------|------------------------------|
|               | Disp             | osizione a 2                  | tile                         | Disposizione a 3 file |                               |                              | Disposizione a 4 file |                               |                              |                  |                               |                              |
|               |                  | DB/DF                         |                              | BFF/FFB               |                               |                              | BBFF/FFBB             |                               |                              | BFFF/FFFB        |                               |                              |
| Cuscinetto n. | Precarico<br>(N) | Rigidità<br>assiale<br>(N/µm) | Coppia<br>iniziale<br>(N·cm) | Precarico<br>(N)      | Rigidità<br>assiale<br>(N/µm) | Coppia<br>iniziale<br>(N·cm) | Precarico<br>(N)      | Rigidità<br>assiale<br>(N/µm) | Coppia<br>iniziale<br>(N·cm) | Precarico<br>(N) | Rigidità<br>assiale<br>(N/µm) | Coppia<br>iniziale<br>(N·cm) |
| 25TAF06       | 1670             | 555                           | 20                           | 2270                  | 805                           | 27                           | 3340                  | 1110                          | 40                           | 2620             | 1060                          | 30                           |
| 30TAF07       | 1860             | 642                           | 20                           | 2530                  | 944                           | 27                           | 3720                  | 1284                          | 40                           | 2920             | 1180                          | 30                           |
| 35TAF09       | 3700             | 908                           | 55                           | 5030                  | 1340                          | 75                           | 7400                  | 1816                          | 110                          | 5810             | 1680                          | 85                           |
| 40TAF09       | 3700             | 908                           | 55                           | 5030                  | 1340                          | 75                           | 7400                  | 1816                          | 110                          | 5810             | 1680                          | 85                           |
| 40TAF11       | 4600             | 1020                          | 80                           | 6250                  | 1530                          | 110                          | 9200                  | 2040                          | 160                          | 7220             | 1960                          | 125                          |
| 45TAF11       | 4600             | 1020                          | 80                           | 6250                  | 1530                          | 110                          | 9200                  | 2040                          | 160                          | 7220             | 1960                          | 125                          |
| 50TAF11       | 4600             | 1020                          | 80                           | 6250                  | 1530                          | 110                          | 9200                  | 2040                          | 160                          | 7220             | 1960                          | 125                          |
| 60TAF13       | 5200             | 1130                          | 105                          | 7070                  | 1680                          | 145                          | 10400                 | 2260                          | 210                          | 8160             | 2140                          | 165                          |
| 60TAF17       | 8300             | 1440                          | 215                          | 11300                 | 2110                          | 290                          | 16600                 | 2880                          | 430                          | 13000            | 2660                          | 340                          |
| 80TAF17       | 8300             | 1440                          | 215                          | 11300                 | 2110                          | 290                          | 16600                 | 2880                          | 430                          | 13000            | 2660                          | 340                          |
| 100TAF21      | 13200            | 1970                          | 485                          | 17900                 | 2940                          | 660                          | 26400                 | 3940                          | 970                          | 20700            | 4160                          | 760                          |
| 120TAF03      | 19600            | 2550                          | 700                          | 26600                 | 3810                          | 950                          | 39200                 | 5100                          | 1400                         | 30800            | 4810                          | 1100                         |

Nota) La coppia iniziale mostra i valori con lubrificazione con grasso.

## 5.5.5 Giuoco radiale interno per cuscinetti a rulli cilindrici a file multiple

Il giuoco radiale interno per cuscinetti a rulli cilindrici a file multiple è specificato dal JIS; Nachi ha definito una propria gamma ristretta per

massimizzare la precisione di rotazione. I giochi radiali interni per cuscinetti a rulli cilindrici e per cuscinetti a rulli conici è specificata nella Tabella 5.7. Quando si manovrano e si montano i cuscinetti con gioco non intercambiabile bisogna prestare molta attenzione, poiché non esiste intercambiabilità con altro anello esterno o interno del cuscinetto.

#### ● Tabella 5.7

1 Giuoco non intercambiabile per cuscinetto a rulli cilindrici

Unità: µm

|       | nominale          |     |         | Giuoco per | cuscinetto a rulli d | cilindrici (non inter | cambiabile) |      |     |
|-------|-------------------|-----|---------|------------|----------------------|-----------------------|-------------|------|-----|
|       | cuscinetto<br>mm) | C1  | C1na    |            | na l                 | Cı                    | na          | C3na |     |
| Oltre | Fino a            | Min | Min Max |            | Max                  | Min                   | Max         | Min  | Max |
| 24    | 30                | 0   | 10      | 10         | 25                   | 25                    | 35          | 40   | 50  |
| 30    | 40                | 0   | 12      | 12         | 25                   | 25                    | 40          | 45   | 55  |
| 40    | 50                | 0   | 15      | 15         | 30                   | 30                    | 45          | 50   | 65  |
| 50    | 65                | 0   | 15      | 15         | 35                   | 35                    | 50          | 55   | 75  |
| 65    | 80                | 0   | 20      | 20         | 40                   | 40                    | 60          | 70   | 90  |
| 80    | 100               | 0   | 25      | 25         | 45                   | 45                    | 70          | 80   | 105 |
| 100   | 120               | 0   | 25      | 25         | 50                   | 50                    | 80          | 95   | 120 |
| 120   | 140               | 0   | 30      | 30         | 60                   | 60                    | 90          | 105  | 135 |
| 140   | 160               | 0   | 35      | 35         | 65                   | 65                    | 100         | 115  | 150 |
| 160   | 180               | 0   | 35      | 35         | 75                   | 75                    | 110         | 125  | 165 |
| 180   | 200               | 0   | 40      | 40         | 80                   | 80                    | 120         | 140  | 180 |
| 200   | 225               | 0   | 45      | 45         | 90                   | 90                    | 135         | 155  | 200 |
| 225   | 250               | 0   | 50      | 50         | 100                  | 100                   | 150         | 170  | 215 |
| 250   | 280               | 0   | 55      | 55         | 110                  | 110                   | 165         | 185  | 240 |
| 280   | 315               | 0   | 60      | 60         | 120                  | 120                   | 180         | 205  | 265 |
| 315   | 355               | 0   | 65      | 65         | 135                  | 135                   | 200         | 225  | 295 |

#### 2 Giuoco non intercambiabile per cuscinetto a rulli conici

Unità: µm

|       | nominale          |     | Giuo | co per cuscinetto a rulli | conici (non intercambia | ıbile) |                                           |
|-------|-------------------|-----|------|---------------------------|-------------------------|--------|-------------------------------------------|
|       | cuscinetto<br>nm) | C9  | na   | C1                        | na                      | C2     | na en |
| Oltre | Fino a            | Min | Max  | Min                       | Max                     | Min    | Max                                       |
| 24    | 30                | 5   | 10   | 15                        | 25                      | 25     | 35                                        |
| 30    | 40                | 5   | 12   | 15                        | 25                      | 25     | 40                                        |
| 40    | 50                | 5   | 15   | 17                        | 30                      | 30     | 45                                        |
| 50    | 65                | 5   | 15   | 20                        | 35                      | 35     | 50                                        |
| 65    | 80                | 10  | 20   | 25                        | 40                      | 40     | 60                                        |
| 80    | 100               | 10  | 25   | 35                        | 55                      | 45     | 70                                        |
| 100   | 120               | 10  | 25   | 40                        | 60                      | 50     | 80                                        |
| 120   | 140               | 15  | 30   | 45                        | 70                      | 60     | 90                                        |
| 140   | 160               | 15  | 35   | 50                        | 75                      | 65     | 100                                       |
| 160   | 180               | 15  | 35   | 55                        | 85                      | 75     | 110                                       |
| 180   | 200               | 20  | 40   | 60                        | 90                      | 80     | 120                                       |
| 200   | 225               | 20  | 45   | 60                        | 95                      | 90     | 135                                       |
| 225   | 250               | 25  | 50   | 65                        | 100                     | 100    | 150                                       |
| 250   | 280               | 25  | 55   | 75                        | 110                     | 110    | 165                                       |
| 280   | 315               | 30  | 60   | 80                        | 120                     | 120    | 180                                       |
| 315   | 355               | 30  | 65   | 90                        | 135                     | 135    | 200                                       |

Selezione del cuscinetto Durata del cuscinetto

Tolleranza del cuscinetto Disposizione del cuscinetto

> Precarico e rigidità

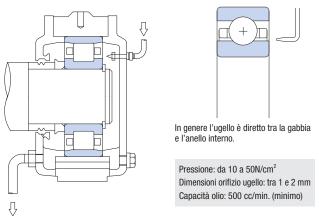
Lubrificazione

Velocità

Struttura dell'albero e dell'alloggiamento

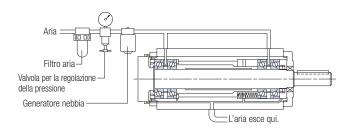


### 6-1 Funzioni della lubrificazione

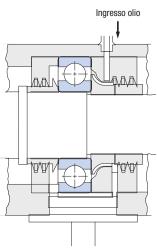

La funzione principale dei lubrificanti nei cuscinetti a contatto volvente è ridurre l'attrito e l'usura di ciascun elemento. I sistemi di lubrificazione appropriati e gli agenti lubrificanti giusti contribuiscono sensibilmente alle prestazioni e alla durata dei cuscinetti a contatto volvente.

- Di seguito si riportano le funzioni della lubrificazione.
- (1) Lubrificazione delle superfici di attrito
  - Riduzione dell'attrito volvente fra corpi volventi e piste di rotolamento e riduzione dell'attrito radente fra le facce dei rulli e i bordi della pista di rotolamento
- Riduzione dell'attrito radente fra i corpi volventi e la gabbia di ritenuta
- Riduzione dell'attrito radente fra gabbia di ritenuta e le facce dei bordi della pista di rotolamento
- 2 Rimozione del calore prodotto dall'attrito o da altri meccanismi
- (3) Impermeabilità alla polvere e prevenzione dalla ruggine
- (4) Aiuto nella riduzione della concentrazione da fatica
  - Distribuzione uniforme della fatica sulle superfici volventi a contatto
  - 2) Effetto attutito di carichi per urto

#### 6-2 Sistemi di lubrificazione


#### 6.2.1 Lubrificazione a olio

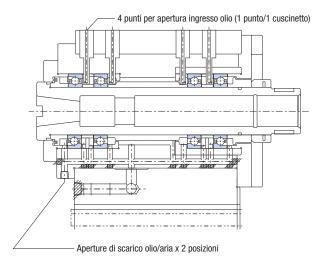
- (1) Lubrificazione forzata (lubrificazione a spruzzo)
  - La lubrificazione forzata è utilizzata per produrre il raffreddamento in corrispondenza di condizioni di alta velocità di rotazione o di temperatura ambiente elevata.
  - La lubrificazione a getto fornisce olio lubrificante vaporizzato utilizzando olio sotto pressione e un ugello di piccole dimensioni con effetto di raffreddamento.
  - L'apertura per lo scarico dell'olio deve essere più grande di quella per la fornitura dell'olio poiché l'olio scosso si accumula all'interno dell'alloggiamento aumenta la generazione di calore e la perdita di potenza. Nel caso specifico della lubrificazione a getto è necessaria un'apertura per lo scarico dell'olio almeno 10 volte più grande dell'apertura di rifornimento opposta all'ugello e si deve utilizzare una pompa per favorire lo scarico forzato.
  - La Figura 6.1 mostra un esempio di lubrificazione a getto.




- Figura 6.1 Esempio di lubrificazione a getto
- 2 Lubrificazione a vapore (lubrificazione a nebbia d'olio)
  - Con questo metodo di lubrificazione, il cuscinetto è raffreddato ad aria e una minima quantità d'olio richiesta per la lubrificazione è vaporizzata e spruzzata sul cuscinetto. La Figura 6.2 mostra un esempio di lubrificazione a nebbia d'olio.
  - L'aria inviata al generatore della nebbia d'olio tramite la valvola di regolazione della pressione viene miscelata all'olio e spruzzata sul cuscinetto.
  - L'ugello può spruzzare direttamente sul cuscinetto oppure può spruzzare sul cuscinetto utilizzando la forza centrifuga della

- parte scanalata di un anello di centrifugazione montato sull'asse (Figura 6.3).
- In generale la pressione della nebbia è compresa tra 5 e 15 N/cm², con qualche cc di olio mescolato con una quantità tra 10 e 50ℓ/parti di aria ogni ora.
- La nebbia d'olio utilizza solo una minima quantità di olio per cui è indicata per il funzionamento ad alta velocità con ridotta perdita di potenza del cuscinetto ma poiché il calore specifico dell'aria non è elevato e non ha un alto effetto riscaldante, questo tipo di lubrificazione è idonea per applicazioni con carico relativamente basso.




• Figura 6.2 Esempio di unità a mandrino che utilizza lubrificazione a vapore



• Figura 6.3 Esempio di fornitura di nebbia d'olio tramite anello di centrifugazione

#### (3) Lubrificazione aria olio

- Usando la lubrificazione aria/olio, una piccolissima quantità di olio viene scaricata da un pistone di misurazione ad intervalli fissi; l'olio lubrificante è alimentato dalla valvola miscelatrice nell'aria compressa, quindi fornito costantemente all'elemento volvente del cuscinetto.
- Dato che la fornitura di una quantità piccola e misurata di olio lubrificante nuovo è costante, questo metodo è idoneo per applicazioni ad alta velocità, in cui la generazione del calore è minima
- La lubrificazione aria olio è più ecologica perché i requisiti dell'olio presentano un rapporto 1/10 quelli della lubrificazione a vapore e l'olio è fornito in forma di gocce anziché di nebbia.
- Figura 6.4 mostra un esempio di lubrificazione a nebbia d'olio.



• Figura 6.4 Esempio di lubrificazione a nebbia d'olio di un'unità a mandrino

#### 6.2.2 Lubrificazione con grasso

Si considerino le precauzioni seguenti qualora si utilizzi la lubrificazione con grasso.

- Selezionare il tipo di grasso appropriato. Per esempi dei tipi di grasso principali utilizzati per i cuscinetti delle macchine utensili vedere la Tabella 6.1.
- Controllare che la quantità di grasso e i punti di rifornimento siano corretti. Una quantità di grasso pari al 10 - 20% del volume di spazio interno del cuscinetto è consigliata per cuscinetti con rulli ad alta velocità. Si noti, tuttavia che si consiglia una quantità compresa tra il 40 e il 50% per un cuscinetto per supporto di viti con ricircolo di sfere (tipo aperto).
- Un ingrassaggio eccessivo può provocare un innalzamento delle temperature e ampia perdita di potenza in seguito ad agitazione. Per maggiori informazioni sul volume dello spazio interno dei cuscinetti vedere la Tabella 6.2 (a pagina 24 e 25).
- Per un esempio che illustra la differenza di aumento della temperatura del cuscinetto in seguito al metodo di lubrificazione, vedere Figura 6.5.

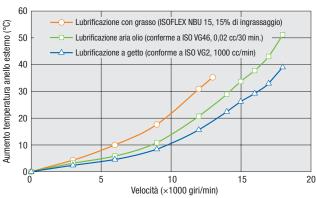



 Figura 6.5 Confronto di aumento di temperatura provocato da metodi di lubrificazione differenti

#### Tabella 6.1 Tipi principali di grasso utilizzati per i cuscinetti di macchine utensili

| Marchio                 | Produttore      | Olio base                              | Addensante        | Intervallo di<br>temperatura di<br>funzionamento<br>consigliato<br>°C | Applicazioni principali                                |
|-------------------------|-----------------|----------------------------------------|-------------------|-----------------------------------------------------------------------|--------------------------------------------------------|
| ISOFLEX NBU15           | NOK KLUBER      | Olio di estere                         | Composto di bario | -40 ~ +130                                                            | Cuscinetto mandrino                                    |
| ISOFLEX LDS18 Special A | NOK KLUBER      | Olio di estere                         | Litio             | -60 ~ +130                                                            | Cuscinetto mandrino                                    |
| Multemp LRL N. 3        | Kyodo Yushi     | Esteri di polioli                      | Litio             | -50 ~ +150                                                            | Cuscinetto mandrino                                    |
| Alvania Grease S N. 2   | Showa Shell Oil | Olio minerale                          | Litio             | -25 ~ +120                                                            | Cuscinetti per supporto di viti con ricircolo di sfere |
| Multemp PS N. 2         | Kyodo Yushi     | Olio di diestere + olio di idrocarburi | Litio             | -55 ~ +130                                                            | Cuscinetti per supporto di viti con ricircolo di sfere |

Selezione del cuscinetto

Durata del

Tolleranza del cuscinetto

Disposizione del cuscinetto

Precarico e rigidità

Lubrificazione

Velocità

Struttura dell'albero e dell'alloggiamento Gestione

## Lubrificazione

#### ● Tabella 6.2 Volume spazio interno del cuscinetto

1 Volume spazio interno di cuscinetti obliqui a sfere e cuscinetti a rulli cilindrici

| Numero del           | Diametro del |                 |                 |                 | Serie       |            |        |         |
|----------------------|--------------|-----------------|-----------------|-----------------|-------------|------------|--------|---------|
| diametro del<br>foro | foro<br>(mm) | 7900C<br>7900AC | 7000C<br>7000AC | 7200C<br>7200AC | BNH000      | TAH<br>TBH | NN3000 | NNU4900 |
| 00                   | 10           | 0,44            | 0,9             | 1,2             |             |            |        |         |
| 01                   | 12           | 0,49            | 1,0             | 1,7             |             |            |        |         |
| 02                   | 15           | 0,68            | 1,4             | 2,2             |             |            |        |         |
| 03                   | 17           | 0,68            | 1,7             | 3,0             | —           |            |        |         |
| 04                   | 20           | 1,5             | 2,9             | 4,7             |             |            |        |         |
| 05                   | 25           | 1,9             | 3,4             | 5,3             | <del></del> |            | 3,6    |         |
| 06                   | 30           | 2,2             | 4,8             | 8,2             |             |            | 5,9    |         |
| 07                   | 35           | 3,0             | 6,4             | 10,3            | 5,6         |            | 7,5    |         |
| 80                   | 40           | 5,2             | 7,8             | 13,0            | 7,2         |            | 9,5    |         |
| 09                   | 45           | 5,7             | 10,2            | 15,4            | 9,0         |            | 12,8   |         |
| 10                   | 50           | 6,2             | 10,7            | 18,6            | 9,7         | 8,0        | 13,8   |         |
| 11                   | 55           | _               | 15,9            | 25,9            | 14,0        | 12,0       | 19,6   |         |
| 12                   | 60           |                 | 17,0            | 33,2            | 15,0        | 13,0       | 20,7   |         |
| 13                   | 65           |                 | 18,2            | 39,1            | 16,0        | 14,0       | 21,8   |         |
| 14                   | 70           |                 | 27,7            | 45,2            | 22,0        | 19,0       | 30,4   |         |
| 15                   | 75           |                 | 28,7            | 49,4            | 23,0        | 20,0       | 32,9   |         |
| 16                   | 80           |                 | 32,1            | 59,0            | 30,0        | 27,0       | 46,3   |         |
| 17                   | 85           |                 | 36,3            | 73,5            | 31,0        | 28,0       | 47,8   |         |
| 18                   | 90           |                 | 49,2            | 93,1            | 40,0        | 38,0       | 62,9   |         |
| 19                   | 95           |                 | 53,0            | 117             | 42,0        | 40,0       | 64,5   |         |
| 20                   | 100          |                 | 55,1            | 135             | 43,0        | 41,0       | 67,3   | 49,5    |
| 21                   | 105          |                 |                 | <del></del>     | 54,0        | 52,0       | 91,8   | 57,9    |
| 22                   | 110          |                 |                 |                 | 66,0        | 65,0       | 114    | 59,6    |
| 24                   | 120          |                 |                 |                 | 71,0        | 70,0       | 126    | 86,4    |
| 26                   | 130          |                 |                 |                 | 108         | 105        | 178    | 102     |
| 28                   | 140          |                 |                 |                 | 114         | 111        | 195    | 114     |
| 30                   | 150          |                 |                 |                 | 138         | 139        | 235    | 195     |
| 32                   | 160          | _               |                 | _               | 174         | 167        | 288    | 199     |
| 34                   | 170          |                 |                 |                 | 227         | 225        | 374    | 209     |
| 36                   | 180          | _               | _               | _               | _           |            | 508    | 281     |
| 38                   | 190          |                 |                 |                 |             |            | 530    | 296     |
| 40                   | 200          | _               |                 | _               |             |            | 684    | 448     |

## 2 Volume spazio interno di cuscinetti per supporto di viti con ricircolo di sfere (serie TAB)

| di sicie (scrie iAb | ')                                |
|---------------------|-----------------------------------|
| Cuscinetto n.       | Volume spazio interno<br>[cc/cad] |
| 15TAB04             | 3,8                               |
| 17TAB04             | 3,8                               |
| 20TAB04             | 3,8                               |
| 25TAB06             | 4,8                               |
| 30TAB06             | 4,8                               |
| 35TAB07             | 5,8                               |
| 40TAB07             | 5,8                               |
| 40TAB09             | 14                                |
| 45TAB07             | 6,5                               |
| 45TAB10             | 15                                |
| 50TAB10             | 16                                |
| 55TAB10             | 16                                |
| 55TAB12             | 19                                |
| 60TAB12             | 19                                |

## 3 Volume spazio interno di cuscinetti per supporto di viti con ricircolo di sfere (serie TAF)

| un ororo (oorro m. | <b>,</b>                          |
|--------------------|-----------------------------------|
| Cuscinetto n.      | Volume spazio interno<br>[cc/cad] |
| 25TAF06            | 9,3                               |
| 30TAF07            | 14                                |
| 35TAF09            | 26                                |
| 40TAF09            | 26                                |
| 40TAF11            | 45                                |
| 45TAF11            | 45                                |
| 50TAF11            | 45                                |
| 60TAF13            | 71                                |
| 60TAF17            | 150                               |
| 80TAF17            | 150                               |
| 100TAF21           | 282                               |
| 120TAF03           | 473                               |

#### 6.2.3 Durata del grasso

La durata del grasso dipende dalla temperatura di funzionamento, il tipo di grasso, la velocità di rotazione e altri fattori. Le stime approssimative per la durata del grasso per un cuscinetto a contatto volvente, utilizzate come esempio tipico, si possono ottenere utilizzando la Formula 5.1.

L : Durata del grasso (ore)

T : Temperatura del cuscinetto (°C)

S<sub>G</sub>: Fattore di riduzione della durata in base al tipo di grasso

| Tipo di grasso                                         | SG  |
|--------------------------------------------------------|-----|
| Grasso di petrolio e grasso di silicono a lunga durata | 0   |
| Grasso di petrolio convenzionale                       | 1,0 |
| Diestere e grasso a bassa temperatura                  | 2,9 |

$$S_N = 0.864 \frac{d \cdot n}{(dn)_L}$$

S<sub>N</sub> : Fattore di riduzione della durata in base alla velocità di rotazione

d : Diametro nominale foro del cuscinetto (mm)

n : Velocità del cuscinetto (giri/min)

 $(dn)_L$  : Fattore di velocità specifico per il tipo di cuscinetto

| Tipo di cuscinetto            | (dn)L   |
|-------------------------------|---------|
| Cuscinetti obliqui a sfere    | 400.000 |
| Cuscinetti a rulli cilindrici | 200.000 |

$$Sw=2.714 \frac{n \cdot d \cdot w}{C^2}$$

Sw : Fattore di riduzione della durata specifico per il carico

C : Coefficiente di carico dinamico di base (N)

w : Carico cuscinetto (N)

Selezione del cuscinetto

Durata del cuscinetto

Tolleranza del cuscinetto Disposizione del

cuscinetto

Precarico
e rigidità

Lubrificazione

Velocità limite

Struttura dell'albero e dell'alloggiamento

## Correzione della velocità limite

L'uso di cuscinetti ad alta velocità oltre il proprio limite può generare calore per attrito all'interno del cuscinetto, provocando un innalzamento delle temperature a livelli non in grado di supportare le prestazioni del cuscinetto stesso. Il limite empirico alla velocità di rotazione che evita tali problemi è detto "velocità limite di rotazione". Le velocità limite variano a seconda del tipo di cuscinetto, delle dimensioni, del sistema di lubrificazione, dal carico, ecc. In aggiunta la velocità limite di rotazione di un cuscinetto con tenuta a contatto è limitato dalla velocità circonferenziale delle sezioni di contatto della tenuta e dell'anello della pista di scorrimento. Le tabelle dimensionali del presente catalogo mostrano le velocità limite di rotazione in

caso di lubrificazione con grasso e ad olio ma i valori sono espressi per cuscinetti con carichi leggeri, montaggio su albero orizzontale e lubrificazione appropriata.

Sebbene di norma si utilizzino due o più cuscinetti obliqui a sfere, la velocità di rotazione è limitata in modo che sia necessario moltiplicare le velocità nelle tabelle dimensionali per i fattori di correzioni illustrati nella Tabella 7.1.

Quando il cuscinetto è impiegato al 75% o più della velocità limite di rotazione la scelta corretta del tipo di grasso richiesto e della quantità o dell'olio lubrificante e del metodo diventa la più determinante.

● Tabella 7.1 Fattori di correzione per velocità limite di rotazione di cuscinetti doppi

| N. di cuscinetti  | Precarico ultra-leggero (E) | Precarico leggero (L) | Precarico medio (L) | Precarico pesante (L) |
|-------------------|-----------------------------|-----------------------|---------------------|-----------------------|
| Disposizione di 2 | 0,83                        | 0,78                  | 0,63                | 0,54                  |
| Disposizione di 3 | 0,73                        | 0,68                  | 0,54                | 0,39                  |
| Disposizione di 4 | 0,78                        | 0,73                  | 0,59                | 0,44                  |

## Struttura dell'albero e dell'alloggiamento

## 8-1 Regolazione dell'albero e dell'alloggiamento

La regolazione appropriata dell'anello interno e dell'albero e quella dell'anello esterno e dell'alloggiamento sono necessarie per ottenere le migliori prestazioni di un cuscinetto.

Superfici di regolazione lente possono provocare rotazione degli anelli della pista di scorrimento sull'albero o nell'alloggiamento. Tale fenomeno è noto come "strisciamento". Lo strisciamento può provocare rottura prematura, vibrazioni ed altri problemi dovuti a generazione anomala di calore ed usura, dalla presenza di detriti che penetrano nel cuscinetto. Una regolazione dell'interferenza è un ottimo metodo per impedire lo strisciamento. Per comodità di

installazione la regolazione d'interferenza avviene sull'anello interno e sull'albero e sull'anello esterno e sull'alloggiamento (non entrambi). Tuttavia, ciò non può avvenire in determinate condizioni per cui la regolazione del cuscinetto deve essere determinato dopo aver considerato con attenzione il rapporto tra albero e alloggiamento e altri fattori. Le regolazioni consigliate per le condizioni di funzionamento generiche (rotazione anello interno) dei cuscinetti di precisione utilizzati per macchine utensili sono mostrate nelle **Tabelle da 8.1 a 8.3**.

#### Tabella 8.1 Albero e regolazione consigliata

Unità: µm

Diametro dell'albero Classe di precisione del cuscinetto (mm) Classe 5 Classe 4/Classe 2 Tipo di cuscinetto Regolazione Regolazione Oltre Fino a Tolleranza albero Tolleranza albero desiderata desiderata 10 18 0~2T h4 0~2T h3 18 50 0~2,5T h4 0~2,5T h3 Cuscinetti obliqui a sfere 50 80 0~3T h4 0~3T h3 80 150 0~4T js4 0~4T js3 150 200 0~5T js4 0~5T js3 25 40 js4 js4 Cuscinetti a rulli cilindrici 140 k3 40 k4 (foro cilindrico) 140 200 k4 k3 Cuscinetti assiali Per tutti i diametri di albero 0~6L h4 0~6L h4 mandrino principale Cuscinetti per supporto 0~10L Per tutti i diametri di albero 0~101 h5 h5 viti con ricircolo di sfere

#### ■ Tabella 8.2 Alloggiamenti e regolazione consigliata (lato fisso)

Jnità: µm

| tabella 6.2 Alloggiamenti e regolazione consignata (tato 11550) |                                  |                |                                     |                               |                           |                               |  |  |
|-----------------------------------------------------------------|----------------------------------|----------------|-------------------------------------|-------------------------------|---------------------------|-------------------------------|--|--|
|                                                                 | Diametro foro alloggiamento (mm) |                | Classe di precisione del cuscinetto |                               |                           |                               |  |  |
| Tipo di cuscinetto                                              |                                  |                | Clas                                | se 5                          | Classe 4/Classe 2         |                               |  |  |
|                                                                 | Oltre                            | Fino a         | Regolazione<br>desiderata           | Tolleranza foro alloggiamento | Regolazione<br>desiderata | Tolleranza foro alloggiamento |  |  |
| Cuscinetti obliqui a sfere                                      | 18                               | 50             | 0~3L                                | JS4                           | 0~3L                      | JS3                           |  |  |
|                                                                 | 50                               | 120            | 0~4L                                | JS4                           | 0~4L                      | JS3                           |  |  |
|                                                                 | 120                              | 180            | 0~5L                                | JS4                           | 0~5L                      | JS3                           |  |  |
|                                                                 | 180                              | 250            | 0~6L                                | JS4                           | 0~6L                      | JS3                           |  |  |
| Cuscinetti a rulli cilindrici                                   | Foro alloggiam                   | nento generale | ±0                                  | K5                            | ±0                        | K5                            |  |  |
| Cuscinetti assiali<br>mandrino principale                       | Foro alloggiamento generale      |                | 30L~40L                             | K5                            | 30L~40L                   | K5                            |  |  |
| Cuscinetti per supporto viti con ricircolo di sfere             | Foro alloggiam                   | nento generale | 10L~20L                             | H6                            | 10L~20L                   | H6                            |  |  |

#### ● Tabella 8.3 Alloggiamenti e regolazione consigliata (lato aperto)

Unità: um

|                                                     | Diametro foro alloggiamento (mm) |        | Classe di precisione del cuscinetto |                               |                           |                               |  |
|-----------------------------------------------------|----------------------------------|--------|-------------------------------------|-------------------------------|---------------------------|-------------------------------|--|
| Tipo di cuscinetto                                  |                                  |        | Clas                                | se 5                          | Classe 4/Classe 2         |                               |  |
|                                                     | Oltre                            | fino a | Regolazione<br>desiderata           | Tolleranza foro alloggiamento | Regolazione<br>desiderata | Tolleranza foro alloggiamento |  |
| Cuscinetti obliqui a sfere                          | 18                               | 50     | 6L~10L                              | H4                            | 6L~10L                    | НЗ                            |  |
|                                                     | 50                               | 120    | 8L~13L                              | H4                            | 8L~13L                    | H3                            |  |
|                                                     | 120                              | 180    | 12L~18L                             | H4                            | 12L~18L                   | H3                            |  |
|                                                     | 180                              | 250    | 15L~22L                             | H4                            | 15L~22L                   | H3                            |  |
| Cuscinetti a rulli cilindrici                       | Foro alloggiamento generale      |        | ±0                                  | K5                            | ±0                        | K4                            |  |
| Cuscinetti per supporto viti con ricircolo di sfere | Foro alloggiamento generale      |        | 10L~20L                             | H6                            | 10L~20L                   | H6                            |  |

Nota) Nelle tabelle da 8.1 a 8.3 "L" dopo un valore indica una regolazione lenta o la presenza di giuoco, mentre "T" indica aderenza o regolazione d'interferenza.

Struttura dell'albero e dell'alloggiamento 27

Selezione del cuscinetto

Durata del cuscinetto

Tolleranza del cuscinetto Disposizione

cuscinetto
Precarico
e rigidità

Lubrificazione

Velocità Iimite

e dell'alloggiamento Gestione

cuscinetto

## Struttura dell'albero e dell'alloggiamento

## 8-2 Precisione richiesta per albero e alloggiamento

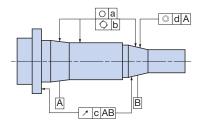
Per preservare le prestazioni meccaniche del mandrino principale delle macchine utensili, la precisione di installazione e dei componenti montati deve essere uguale o superiore a quella del cuscinetto.

La precisione consigliata per la sezione di installazione del cuscinetto e la scabrosità della superficie sono mostrate nelle Tabelle da 8.4 a

| ■ Tabella 8.4 Precisione albero Unità: µm |          |             |             |               |            |  |
|-------------------------------------------|----------|-------------|-------------|---------------|------------|--|
| Elemento di                               | Diametro | dell'albero | Classe di p | recisione del | cuscinetto |  |
| precisione                                | Oltre    | Fino a      | Classe 5    | Classe 4      | Classe 2   |  |
|                                           | _        | 10          | 1,3         | 0,8           | 0,5        |  |
|                                           | 10       | 18          | 1,5         | 1,0           | 0,6        |  |
| Rotondità<br>O, a                         | 18       | 30          | 2,0         | 1,3           | 0,8        |  |
|                                           | 30       | 50          | 2,0         | 1,3           | 0,8        |  |
|                                           | 50       | 80          | 2,5         | 1,5           | 1,0        |  |
|                                           | 80       | 120         | 3,0         | 2,0           | 1,3        |  |
|                                           | 120      | 180         | 4,0         | 2,5           | 1,8        |  |
|                                           | 180      | 250         | 5,0         | 3,5           | 2,3        |  |
|                                           |          | 10          | 1,3         | 0,8           | 0,5        |  |
|                                           | 10       | 18          | 1,5         | 1,0           | 0,6        |  |
|                                           | 18       | 30          | 2,0         | 1,3           | 0,8        |  |
| Cilindricità                              | 30       | 50          | 2,0         | 1,3           | 0,8        |  |
| <b>♦, b</b>                               | 50       | 80          | 2,5         | 1,5           | 1,0        |  |
|                                           | 80       | 120         | 3,0         | 2,0           | 1,3        |  |
|                                           | 120      | 180         | 4,0         | 2,5           | 1,8        |  |
|                                           | 180      | 250         | 5,0         | 3,5           | 2,3        |  |
|                                           | _        | 10          | 2,0         | 2,0           | 1,3        |  |
|                                           | 10       | 18          | 2,5         | 2,5           | 1,5        |  |
|                                           | 18       | 30          | 3,0         | 3,0           | 2,0        |  |
| Vibrazione                                | 30       | 50          | 3,5         | 3,5           | 2,0        |  |
| ∕*, C                                     | 50       | 80          | 4,0         | 4,0           | 2,5        |  |
|                                           | 80       | 120         | 5,0         | 5,0           | 3,0        |  |
|                                           | 120      | 180         | 6,0         | 6,0           | 4,0        |  |
|                                           | 180      | 250         | 7,0         | 7,0           | 5,0        |  |
|                                           | _        | 10          | 4,0         | 4,0           | 2,5        |  |
| Concentricità                             | 10       | 18          | 5,0         | 5,0           | 3,0        |  |
|                                           | 18       | 30          | 6,0         | 6,0           | 4,0        |  |
|                                           | 30       | 50          | 7,0         | 7,0           | 4,0        |  |
| ⊚, d                                      | 50       | 80          | 8,0         | 8,0           | 5,0        |  |
|                                           | 80       | 120         | 10,0        | 10,0          | 6,0        |  |
|                                           | 120      | 180         | 12,0        | 12,0          | 8,0        |  |

#### ● Tabella 8.5 Scabrosità superficie di regolazione albero (Ra)

250


180

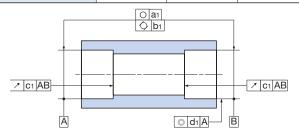
| Diametro dell'albero | Classe di precisione del cuscinetto |          |          |  |  |
|----------------------|-------------------------------------|----------|----------|--|--|
| d                    | Classe 5                            | Classe 4 | Classe 2 |  |  |
| d ≤ 80mm             | 0,2                                 | 0,2      | 0,1      |  |  |
| d > 80mm             | 0,4                                 | 0,4      | 0,2      |  |  |

14,0

14,0

10,0

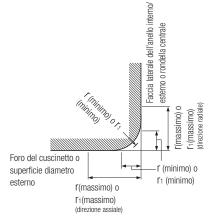



#### ● Tabella 8.6 Precisione alloggiamento

Unità: um

| Elemento di Diametro foro alloggiamento Classe di precisione del cuscii |       |        |          |          |          |  |
|-------------------------------------------------------------------------|-------|--------|----------|----------|----------|--|
| Elemento di<br>precisione                                               |       |        |          |          |          |  |
| precisione                                                              | Oltre | Fino a | Classe 5 | Classe 4 | Classe 2 |  |
| Rotondità                                                               |       | 10     | 1,3      | 0,8      | 0,5      |  |
|                                                                         | 10    | 18     | 1,5      | 1,0      | 0,6      |  |
|                                                                         | 18    | 30     | 2,0      | 1,3      | 0,8      |  |
| Rotondità                                                               | 30    | 50     | 2,0      | 1,3      | 0,8      |  |
| O, a1                                                                   | 50    | 80     | 2,5      | 1,5      | 1,0      |  |
|                                                                         | 80    | 120    | 3,0      | 2,0      | 1,3      |  |
|                                                                         | 120   | 180    | 4,0      | 2,5      | 1,8      |  |
|                                                                         | 180   | 250    | 5,0      | 3,5      | 2,3      |  |
|                                                                         |       | 10     | 1,3      | 0,8      | 0,5      |  |
|                                                                         | 10    | 18     | 1,5      | 1,0      | 0,6      |  |
|                                                                         | 18    | 30     | 2,0      | 1,3      | 0,8      |  |
| Cilindricità                                                            | 30    | 50     | 2,0      | 1,3      | 0,8      |  |
| <b>⊘</b> , b₁                                                           | 50    | 80     | 2,5      | 1,5      | 1,0      |  |
|                                                                         | 80    | 120    | 3,0      | 2,0      | 1,3      |  |
|                                                                         | 120   | 180    | 4,0      | 2,5      | 1,8      |  |
|                                                                         | 180   | 250    | 5,0      | 3,5      | 2,3      |  |
|                                                                         | _     | 10     | 2,0      | 2,0      | 1,3      |  |
|                                                                         | 10    | 18     | 2,5      | 2,5      | 1,5      |  |
|                                                                         | 18    | 30     | 3,0      | 3,0      | 2,0      |  |
| Vibrazione                                                              | 30    | 50     | 3,5      | 3,5      | 2,0      |  |
| ∕*, C1                                                                  | 50    | 80     | 4,0      | 4,0      | 2,5      |  |
|                                                                         | 80    | 120    | 5,0      | 5,0      | 3,0      |  |
|                                                                         | 120   | 180    | 6,0      | 6,0      | 4,0      |  |
|                                                                         | 180   | 250    | 7,0      | 7,0      | 5,0      |  |
|                                                                         |       | 10     | 4,0      | 4,0      | 2,5      |  |
|                                                                         | 10    | 18     | 5,0      | 5,0      | 3,0      |  |
|                                                                         | 18    | 30     | 6,0      | 6,0      | 4,0      |  |
| Concentricità<br>©, d <sub>1</sub>                                      | 30    | 50     | 7,0      | 7,0      | 4,0      |  |
|                                                                         | 50    | 80     | 8,0      | 8,0      | 5,0      |  |
|                                                                         | 80    | 120    | 10,0     | 10,0     | 6,0      |  |
|                                                                         | 120   | 180    | 12,0     | 12,0     | 8,0      |  |
|                                                                         | 180   | 250    | 14,0     | 14,0     | 10,0     |  |

#### ■ Tabella 8.7 Scabrosità superficie di regolazione albero (Ra)


| Diametra fara alla reismanta     | Classe di precisione del cuscinetto |          | scinetto |
|----------------------------------|-------------------------------------|----------|----------|
| Diametro foro alloggiamento<br>D | Classe 5                            | Classe 4 | Classe 2 |
| D ≤ 80mm                         | 0,4                                 | 0,4      | 0,2      |
| 80mm < D ≤ 250mm                 | 0,8                                 | 0,8      | 0,4      |
| D > 250mm                        | 1,6                                 | 1,6      | 0,8      |



## 8-3 Limiti delle dimensioni dello smusso

Tabella 8.8 Dimensioni dello smusso per cuscinetti radiali (esclusi cuscinetti a rulli conici)

| <ul> <li>Tabella 8.8 Dimensioni dello smusso per cuscinetti radiali (esclusi cuscinetti a rulli conici)</li> <li>Unità: mm</li> </ul> |                                       |             |                                                                                                            |                      |                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------|------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------|
| Dimensioni smusso più<br>piccole ammesse di anelli<br>interni ed esterni                                                              | Diametro nominale foro del cuscinetto |             | Dimensioni smusso più<br>piccole ammesse di anelli<br>interni ed esterni<br>r (max) o r <sub>1</sub> (min) |                      | (Riferimento)<br>Albero o raggio ra del<br>filetto<br>dell'alloggiamento |
| r (min) o r <sub>1</sub> (min)                                                                                                        | Oltre                                 | Fino a      | Direzione<br>radiale                                                                                       | Direzione<br>assiale | Max                                                                      |
| 0,05                                                                                                                                  | _                                     |             | 0,1                                                                                                        | 0,2                  | 0,05                                                                     |
| 0,08                                                                                                                                  |                                       |             | 0,16                                                                                                       | 0,3                  | 0,08                                                                     |
| 0,1                                                                                                                                   | _                                     |             | 0,2                                                                                                        | 0,4                  | 0,1                                                                      |
| 0,15                                                                                                                                  |                                       |             | 0,3                                                                                                        | 0,6                  | 0,15                                                                     |
| 0,2                                                                                                                                   |                                       | <del></del> | 0,5                                                                                                        | 0,8                  | 0,2                                                                      |
| 0.2                                                                                                                                   |                                       | 40          | 0,6                                                                                                        | 1                    | 0.2                                                                      |
| 0,3                                                                                                                                   | 40                                    |             | 0,8                                                                                                        | 1                    | 0,3                                                                      |
| 0.6                                                                                                                                   |                                       | 40          | 1                                                                                                          | 2                    | 0.6                                                                      |
| 0,6                                                                                                                                   | 40                                    | <del></del> | 1,3                                                                                                        | 2                    | 0,6                                                                      |
| 1                                                                                                                                     |                                       | 50          | 1,5                                                                                                        | 3                    | 1                                                                        |
| '                                                                                                                                     | 50                                    |             | 1,9                                                                                                        | 3                    | 1                                                                        |
| 1,1                                                                                                                                   |                                       | 120         | 2                                                                                                          | 3,5                  | 1                                                                        |
| 1,1                                                                                                                                   | 120                                   |             | 2,5                                                                                                        | 4                    | ı ı                                                                      |
| 1,5                                                                                                                                   |                                       | 120         | 2,3                                                                                                        | 4                    | 1,5                                                                      |
| 1,0                                                                                                                                   | 120                                   |             | 3                                                                                                          | 5                    | 1,0                                                                      |
|                                                                                                                                       |                                       | 80          | 3                                                                                                          | 4,5                  |                                                                          |
| 2                                                                                                                                     | 80                                    | 220         | 3,5                                                                                                        | 5                    | 2                                                                        |
|                                                                                                                                       | 220                                   |             | 3,8                                                                                                        | 6                    |                                                                          |
| 0.1                                                                                                                                   |                                       | 280         | 4                                                                                                          | 6,5                  | 2                                                                        |
| 2,1                                                                                                                                   | 280                                   |             | 4,5                                                                                                        | 7                    | 2                                                                        |
|                                                                                                                                       |                                       | 100         | 3,8                                                                                                        | 6                    |                                                                          |
| 2,5                                                                                                                                   | 100                                   | 280         | 4,5                                                                                                        | 6                    | 2                                                                        |
|                                                                                                                                       | 280                                   |             | 5                                                                                                          | 7                    |                                                                          |
| 3                                                                                                                                     |                                       | 280         | 5                                                                                                          | 8                    | 0.5                                                                      |
| S                                                                                                                                     | 280                                   | <del></del> | 5,5                                                                                                        | 8                    | 2,5                                                                      |
| 4                                                                                                                                     |                                       |             | 6,5                                                                                                        | 9                    | 3                                                                        |
| 5                                                                                                                                     | _                                     | _           | 8                                                                                                          | 10                   | 4                                                                        |
| 6                                                                                                                                     | _                                     | _           | 10                                                                                                         | 13                   | 5                                                                        |
| 7,5                                                                                                                                   | _                                     | _           | 12,5                                                                                                       | 17                   | 6                                                                        |
| 9,5                                                                                                                                   | _                                     | _           | 15                                                                                                         | 19                   | 8                                                                        |
| 12                                                                                                                                    | _                                     | _           | 18                                                                                                         | 24                   | 10                                                                       |
| 15                                                                                                                                    | _                                     | _           | 21                                                                                                         | 30                   | 12                                                                       |
| 19                                                                                                                                    | _                                     | _           | 25                                                                                                         | 38                   | 15                                                                       |



- r: dimensioni smusso di anello interno e anello esterno
- r1: dimensioni smusso di anello interno e anello esterno (faccia anteriore, ecc.) o di anello centrale di cuscinetti assiali a sfere

Selezione cuscinetto

Durata del cuscinetto

Tolleranza cuscinetto

Disposizione del cuscinetto

Precarico e rigidità

Lubrificazione

Velocità

cuscinetto

- Nota ① La forma precisa dello smusso non è specificata. I limiti cadono entro il raggio minimo radiale e assiale e il raggio massimo.
  - 2) I valori r (minimo) nella direzione assiale dei cuscinetti con larghezze nominali del cuscinetto di 2 mm o meno r (max) sono gli stessi nella direzione radiale.



## **Gestione del cuscinetto**

### 9-1 Conservazione e trasporto dei cuscinetti

I cuscinetti contatto volvente sono componenti di precisione. Pertanto è molto importante trattarli con molta cura per evitare di provocare danni in seguito all'urto. Inoltre essi sono suscettibili allo sporco e alla ruggine per cui bisogna adottare delle precauzioni per la conservazione e il trasporto.

- Per conservare i cuscinetti scegliere un posto freddo e asciutto, non esposto all'irradiazione solare diretta o all'umidità.
- Non lasciare i cuscinetti sul pavimento. Conservarli a un'altezza di 30 cm, ed evitare di esporli alla polvere.
- Per la gestione dell'inventario dei cuscinetti si deve adottare una conservazione per cui si utilizzano per primi i cuscinetti conservati più a lungo. Sistemare i cuscinetti in modo che quelli con la data di confezione più vecchia siano utilizzati per primi.
- Durante il trasporto i cuscinetti non devono essere schiacciati, non devono cadere, ecc., proteggerli da danni e deformazioni provocati da eventuale impatto, e controllare che non si sporchino per la presenza di materiali di imballaggio rotti.

## 9-2 Assemblaggio di cuscinetti

La qualità del montaggio dei cuscinetti influenza la precisione, la durata le prestazioni ed altri fattori, per cui deve essere svolta con cura. Di seguito si riporta la procedura per il lavoro di assemblaggio.

- (1) Ispezione dell'albero e dell'alloggiamento
- 2 Apertura dell'imballaggio e pulizia
- (3) Assemblaggio
- (4) Controlli post-assemblaggio

#### 9.2.1 Ispezione dell'albero e dell'alloggiamento

- Pulire l'albero e l'alloggiamento con cura e togliere sporco e detriti. Controllare inoltre l'assenza di sbavature.
- Controllare che l'albero e l'alloggiamento siano ultimati in base ai disegni e controllare e registrare le dimensioni, lo squadro dello spallamento e il raggio angolare. Come mostrato in Figura 9.1, misurare il diametro dell'albero e il foro dell'alloggiamento presso su due punti in direzione assiale e quattro punti in direzione radiale.

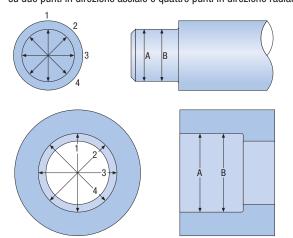
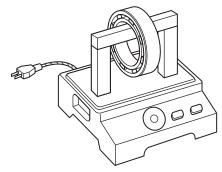



 Figura 9.1 Punti di misurazione del diametro dell'albero e del diametro dell'alloggiamento

#### 9.2.2 Apertura dell'imballaggio e pulizia

- Non aprire l'imballaggio del cuscinetto finché non si è pronti per usare lo stesso. Indossare guanti di vinile durante questa operazione. Se si apre l'imballaggio del cuscinetto a mani nude o con guanti di tessuto si rischia di provocare l'infiltrazione di ruggine o di pilucchi.
- Applicare olio anti-ruggine sulla superficie del cuscinetto disimballato. Lavare il cuscinetto con cherosene bianco. Per il lavaggio preparare una doccia filtrata o due contenitori con parte inferiore rialzata con filtro, uno per il lavaggio base e una per il lavaggio finale.

 Dopo il lavaggio, scuotere l'olio dal cuscinetto e coprirlo. Non ruotare un cuscinetto che è stato sgrassato.


#### 9.2.3 Assemblaggio

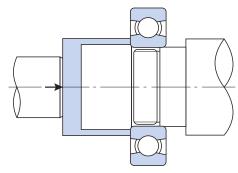
Di norma la maggior parte dei cuscinetti montati sulle macchine utensili presentano regolazioni dell'albero di interferenza e regolazioni alloggiamento lente. I metodi utilizzati per il montaggio dei cuscinetti sugli alberi sono il montaggio per dilatazione termica e il montaggio a pressa.

#### Montaggio per dilatazione termica

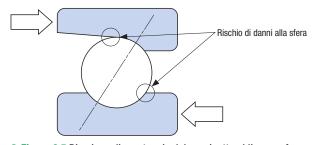
Con questo metodo di montaggio, il cuscinetto viene riscaldato finché non si espande diventando più largo dell'albero e l'anello interno può scorrere sull'albero. Un riscaldatore elettromagnetico con demagnetizzatore (**Figura 9.2**) evita di sollecitare inutilmente l'anello interno, mentre un forno è utile per ridurre il tempo di lavorazione. La temperatura di riscaldamento non deve superare i 120°C. Temperature superiori a 120°C possono diminuire la durezza del cuscinetto e ridurne la durata.

Dopo aver montato un cuscinetto riscaldato sull'albero, raffreddandosi si contrae in direzione assiale, formando uno spazio tra l'anello interno e lo spallamento dell'albero (**Figura 9.3**) per cui il posizionamento corretto è ottenuto utilizzando un dado, ecc.




• Figura 9.2 Riscaldatore a induzione




• Figura 9.3 Spazio con lo spallamento dell'albero dopo il raffreddamento

#### Montaggio a pressa

Questo metodo utilizza un utensile posto sulla superficie laterale dell'anello interno e un martinetto o pressa usata per eseguire il montaggio a pressione (Figura 9.4). Quando si esegue il montaggio a pressa dell'anello interno sull'albero non esercitare troppa forza sull'anello esterno o sulla gabbia. Nel caso di cuscinetti obliqui a sfere evitare di applicare la forza in direzione opposta alla direzione dell'angolo di contatto perché si rischia di danneggiare lo spallamento della pista di scorrimento (Figura 9.5).



• Figura 9.4 Montaggio a pressa dell'anello interno



● Figura 9.5 Direzione di montaggio del cuscinetto obliquo a sfere

#### Riferimento: posizione dell'eccentricità radiale massima

Le posizioni dell'eccentricità radiale massima dell'anello interno e dell'anello esterno sono contraddistinti dai simboli "O" sulla faccia dell'anello. L'eccentricità assiale può essere ridotta allineando la posizione di eccentricità radiale minima dell'asse con il simbolo "O" sull'anello interno. Anche l'anello esterno dovrebbe essere montato in modo che il relativo simbolo "O" sia allineato con le posizioni di eccentricità minima dell'alloggiamento.

Si noti che non esiste un rapporto tra la posizione del simbolo "O" dell'anello esterno e la posizione del simbolo di montaggio "<" del diametro esterno.

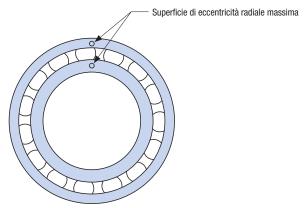



Figura 9.6 Posizioni di eccentricità radiale massima

#### Riferimento: forza di montaggio a pressa e forza di rimozione

Sebbene la forza richiesta per montare a pressa un anello interno del cuscinetto sull'albero e per smontarlo dipenda dalle quantità di interferenza e dalla finitura della superficie dell'albero si possono ottenere dei valori generici utilizzando la Formula 9.1.

$$Ka = fk \cdot \Delta de \cdot B \cdot \left(1 - \left\{\frac{d}{di}\right\}^2\right) \quad ---- \quad \text{(Formula 9.1)}$$

a : Forza per montaggio a pressa (forza per lo smontaggio) (kN)

fk : Coefficiente per la condizione di montaggio/smontaggio (Tabella 9.1)

Δde : Interferenza effettiva (mm)

B : Larghezza nominale anello interno (mm)
d : Diametro nominale foro del cuscinetto (mm)

i : Diametro esterno medio dell'anello interno (mm)

Cuscinetto a rulli cilindrici

di = (D + 3d)/4

Altri tipi di cuscinetto

di = (3D + 7d)/10

In questo caso, D: Diametro nominale esterno del cuscinetto (mm)

#### ● Tabella 9.1 Coefficiente per la condizione di montaggio/smontaggio

| Condizioni                                                        | fk (valore medio) |
|-------------------------------------------------------------------|-------------------|
| Montaggio a pressa di anello interno sul albero solido cilindrico | 39                |
| Smontaggio di anello interno sul albero solido cilindrico         | 59                |

Nota) Valori che si hanno quando il foro dell'albero e l'albero stesso sono rivestiti con strato sottile di olio.

Selezione del cuscinetto

Durata del cuscinetto

Tolleranza del cuscinetto

Disposizione del cuscinetto

Precarico e rigidità

Lubrificazione

Velocità limite

Struttura dell'albero e dell'alloggiamento

#### Gestione del cuscinetto

#### Montaggio sull'albero

Di solito si utilizza la ghiera dell'albero per fissare l'anello interno del cuscinetto sull'albero. Si deve controllare che la superficie laterale della ghiera dell'albero si trovi in posizione angolare giusta rispetto alla filettatura. Se le superfici non sono serrate a squadro con la ghiera dell'albero si può provocare la deformazione dell'albero stesso. Inoltre è necessario regolare la ghiera dell'albero quando se ne effettua il serraggio per il contatto marginale che si ottiene in seguito allo spazio tra le superfici di accoppiamento tra la ghiera e l'albero

Il serraggio con la ghiera dell'albero consente di applicare una forza di serraggio specifica controllandone la coppia. Nonostante la discrepanza esistente nella relazione tra coppia di serraggio della ghiera dell'albero e la forza di serraggio da applicare per motivi di precisione e ruvidezza di ciascuna parte filettata, essa può essere espressa come la Formula 9.2.

La forza di montaggio consigliata per ciascun foro del cuscinetto è mostrata nella Tabella 9.2.

$$F \approx \frac{M_n}{\frac{d2}{2} \tan{(\beta + \rho)} + \frac{d_n}{2} \cdot \mu_m}$$
 (Formula 9.2)

: Forza di serraggio (N)

: Coppia di serraggio (N·mm)

d<sub>2</sub> : Diametro nominale filettatura (mm)

: Angolo di inclinazione β

$$\tan \beta = \frac{P}{\pi d_2}$$

: Passo (mm)

: Angolo di attrito superficie filettatura

$$\tan \rho = \frac{\mu}{\cos \alpha}$$

: Semi-angolo di filettatura α

: Diametro medio della superficie della rondella del cuscinetto (mm) dn

: Coefficiente di attrito della superficie della rondella del cuscinetto (≈ 0,15) Цm

: Coefficiente di attrito della superficie della filettatura (≈ 0,15)

#### Tabella 9.2 Valori consigliati per la forza di serraggio della ghiera dell'albero

| Diametro<br>nominale foro<br>del cuscinetto<br>(mm) | Forza di serraggio<br>dado dell'albero<br>(N) | Diametro<br>nominale foro<br>del cuscinetto<br>(mm) | Forza di serraggio<br>dado dell'albero<br>(N) |
|-----------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|-----------------------------------------------|
| 10                                                  | 1500                                          | 80                                                  | 19600                                         |
| 12                                                  | 2500                                          | 85                                                  | 19600                                         |
| 15                                                  | 2500                                          | 90                                                  | 19600                                         |
| 17                                                  | 2500                                          | 95                                                  | 19600                                         |
| 20                                                  | 4900                                          | 100                                                 | 19600                                         |
| 25                                                  | 4900                                          | 105                                                 | 19600                                         |
| 30                                                  | 4900                                          | 110                                                 | 19600                                         |
| 35                                                  | 4900                                          | 120                                                 | 19600                                         |
| 40                                                  | 9800                                          | 130                                                 | 19600                                         |
| 45                                                  | 9800                                          | 140                                                 | 29400                                         |
| 50                                                  | 9800                                          | 150                                                 | 29400                                         |
| 55                                                  | 14700                                         | 160                                                 | 29400                                         |
| 60                                                  | 14700                                         | 170                                                 | 29400                                         |
| 65                                                  | 14700                                         | 180                                                 | 29400                                         |
| 70                                                  | 14700                                         | 190                                                 | 29400                                         |
| 75                                                  | 14700                                         | 200                                                 | 29400                                         |

#### Montaggio sull'alloggiamento

Per fissare l'anello esterno del cuscinetto in direzione assiale, si mantiene uno spazio tra la copertura a pressione e l'alloggiamento e per il serraggio si usa un bullone. Tuttavia è richiesta un'attenzione estrema poiché se i dadi non sono serrati in modo corretto o uniforme si può provocare il mancato allineamento dell'anello esterno e la deformazione (Figura 9.7).

In genere si consiglia uno giuoco D di riduzione spazio anello esterno compreso tra 0,010 - 0,020. I valori del giuoco di riduzione spazio consigliati per un cuscinetto di supporto faccia-a-faccia (Serie TAB. Serie TAF) sono mostrate nelle Tabelle 9.3 e 9.4.

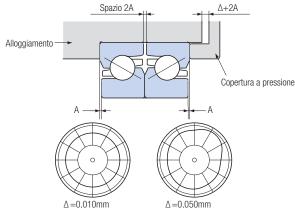



 Figura 9.7 Esempio di deflessione di pista di scorrimento dipendente dal gioco di riduzione spazio dell'anello esterno

#### ● Tabella 9.3 Valori del giuoco di riduzione spazio consigliati per cuscinetti per supporto viti con ricircolo di sfere (Serie TAB)

| Cuscinetto n. | Giuoco di riduzione spazio anello esterno $\Delta$ (mm) |  |
|---------------|---------------------------------------------------------|--|
| 15TAB04 DF    |                                                         |  |
| 17TAB04 DF    | 0,010 ~ 0,030                                           |  |
| 20TAB04 DF    |                                                         |  |
| 25TAB06 DF    |                                                         |  |
| 30TAB06 DF    | 0,010 ~ 0,040                                           |  |
| 35TAB07 DF    | 0,010 ~ 0,040                                           |  |
| 40TAB07 DF    |                                                         |  |
| 40TAB09 DF    |                                                         |  |
| 45TAB07 DF    |                                                         |  |
| 45TAB10 DF    | 0,020 ~ 0,050                                           |  |
| 50TAB10 DF    |                                                         |  |
| 55TAB10 DF    |                                                         |  |
| 55TAB12 DF    | 0.020 ~ 0.060                                           |  |
| 60TAB12 DF    | 0,020 ~ 0,000                                           |  |

## ■ Tabella 9.4 Valori del giuoco di riduzione spazio consigliati per

| cuscinetti per supporto viti con noncolo di siere (serie IAF) |                                                         |  |
|---------------------------------------------------------------|---------------------------------------------------------|--|
| Cuscinetto n.                                                 | Giuoco di riduzione spazio anello esterno $\Delta$ (mm) |  |
| 25TAF06 DF                                                    | 0,020                                                   |  |
| 30TAF07 DF                                                    |                                                         |  |
| 35TAF09 DF                                                    | 0,030                                                   |  |
| 40TAF09 DF                                                    |                                                         |  |
| 40TAF11 DF                                                    |                                                         |  |
| 45TAF11 DF                                                    | 0.040                                                   |  |
| 50TAF11 DF                                                    | 0,040                                                   |  |
| 60TAF13 DF                                                    |                                                         |  |
| 60TAF17 DF                                                    |                                                         |  |
| 80TAF17 DF                                                    | 0,050                                                   |  |
| 100TAF21 DF                                                   | 0,050                                                   |  |
| 120TAF03 DF                                                   |                                                         |  |

#### Regolazione giuoco per cuscinetto a rulli conici con foro rastremato

Il giuoco interno del cuscinetto a rulli cilindrici con foro rastremato può essere regolato tramite larghezza del distanziale utilizzando la seguente procedura.

- (1) Controllare il cono dell'albero. Rivestire il cono con uno strato sottile di pasta pigmentata blu; è richiesto un contatto pari all'80% o superiore.
- (2) Posizionare con cautela l'unità secondaria interna sul cono dell'albero (Figura 9.8).
- (3) Sistemare l'anello esterno e fissare l'albero orizzontalmente.
- (4) Toccare il centro dell'anello esterno con una sonda con calibro doppia.
- (5) Premendo dall'alto verso il basso sull'anello esterno, ruotarlo a sinistra a destra più volte in modo da sistemarlo e azzerare la sonda di misurazione.
- (6) Premere l'anello esterno ruotandolo di 180° dalla sua posizione di simmetria (direttamente sotto) e ruotarlo a sinistra e a destra per ottenere la lettura del valore massimo (Figura 9.9).
- (7) Modificare la posizione dell'albero con passaggio di circa 30°, misurare lo spostamento assiale e calcolare la media delle letture come il valore di AR.
- (8) Usare un misuratore a blocco per misurare la lunghezza della superficie dei bordi dell'anello interno e dello spallamento dell'albero (Figura 9.10).
- (9) Modificare la posizione e usare una media di cinque o sei punti come valore per L'.
- (10) Usare la Formula 9.3 per stabilire le dimensioni della larghezza del distanziale richiesto.

$$L=L'-12(\Delta R-\Delta-\lambda e\cdot \delta)$$
 (Formula 9.3)

Ľ : Larghezza media del distanziale ottenuta al passaggio (9)

ΔR : Giuoco radiale misurato

Δ : Giuoco radiale post-montaggio desiderato

: Rapporto di contrazione anello esterno

$$\lambda e = \frac{D_e}{D} - \frac{1 - \left(\frac{D}{D_h}\right)^2}{1 - \left(\frac{D_e}{D_h}\right)^2}$$

: Diametro esterno anello interno (mm)

De : Foro anello interno (mm) Dh : Foro alloggiamento (mm) : Interferenza anello esterno

- (1) Correggere la dimensione della larghezza del distanziale.
- (1) Smontare l'unità secondaria interna dall'albero. Questa volta evitare di colpire l'anello interno con forza eccessiva. Per facilitare lo smontaggio dell'anello usare un attrezzo speciale per lo smontaggio.
- (13) Montare il distanziale e il cuscinetto sull'albero.
- (14) Misurare di nuovo il giuoco radiale e confermare che sia presente il giuoco radiale desiderato (Figura 9.11).

#### 9.2.4 Controllo post-assemblaggio

Utilizzare la procedura "5-3 Misurazione del precarico" (pagina 14) per confermare che venga applicato il precarico prescritto.

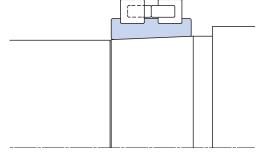
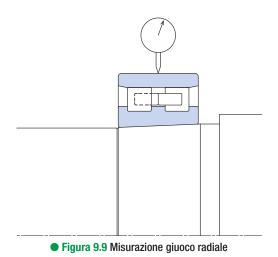




Figura 9.8 Serraggio temporaneo unità secondaria interna



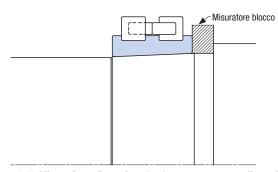
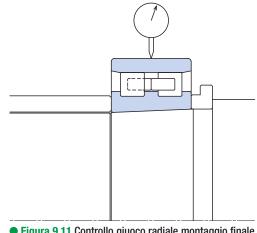




Figura 9.10 Misurazione dimensione larghezza temporanea distanziale



• Figura 9.11 Controllo giuoco radiale montaggio finale

Selezione cuscinetto

Durata del cuscinetto

Tolleranza cuscinetto

Disposizione cuscinetto

> Precarico e rigidità

Lubrificazione

Velocità

#### Gestione del cuscinetto

### 9-3 Test di funzionamento

Dopo aver montato i cuscinetti si svolge un test di funzionamento per verificarne il corretto funzionamento. Nello specifico, se si utilizza lubrificazione con grasso si deve consentire al grasso di penetrare all'interno del cuscinetto per cui è necessario un tempo adeguato per il funzionamento discontinuo.

- Di seguito si riporta la procedura generale per il test di funzionamento.
- ① Controllare l'assenza di spazio tra albero e alloggiamento o copertura e che tutti i giochi siano uniformi.
- ② Innanzitutto ruotare a mano tutti i meccanismi che ruotano e controllare rumori anomali ed eventuali sfregamenti.
- (3) Per grandi meccanismi che non possono essere ruotati a mano,

- avviarli a velocità molto bassa e svolgere gli stessi controlli del passaggio (2).
- ④ Se non è stato trovato alcun problema durante i primi tre passaggi, aumentare la velocità gradualmente fino alla velocità di funzionamento confermando che l'aumento di temperatura rientra in condizioni normali.
- ⑤ Per il funzionamento a lungo termine ricontrollare il serraggio del bullone e della ghiera, controllare le perdite d'olio e anomalie di rumore. Se possibile al termine del test estrai un campione di olio e controlla se sono presenti corpi estranei.
- (6) L'esercizio regolare può iniziare dopo aver completato il test.

## 9-4 Smontaggio di cuscinetti

Sebbene la ragione per lo smontaggio dei cuscinetti sia la manutenzione periodica o la rottura meccanica, esso può rappresentare l'opportunità per controllare lo stato effettivo della macchina e per apportare migliorie, ecc. Soprattutto in caso di problemi di funzionamento i motivi effettivi della rottura di solito si riscontrano soltanto dopo lo smontaggio. Pertanto, quando si smontano i cuscinetti controllare i seguenti punti.

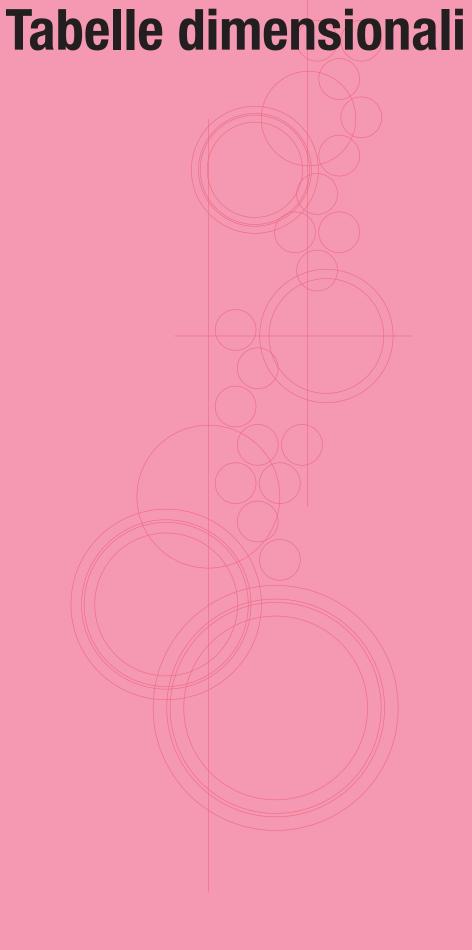
- 1) Problemi con il montaggio di cuscinetti
- ② Grasso od olio lubrificante insufficiente, e quantità di contaminanti (raccolta campioni).
- 3 Regolazione anello interno ed esterno
- (4) Problema con i cuscinetti

Prima di smontare il cuscinetto si devono valutare anche i seguenti aspetti.

- (1) Metodo per lo smontaggio del cuscinetto
- (2) Condizioni di regolazione
- (3) Utensili necessari per lo smontaggio

Tipologie e progettazione

7900 7000 7200


BNH

TAH TBH

NN3000 NNU4900

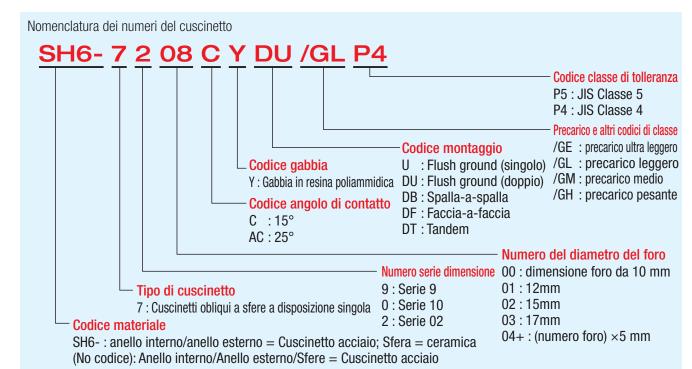
XRG

TAB TAF



## Cuscinetti a rulli di precisione




Tipologie e progettazione

| Tipologie e progettazione di                                  |
|---------------------------------------------------------------|
| Tipologie e progettazione di cuscinetti a rulli di precisione |

| Tipo                                                                    | Vista in sezione | Serie<br>cuscinetto | Angolo di contatto | Descrizione                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------|------------------|---------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                         |                  | 7900C               | 15°                | ● Le sfere e le piste di scorrimento dell'anello interno e dell'anello esterno sono                                                                                                                                                                                                                                                                                |
|                                                                         |                  | 7900AC 25°          |                    | progettate per il contatto secondo uno specifico angolo di contatto, e ciò significa                                                                                                                                                                                                                                                                               |
|                                                                         |                  | 7000C               | 15°                | che questo tipo di cuscinetti è idoneo per carichi compositi (carico assiale e carico radiale).                                                                                                                                                                                                                                                                    |
| Cuscinetti obliqui a sfere                                              |                  | 7000AC              | 25°                | L'angolo di contatto vuol dire che si generano componenti di forza assiale quando                                                                                                                                                                                                                                                                                  |
| Siele                                                                   |                  | 7200C               | 15°                | si applica un carico radiale, per cui questi cuscinetti sono usati di solito in coppia                                                                                                                                                                                                                                                                             |
|                                                                         |                  | 7200AC              | 25°                | alle estremità dell'albero.  ■ Un angolo di contatto di 15° è ottimale per le alte velocità, mentre un angolo di contatto di 25° è migliore per i carichi assiali.                                                                                                                                                                                                 |
| Cuscinetti obliqui a<br>sfere ad alta velocità                          |                  | BNH                 | 15°                | <ul> <li>Dato che lo spostamento della sfera è ridotto dall'effetto giroscopico ad alte velocità, il diametro della sfera di questo tipo di cuscinetto è minore rispetto ai cuscinetti obliqui a sfere standard.</li> <li>Questo tipo di cuscinetto è intercambiabile per dimensioni con la Serie 7000 e può essere usato in sostituzione della stessa.</li> </ul> |
| Cuscinetti obliqui a sfere con carico di                                |                  | TAH                 | 30°                | L'angolo di contatto è minore di quello della precedente serie TAD (cuscinetti obliqui a sfera con spinta in direzione doppia) poiché l'effetto giroscopico indotto è                                                                                                                                                                                              |
| spinta                                                                  |                  | TBH                 | 40°                | minore sullo spostamento della sfera e si generano temperature inferiori.  Può essere utilizzato per sostituire i cuscinetti della serie TAD.                                                                                                                                                                                                                      |
| Cuscinetti a<br>rulli cilindrici a<br>disposizione multipla<br>tipo NN  |                  | NN3000              | Ι                  | <ul> <li>Un numero elevato di rulli (cilindrici) per elevata rigidità.</li> <li>Il foro rastremato consente la regolazione del giuoco interno.</li> </ul>                                                                                                                                                                                                          |
| Cuscinetti a<br>rulli cilindrici a<br>disposizione multipla<br>tipo NNU |                  | NNU4900             | _                  | Sono presenti anche una scanalatura e un foro per l'olio al centro della larghezza dell'anello esterno.                                                                                                                                                                                                                                                            |
| Cuscinetti a rulli<br>conici incrociati                                 |                  | XRN<br>XRG          | _                  | <ul> <li>Progettati come alternativa ai cuscinetti a rulli conici, questa serie fornisce un carico assiale elevato e rigidità del carico di coppia.</li> <li>I rulli presentano centri di rotazione e orbitali per una rotazione uniforme.</li> </ul>                                                                                                              |
| Cuscinetti per supporto viti con                                        |                  | TAB                 | 60°                | <ul> <li>Utilizzati principalmente in applicazioni di supporto per viti con ricircolo di sfere di macchine utensili.</li> <li>Disponibile tipo aperto e tipo a tenuta (tipo a contatto, tipo non a contatto).</li> </ul>                                                                                                                                           |
| ricircolo di sfere                                                      |                  | TAF                 | 50°<br>(55°)       | <ul> <li>Utilizzati principalmente in applicazioni di supporto per viti con ricircolo di sfere a carico elevato di macchine utensili per lo stampo a iniezione.</li> <li>Le sfere di diametro ampio forniscono un angolo di contatto grande per capacità di carico di spinta elevata.</li> </ul>                                                                   |

# Cuscinetti obliqui a sfere Tipo standard





#### **Caratteristiche**

- Nei cuscinetti obliqui a sfere, le sfere e le piste di scorrimento dell'anello interno e dell'anello esterno formano un angolo di contatto specifico. Se utilizzati in configurazione singola, il carico assiale è limitato ad una sola direzione e questo tipo di cuscinetti è idoneo per carichi composti in senso assiale e radiale.
- Dato che questo tipo di cuscinetti presenta un angolo di contatto, i componenti assiali sono generati quando si applica un carico radiale. Pertanto, questo tipo di cuscinetti è usato di norma in coppia alle estremità dell'albero.
- Sono disponibili le sfere in ceramica.

#### Angolo di contatto

Sono disponibili due angoli di contatto: a 15° e a 25°. 15° per applicazioni ad alta velocità. 25° per applicazioni che richiedono elevata rigidità assiale.

#### Gabbia

Come standard viene fornita una gabbia poliammidica di guida per la sfera. La gabbia poliammidica deve essere usata a temperature inferiori a 120°.

#### Precisione dimensionale, precisione rotazionale

Conforme a JIS Classe 5 o Classe 4. Vedere pagina 7 per maggiori dettagli.

#### **Precarico**

- Sono disponibili quattro tipi di impostazioni del precarico standard.
   Utilizzare la tabella per selezionare il precarico che soddisfa le proprie esigenze.
- Vedere le pagine da 16 a 18 per i precarichi standard disponibili per ciascuna serie e dimensione.

#### Criteri di scelta del precarico

| Codice precarico            | Criteri di scelta                                                                        |
|-----------------------------|------------------------------------------------------------------------------------------|
| E (precarico ultra leggero) | Evita vibrazioni meccaniche e aumenta la precisione.                                     |
| L (precarico leggero)       | Fornisce rigidità ad alte velocità (valore dmn = 500.000) di funzionamento.              |
| M (precarico medio)         | Fornisce rigidità maggiore del precarico leggero per velocità standard di funzionamento. |
| H (precarico pesante)       | Fornisce massima rigidità per funzionamento a basse velocità.                            |

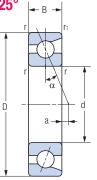
#### **Montaggio**

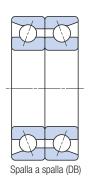
Vedere pagina 12 e 13 per disposizioni multiple.

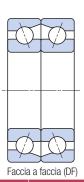
#### Tipi di sfere in ceramica

Sono disponibili anche cuscinetti con sfere in ceramiche con densità minore delle sfere in acciaio per forza centrifuga minore quando le sfere ruotano ad alte velocità.

- Le caratteristiche delle sfere in ceramica e delle sfere in acciaio sono mostrate nella sequente tabella.
- Il numero del cuscinetto che utilizza sfere in ceramica inizia per "SH6-".
- Il precarico e la rigidità assiale è circa 1,2 volte quello dei cuscinetti con sfere in acciaio.

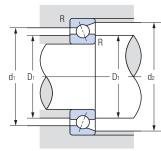

Confronto tra le caratteristiche delle sfere in ceramica e delle sfere in acciaio

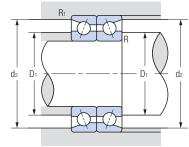

| Caratteristiche                     | Unità | Ceramica<br>(Si₃N₄)       | Sfere in acciaio<br>(SUJ2)   |
|-------------------------------------|-------|---------------------------|------------------------------|
| Resistenza termica                  | °C    | 800                       | 180                          |
| Densità                             | g/cc  | 3,2                       | 7,8                          |
| Coefficiente di espansione lineare  | 1/°C  | 3,2×10 <sup>-6</sup>      | 12,5×10 <sup>-6</sup>        |
| Durezza                             | Hv    | 1400~1700                 | 700~800                      |
| Coefficiente elastico longitudinale | GPa   | 314                       | 206                          |
| Rapporto di Poisson                 |       | 0,26                      | 0,30                         |
| Resistenza alla corrosione          |       | Buona                     | Non buona                    |
| Magnetismo                          |       | Sostanza non<br>magnetica | Sostanza altamente magnetica |
| Conduttività                        |       | Materiale isolante        | Conduttore                   |
| Legame chimico cristallino          |       | Covalente                 | Metallico                    |

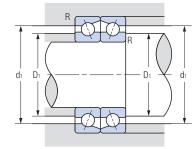

## Cuscinetti obliqui a sfere

Angolo di contatto  $\alpha$  = 15° **Serie 7900C** 

Angolo di contatto  $\alpha$  = 25° Serie 7900AC






|               |    | Dim | ensioni limite ( | mm)        | Centro di carico | Coefficiente di<br>carico dinamico | Coefficiente di<br>carico statico |                     |  |
|---------------|----|-----|------------------|------------|------------------|------------------------------------|-----------------------------------|---------------------|--|
| Cuscinetto n. | d  | D   | В                | r<br>(Min) | r1<br>(Min)      | a<br>(mm)                          | di base<br>Cr<br>(kN)             | base<br>Cor<br>(kN) |  |
| 7900C         | 10 | 22  | 6                | 0,3        | 0,15             | -0,9                               | 3,00                              | 1,52                |  |
| 7900AC        | 10 | 22  | 6                | 0,3        | 0,15             | 0,7                                | 2,88                              | 1,45                |  |
| 7901C         | 12 | 24  | 6                | 0,3        | 0,15             | -0,6                               | 3,20                              | 1,72                |  |
| 7901AC        | 12 | 24  | 6                | 0,3        | 0,15             | 1,2                                | 3,05                              | 1,63                |  |
| 7902C         | 15 | 28  | 7                | 0,3        | 0,15             | -0,6                               | 4,75                              | 2,64                |  |
| 7902AC        | 15 | 28  | 7                | 0,3        | 0,15             | 1,5                                | 4,55                              | 2,53                |  |
| 7903C         | 17 | 30  | 7                | 0,3        | 0,15             | -0,3                               | 5,00                              | 2,95                |  |
| 7903AC        | 17 | 30  | 7                | 0,3        | 0,15             | 2,1                                | 4,75                              | 2,82                |  |
| 7904C         | 20 | 37  | 9                | 0,3        | 0,15             | -0,7                               | 7,30                              | 4,55                |  |
| 7904AC        | 20 | 37  | 9                | 0,3        | 0,15             | 2,1                                | 6,95                              | 4,35                |  |
| 7905C         | 25 | 42  | 9                | 0,3        | 0,15             | 0,1                                | 7,80                              | 5,45                |  |
| 7905AC        | 25 | 42  | 9                | 0,3        | 0,15             | 3,5                                | 7,40                              | 5,15                |  |
| 7906C         | 30 | 47  | 9                | 0,3        | 0,15             | 0,7                                | 8,30                              | 6,25                |  |
| 7906AC        | 30 | 47  | 9                | 0,3        | 0,15             | 4,5                                | 7,85                              | 5,95                |  |
| 7907C         | 35 | 55  | 10               | 0,6        | 0,3              | 1,0                                | 12,5                              | 9,65                |  |
| 7907AC        | 35 | 55  | 10               | 0,6        | 0,3              | 5,5                                | 11,9                              | 9,20                |  |
| 7908C         | 40 | 62  | 12               | 0,6        | 0,3              | 0,8                                | 15,7                              | 12,4                |  |
| 7908AC        | 40 | 62  | 12               | 0,6        | 0,3              | 5,9                                | 14,9                              | 11,8                |  |
| 7909C         | 45 | 68  | 12               | 0,6        | 0,3              | 1,6                                | 16,6                              | 14,1                |  |
| 7909AC        | 45 | 68  | 12               | 0,6        | 0,3              | 7,2                                | 15,7                              | 13,3                |  |
| 7910C         | 50 | 72  | 12               | 0,6        | 0,3              | 2,2                                | 17,7                              | 15,5                |  |
| 7910AC        | 50 | 72  | 12               | 0.6        | 0.3              | 8.2                                | 16.4                              | 14.9                |  |

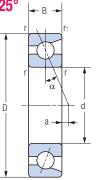






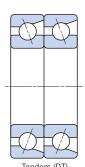
| Disnos | izione  | singola |  |
|--------|---------|---------|--|
| Diopus | 1210110 | oniguia |  |

Spalla a spalla


Faccia-a-faccia


|                           |                            | -1                      | opositions on gold      |                         |            |                         |                       | r doord a radord |  |  |
|---------------------------|----------------------------|-------------------------|-------------------------|-------------------------|------------|-------------------------|-----------------------|------------------|--|--|
| Limite velocit<br>(giri/  |                            |                         | Rag                     | Massa                   |            |                         |                       |                  |  |  |
| Lubrificazione con grasso | Lubrificazione<br>con olio | D <sub>1</sub><br>(Min) | d <sub>1</sub><br>(Max) | d <sub>2</sub><br>(Max) | R<br>(Max) | R <sub>1</sub><br>(Max) | (kg)<br>(Riferimento) | Cuscinetto n.    |  |  |
| 73000                     | 100000                     | 12,5                    | 19,5                    | 20,8                    | 0,3        | 0,15                    | 0,008                 | 7900C            |  |  |
| 63500                     | 85000                      | 12,5                    | 19,5                    | 20,8                    | 0,3        | 0,15                    | 0,008                 | 7900AC           |  |  |
| 64800                     | 88800                      | 14,5                    | 21,5                    | 22,8                    | 0,3        | 0,15                    | 0,010                 | 7901C            |  |  |
| 56400                     | 75500                      | 14,5                    | 21,5                    | 22,8                    | 0,3        | 0,15                    | 0,010                 | 7901AC           |  |  |
| 54300                     | 74400                      | 17,5                    | 25,5                    | 26,8                    | 0,3        | 0,15                    | 0,015                 | 7902C            |  |  |
| 47200                     | 63200                      | 17,5                    | 25,5                    | 26,8                    | 0,3        | 0,15                    | 0,015                 | 7902AC           |  |  |
| 49700                     | 68000                      | 19,5                    | 27,5                    | 28,8                    | 0,3        | 0,15                    | 0,016                 | 7903C            |  |  |
| 43200                     | 57800                      | 19,5                    | 27,5                    | 28,8                    | 0,3        | 0,15                    | 0,016                 | 7903AC           |  |  |
| 41000                     | 56100                      | 22,5                    | 34,5                    | 35,8                    | 0,3        | 0,15                    | 0,035                 | 7904C            |  |  |
| 35600                     | 47700                      | 22,5                    | 34,5                    | 35,8                    | 0,3        | 0,15                    | 0,035                 | 7904AC           |  |  |
| 34800                     | 47700                      | 27,5                    | 39,5                    | 40,8                    | 0,3        | 0,15                    | 0,041                 | 7905C            |  |  |
| 30300                     | 40600                      | 27,5                    | 39,5                    | 40,8                    | 0,3        | 0,15                    | 0,041                 | 7905AC           |  |  |
| 30300                     | 41500                      | 32,5                    | 44,5                    | 45,8                    | 0,3        | 0,15                    | 0,046                 | 7906C            |  |  |
| 26300                     | 35300                      | 32,5                    | 44,5                    | 45,8                    | 0,3        | 0,15                    | 0,046                 | 7906AC           |  |  |
| 25900                     | 35500                      | 39,5                    | 50,5                    | 52,5                    | 0,6        | 0,3                     | 0,074                 | 7907C            |  |  |
| 22500                     | 30200                      | 39,5                    | 50,5                    | 52,5                    | 0,6        | 0,3                     | 0,074                 | 7907AC           |  |  |
| 22900                     | 31300                      | 44,5                    | 57,5                    | 59,5                    | 0,6        | 0,3                     | 0,107                 | 7908C            |  |  |
| 19900                     | 26600                      | 44,5                    | 57,5                    | 59,5                    | 0,6        | 0,3                     | 0,107                 | 7908AC           |  |  |
| 20600                     | 28300                      | 49,5                    | 63,5                    | 65,5                    | 0,6        | 0,3                     | 0,127                 | 7909C            |  |  |
| 18000                     | 24000                      | 49,5                    | 63,5                    | 65,5                    | 0,6        | 0,3                     | 0,127                 | 7909AC           |  |  |
| 19100                     | 26200                      | 54,5                    | 67,5                    | 69,5                    | 0,6        | 0,3                     | 0,128                 | 7910C            |  |  |
| 16600                     | 22300                      | 54,5                    | 67,5                    | 69,5                    | 0,6        | 0,3                     | 0,128                 | 7910AC           |  |  |

### Cuscinetti obliqui a sfere


Serie 7000C Angolo di contatto  $\alpha$  = 15°

Serie 7000AC Angolo di contatto  $\alpha$  = 25°



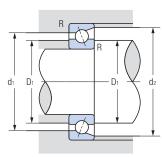


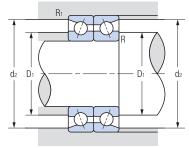


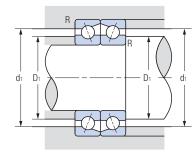


|               |      |      |                  |       | Spalla a spalla | a (DB) Facci                  | a a faccia (DF)                                  | Tandem (DT)                |  |
|---------------|------|------|------------------|-------|-----------------|-------------------------------|--------------------------------------------------|----------------------------|--|
| Cuscinetto n. |      | 1    | ensioni limite ( | mm)   | r1              | Centro di carico<br>a<br>(mm) | Coefficiente di carico<br>dinamico di base<br>Cr | carico statico base<br>Cor |  |
|               | d    | D    | В                | (Min) | (Min)           |                               | (kN)                                             | (kN)                       |  |
| 7000C         | 10   | 26   | 8                | 0,3   | 0,15            | -1,9                          | 5,35                                             | 2,50                       |  |
| 7000AC        | 10   | 26   | 8                | 0,3   | 0,15            | 0,2                           | 5,15                                             | 2,41                       |  |
| 7001C         | 12   | 28   | 8                | 0,3   | 0,15            | -1,7                          | 5,80                                             | 2,91                       |  |
| 7001AC        | 12   | 28   | 8                | 0,3   | 0,15            | 0,7                           | 5,60                                             | 2,79                       |  |
| 7002C         | 15   | 32   | 9                | 0,3   | 0,15            | -1,8                          | 6,65                                             | 3,70                       |  |
| 7002AC        | 15   | 32   | 9                | 0,3   | 0,15            | 1,0                           | 6,30                                             | 3,55                       |  |
| 7003C         | 17   | 35   | 10               | 0,3   | 0,15            | -2,0                          | 7,00                                             | 4,15                       |  |
| 7003AC        | 17   | 35   | 10               | 0,3   | 0,15            | 1,1                           | 6,65                                             | 3,95                       |  |
| 7004C         | 20   | 42   | 12               | 0,6   | 0,3             | -2,4                          | 11,2                                             | 6,60                       |  |
| 7004AC        | 20   | 42   | 12               | 0,6   | 0,3             | 1,2                           | 10,6                                             | 6,25                       |  |
| 7005C         | 25   | 47   | 12               | 0,6   | 0,3             | -1,8                          | 12,9                                             | 8,65                       |  |
| 7005AC        | 25   | 47   | 12               | 0,6   | 0,3             | 2,4                           | 11,7                                             | 7,60                       |  |
| 7006C         | 30   | 55   | 13               | 1     | 0,6             | -1,6                          | 16,0                                             | 11,1                       |  |
| 7006AC        | 30   | 55   | 13               | 1     | 0,6             | 3,4                           | 15,1                                             | 10,5                       |  |
| 7007C         | 35   | 62   | 14               | 1     | 0,6             | -1,4                          | 19,3                                             | 13,7                       |  |
| 7007AC        | 35   | 62   | 14               | 1     | 0,6             | 4,3                           | 18,2                                             | 13,0                       |  |
| 7008C         | 40   | 68   | 15               | 1     | 0,6             | -1,3                          | 20,7                                             | 16,0                       |  |
| 7008AC        | 40   | 68   | 15               | 1     | 0,6             | 5,1                           | 19,5                                             | 15,1                       |  |
| 7009C         | 45   | 75   | 16               | 1     | 0,6             | -1,1                          | 24,6                                             | 19,4                       |  |
| 7009AC        | 45   | 75   | 16               | 1     | 0,6             | 6,0                           | 23,1                                             | 18,3                       |  |
| 7010C         | 50   | 80   | 16               | 1     | 0,6             | -0,5                          | 26,2                                             | 22,0                       |  |
| 7010AC        | 50   | 80   | 16               | 1     | 0,6             | 7,2                           | 23,7                                             | 19,7                       |  |
| 7011C         | 55   | 90   | 18               | 1,1   | 0,6             | -0,6                          | 34,5                                             | 28,8                       |  |
| 7011AC        | 55   | 90   | 18               | 1,1   | 0,6             | 7,9                           | 31,0                                             | 25,6                       |  |
| 7012C         | 60   | 95   | 18               | 1,1   | 0,6             | -0,1                          | 35,5                                             | 30,5                       |  |
| 7012AC        | 60   | 95   | 18               | 1,1   | 0,6             | 9,1                           | 32,0                                             | 27,6                       |  |
| 7013C         | 65   | 100  | 18               | 1,1   | 0,6             | 0,5                           | 37,5                                             | 34,5                       |  |
| 7013AC        | 65   | 100  | 18               | 1,1   | 0,6             | 10,2                          | 34,0                                             | 31,0                       |  |
| 7014C         | 70   | 110  | 20               | 1,1   | 0,6             | 0,4                           | 47,0                                             | 43,0                       |  |
| 7014AC        | 70   | 110  | 20               | 1,1   | 0,6             | 11,0                          | 44,5                                             | 41,0                       |  |
| 7015C         | 75   | 115  | 20               | 1,1   | 0,6             | 1,0                           | 48,5                                             | 46,0                       |  |
| 7015AC        | 75   | 115  | 20               | 1,1   | 0,6             | 12,2                          | 45,5                                             | 43,0                       |  |
| 7016C         | 80   | 125  | 22               | 1,1   | 0,6             | 0,8                           | 59,0                                             | 55,5                       |  |
| 7016AC        | 80   | 125  | 22               | 1,1   | 0,6             | 12,9                          | 55,5                                             | 52,5                       |  |
| 7017C         | 85   | 130  | 22               | 1,1   | 0,6             | 1,4                           | 60,5                                             | 59,0                       |  |
| 7017AC        | 85   | 130  | 22               | 1,1   | 0,6             | 14,1                          | 57,0                                             | 55,5                       |  |
| 7018C         | 90   | 140  | 24               | 1,5   | 1               | 1,3                           | 72,0                                             | 69,5                       |  |
| 7018AC        | 90   | 140  | 24               | 1,5   | 1               | 14,8                          | 68,0                                             | 65,5                       |  |
| 7019C         | 95   | 145  | 24               | 1,5   | 1               | 1,9                           | 74,0                                             | 73,5                       |  |
| 7019AC        | 95   | 145  | 24               | 1,5   | 1               | 16,0                          | 69,5                                             | 69,5                       |  |
| 7020C         | 100  | 150  | 24               | 1,5   | 1               | 2,4                           | 76,0                                             | 77,5                       |  |
|               | 4.00 | 1.50 |                  | .,.   |                 |                               | ,-                                               |                            |  |

1,5


17,2


71,0


73,0

100

150

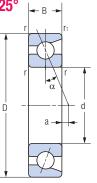


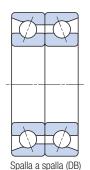


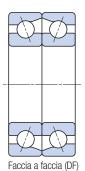


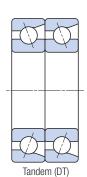
Disposizione singola

Spalla a spalla


alla Faccia-a-faccia

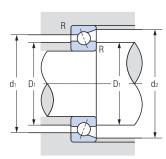

| 0             | Massa                 | Raggio angolare (mm)    |            |                         |                         |                         |                            | Limite velocit<br>(giri/  |
|---------------|-----------------------|-------------------------|------------|-------------------------|-------------------------|-------------------------|----------------------------|---------------------------|
| Cuscinetto n. | (kg)<br>(Riferimento) | R <sub>1</sub><br>(Max) | R<br>(Max) | d <sub>2</sub><br>(Max) | d <sub>1</sub><br>(Max) | D <sub>1</sub><br>(Min) | Lubrificazione<br>con olio | Lubrificazione con grasso |
| 7000C         | 0,022                 | 0,15                    | 0,3        | 25                      | 24                      | 12                      | 89000                      | 65000                     |
| 7000AC        | 0,022                 | 0,15                    | 0,3        | 25                      | 24                      | 12                      | 75500                      | 56500                     |
| 7001C         | 0,024                 | 0,15                    | 0,3        | 27                      | 26                      | 14                      | 80000                      | 58500                     |
| 7001AC        | 0,026                 | 0,15                    | 0,3        | 27                      | 26                      | 14                      | 68000                      | 51000                     |
| 7002C         | 0,035                 | 0,15                    | 0,3        | 31                      | 30                      | 17                      | 68000                      | 49500                     |
| 7002AC        | 0,035                 | 0,15                    | 0,3        | 31                      | 30                      | 17                      | 58000                      | 43000                     |
| 7003C         | 0,045                 | 0,15                    | 0,3        | 34                      | 33                      | 19                      | 61500                      | 45000                     |
| 7003AC        | 0,045                 | 0,15                    | 0,3        | 34                      | 33                      | 19                      | 52500                      | 39000                     |
| 7004C         | 0,079                 | 0,3                     | 0,6        | 40                      | 38                      | 24                      | 51500                      | 37500                     |
| 7004AC        | 0,079                 | 0,3                     | 0,6        | 40                      | 38                      | 24                      | 44000                      | 32500                     |
| 7005C         | 0,091                 | 0,3                     | 0,6        | 45                      | 43                      | 29                      | 44500                      | 32500                     |
| 7005AC        | 0,091                 | 0,3                     | 0,6        | 45                      | 43                      | 29                      | 37500                      | 28200                     |
| 7006C         | 0,135                 | 0,6                     | 1          | 52                      | 50                      | 35                      | 37500                      | 27400                     |
| 7006AC        | 0,135                 | 0,6                     | 1          | 52                      | 50                      | 35                      | 32000                      | 23900                     |
| 7007C         | 0,170                 | 0,6                     | 1          | 59                      | 57                      | 40                      | 33000                      | 24100                     |
| 7007AC        | 0,170                 | 0,6                     | 1          | 59                      | 57                      | 40                      | 28000                      | 21000                     |
| 7008C         | 0,210                 | 0,6                     | 1          | 65                      | 63                      | 45                      | 29600                      | 21600                     |
| 7008AC        | 0,210                 | 0,6                     | 1          | 65                      | 63                      | 45                      | 25200                      | 18800                     |
| 7009C         | 0,265                 | 0,6                     | 1          | 72                      | 70                      | 50                      | 26700                      | 19500                     |
| 7009AC        | 0,265                 | 0,6                     | 1          | 72                      | 70                      | 50                      | 22700                      | 16900                     |
| 7010C         | 0,285                 | 0,6                     | 1          | 77                      | 75                      | 55                      | 24600                      | 18000                     |
| 7010AC        | 0,285                 | 0,6                     | 1          | 77                      | 75                      | 55                      | 20900                      | 15600                     |
| 7011C         | 0,420                 | 0,6                     | 1          | 86                      | 84                      | 61                      | 22100                      | 16100                     |
| 7011AC        | 0,420                 | 0,6                     | 1          | 86                      | 84                      | 61                      | 18800                      | 14000                     |
| 7012C         | 0,450                 | 0,6                     | 1          | 91                      | 89                      | 66                      | 20600                      | 15000                     |
| 7012AC        | 0,450                 | 0,6                     | 1          | 91                      | 89                      | 66                      | 17500                      | 13100                     |
| 7013C         | 0,470                 | 0,6                     | 1          | 96                      | 94                      | 71                      | 19400                      | 14200                     |
| 7013AC        | 0,470                 | 0,6                     | 1          | 96                      | 94                      | 71                      | 16500                      | 12300                     |
| 7014C         | 0,660                 | 0,6                     | 1          | 106                     | 104                     | 76                      | 17800                      | 13000                     |
| 7014AC        | 0,660                 | 0,6                     | 1          | 106                     | 104                     | 76                      | 15100                      | 11300                     |
| 7015C         | 0,695                 | 0,6                     | 1          | 111                     | 109                     | 81                      | 16800                      | 12300                     |
| 7015AC        | 0,695                 | 0,6                     | 1          | 111                     | 109                     | 81                      | 14300                      | 10700                     |
| 7016C         | 0,925                 | 0,6                     | 1          | 121                     | 119                     | 86                      | 15600                      | 11400                     |
| 7016AC        | 0,925                 | 0,6                     | 1          | 121                     | 119                     | 86                      | 13300                      | 9900                      |
| 7017C         | 0,960                 | 0,6                     | 1          | 126                     | 124                     | 91                      | 14900                      | 10900                     |
| 7017AC        | 0,960                 | 0,6                     | 1          | 126                     | 124                     | 91                      | 12700                      | 9400                      |
| 7018C         | 1,26                  | 1                       | 1,5        | 135,6                   | 133                     | 97                      | 13900                      | 10100                     |
| 7018AC        | 1,26                  | 1                       | 1,5        | 135,6                   | 133                     | 97                      | 11800                      | 8800                      |
| 7019C         | 1,36                  | 1                       | 1,5        | 140,6                   | 138                     | 102                     | 13300                      | 9700                      |
| 7019AC        | 1,36                  | 1                       | 1,5        | 140,6                   | 138                     | 102                     | 11300                      | 8400                      |
| 7020C         | 1,37                  | 1                       | 1,5        | 145,6                   | 143                     | 107                     | 12800                      | 9300                      |
| 7020AC        | 1,37                  | 1                       | 1,5        | 145,6                   | 143                     | 107                     | 10900                      | 8100                      |

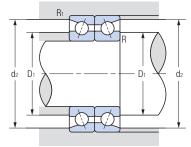

### Cuscinetti obliqui a sfere

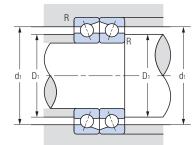

Serie 7200C Angolo di contatto  $\alpha$  = 15°

Serie 7200AC Angolo di contatto  $\alpha$  = 25°






|               |     |     |                  | Spalla a spall | ia (DB) Facci | a a faccia (DF)       | Tandem (DT)                                      |                                         |  |
|---------------|-----|-----|------------------|----------------|---------------|-----------------------|--------------------------------------------------|-----------------------------------------|--|
| Cuscinetto n. |     | Dim | ensioni limite ( | ,              |               | Centro di carico<br>a | Coefficiente di carico<br>dinamico di base<br>Cr | Coefficiente di carico statico base Cor |  |
|               | d   | D   | В                | r<br>(Min)     | r1<br>(Min)   | (mm)                  | (kN)                                             | (kN)                                    |  |
| 7200C         | 10  | 30  | 9                | 0,6            | 0,3           | -2,2                  | 6,95                                             | 3,30                                    |  |
| 7200AC        | 10  | 30  | 9                | 0,6            | 0,3           | 0,2                   | 6,75                                             | 3,20                                    |  |
| 7201C         | 12  | 32  | 10               | 0,6            | 0,3           | -2,5                  | 7,95                                             | 3,90                                    |  |
| 7201AC        | 12  | 32  | 10               | 0,6            | 0,3           | 0,2                   | 7,65                                             | 3,75                                    |  |
| 7202C         | 15  | 35  | 11               | 0,6            | 0,3           | -2,6                  | 8,70                                             | 4,55                                    |  |
| 7202AC        | 15  | 35  | 11               | 0,6            | 0,3           | 0,4                   | 8,35                                             | 4,40                                    |  |
| 7203C         | 17  | 40  | 12               | 0,6            | 0,3           | -2,7                  | 10,9                                             | 5,90                                    |  |
| 7203AC        | 17  | 40  | 12               | 0,6            | 0,3           | 0,8                   | 10,5                                             | 5,65                                    |  |
| 7204C         | 20  | 47  | 14               | 1              | 0,6           | -3,1                  | 14,7                                             | 8,15                                    |  |
| 7204AC        | 20  | 47  | 14               | 1              | 0,6           | 0,9                   | 14,0                                             | 7,80                                    |  |
| 7205C         | 25  | 52  | 15               | 1              | 0,6           | -3,1                  | 16,7                                             | 10,3                                    |  |
| 7205AC        | 25  | 52  | 15               | 1              | 0,6           | 1,6                   | 15,9                                             | 9,80                                    |  |
| 7206C         | 30  | 62  | 16               | 1              | 0,6           | -2,7                  | 23,2                                             | 14,9                                    |  |
| 7206AC        | 30  | 62  | 16               | 1              | 0,6           | 2,8                   | 22,0                                             | 14,1                                    |  |
| 7207C         | 35  | 72  | 17               | 1,1            | 0,6           | -2,3                  | 30,5                                             | 20,1                                    |  |
| 7207AC        | 35  | 72  | 17               | 1,1            | 0,6           | 4                     | 29,1                                             | 19,1                                    |  |
| 7208C         | 40  | 80  | 18               | 1,1            | 0,6           | -2,1                  | 36,5                                             | 25,4                                    |  |
| 7208AC        | 40  | 80  | 18               | 1,1            | 0,6           | 5                     | 34,5                                             | 24,1                                    |  |
| 7209C         | 45  | 85  | 19               | 1,1            | 0,6           | -2,0                  | 41,0                                             | 29,0                                    |  |
| 7209AC        | 45  | 85  | 19               | 1,1            | 0,6           | 5,7                   | 39,0                                             | 27,5                                    |  |
| 7210C         | 50  | 90  | 20               | 1,1            | 0,6           | -1,9                  | 43,0                                             | 32,0                                    |  |
| 7210AC        | 50  | 90  | 20               | 1,1            | 0,6           | 6,3                   | 41,0                                             | 30,5                                    |  |
| 7211C         | 55  | 100 | 21               | 1,5            | 1             | -1,6                  | 53,0                                             | 40,0                                    |  |
| 7211AC        | 55  | 100 | 21               | 1,5            | 1             | 7,6                   | 50,5                                             | 38,0                                    |  |
| 7212C         | 60  | 110 | 22               | 1,5            | 1             | -1,2                  | 64,5                                             | 49,5                                    |  |
| 7212AC        | 60  | 110 | 22               | 1,5            | 1             | 8,8                   | 58,0                                             | 43,5                                    |  |
| 7213C         | 65  | 120 | 23               | 1,5            | 1             | -0,8                  | 73,5                                             | 59,0                                    |  |
| 7213AC        | 65  | 120 | 23               | 1,5            | 1             | 10,1                  | 66,5                                             | 52,0                                    |  |
| 7214C         | 70  | 125 | 24               | 1,5            | 1             | -0,7                  | 80,0                                             | 65,0                                    |  |
| 7214AC        | 70  | 125 | 24               | 1,5            | 1             | 10,7                  | 72,5                                             | 57,5                                    |  |
| 7215C         | 75  | 130 | 25               | 1,5            | 1             | -0,7                  | 83,5                                             | 70,0                                    |  |
| 7215AC        | 75  | 130 | 25               | 1,5            | 1             | 11,4                  | 75,5                                             | 62,5                                    |  |
| 7216C         | 80  | 140 | 26               | 2              | 1             | -0,3                  | 93,5                                             | 78,0                                    |  |
| 7216AC        | 80  | 140 | 26               | 2              | 1             | 12,7                  | 88,5                                             | 74,0                                    |  |
| 7217C         | 85  | 150 | 28               | 2              | 1             | -0,4                  | 100                                              | 85,0                                    |  |
| 7217AC        | 85  | 150 | 28               | 2              | 1             | 13,4                  | 95,0                                             | 81,0                                    |  |
| 7218C         | 90  | 160 | 30               | 2              | 1             | -0,6                  | 124                                              | 105                                     |  |
| 7218AC        | 90  | 160 | 30               | 2              | 1             | 14,2                  | 112                                              | 93,0                                    |  |
| 7219C         | 95  | 170 | 32               | 2,1            | 1,1           | -0,7                  | 133                                              | 115                                     |  |
| 7219AC        | 95  | 170 | 32               | 2,1            | 1,1           | 14,9                  | 126                                              | 107                                     |  |
| 7220C         | 100 | 180 | 34               | 2,1            | 1,1           | -0,8                  | 150                                              | 128                                     |  |
| 7220AC        | 100 | 180 | 34               | 2,1            | 1,1           | 15,7                  | 142                                              | 121                                     |  |

TAB TAF

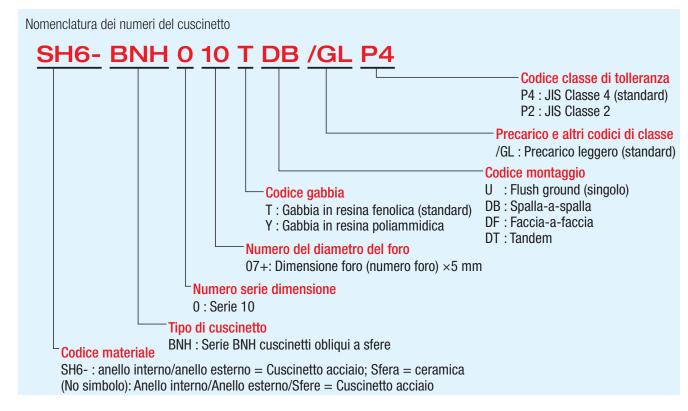






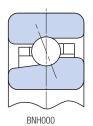
Disposizione singola

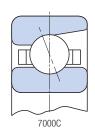
Spalla a spalla


spalla Faccia-a-faccia

| Cuccinatta              | Massa                 |                         | Limite velocità di rotazione (giri/min) Raggio angolare (mm) |                         |                         |             |                            |                           |
|-------------------------|-----------------------|-------------------------|--------------------------------------------------------------|-------------------------|-------------------------|-------------|----------------------------|---------------------------|
| Cuscinetto n.           | (kg)<br>(Riferimento) | R <sub>1</sub><br>(Max) | R<br>(Max)                                                   | d <sub>2</sub><br>(Max) | d <sub>1</sub><br>(Max) | D1<br>(Min) | Lubrificazione<br>con olio | Lubrificazione con grasso |
| 7200C                   | 0,034                 | 0,3                     | 0,6                                                          | 27,4                    | 25                      | 15          | 80000                      | 58500                     |
| 7200AC                  | 0,034                 | 0,3                     | 0,6                                                          | 27,4                    | 25                      | 15          | 68000                      | 51000                     |
| 7201C                   | 0,040                 | 0,3                     | 0,6                                                          | 29,4                    | 27                      | 17          | 72500                      | 53000                     |
| 7201AC                  | 0,040                 | 0,3                     | 0,6                                                          | 29,4                    | 27                      | 17          | 62000                      | 46000                     |
| 7202C                   | 0,048                 | 0,3                     | 0,6                                                          | 32,4                    | 30                      | 20          | 64000                      | 46500                     |
| 7202AC                  | 0,048                 | 0,3                     | 0,6                                                          | 32,4                    | 30                      | 20          | 54500                      | 40500                     |
| 7203C                   | 0,070                 | 0,3                     | 0,6                                                          | 37,4                    | 35                      | 22          | 56000                      | 41000                     |
| 7203AC                  | 0,070                 | 0,3                     | 0,6                                                          | 37,4                    | 35                      | 22          | 47500                      | 35500                     |
| 7204C                   | 0,110                 | 0,6                     | 1                                                            | 43,4                    | 41                      | 26          | 47500                      | 34500                     |
| 7204AC                  | 0,110                 | 0,6                     | 1                                                            | 43,4                    | 41                      | 26          | 40500                      | 30500                     |
| 7205C                   | 0,135                 | 0,6                     | 1                                                            | 48,4                    | 46                      | 31          | 41500                      | 30000                     |
| 7205AC                  | 0,135                 | 0,6                     | 1                                                            | 48,4                    | 46                      | 31          | 35500                      | 26400                     |
| 7206C                   | 0,210                 | 0,6                     | 1                                                            | 58,4                    | 56                      | 36          | 34500                      | 25200                     |
| 7206AC                  | 0,210                 | 0,6                     | 1                                                            | 58,4                    | 56                      | 36          | 29600                      | 22000                     |
| 7207C                   | 0,295                 | 0,6                     | 1                                                            | 67                      | 65                      | 42          | 29900                      | 21800                     |
| 7207AC                  | 0,295                 | 0,6                     | 1                                                            | 67                      | 65                      | 42          | 25400                      | 19000                     |
| 7208C                   | 0,380                 | 0,6                     | 1                                                            | 75                      | 73                      | 47          | 26700                      | 19500                     |
| 7208AC                  | 0,380                 | 0,6                     | 1                                                            | 75                      | 73                      | 47          | 22700                      | 16900                     |
| 7209C                   | 0,430                 | 0,6                     | 1                                                            | 80                      | 78                      | 52          | 24600                      | 18000                     |
| 7209AC                  | 0,430                 | 0,6                     | 1                                                            | 80                      | 78                      | 52          | 20900                      | 15600                     |
| 7210C                   | 0,485                 | 0,6                     | 1                                                            | 85                      | 83                      | 57          | 22900                      | 16700                     |
| 7210AC                  | 0,485                 | 0,6                     | 1                                                            | 85                      | 83                      | 57          | 19400                      | 14500                     |
| 7211C                   | 0,635                 | 1                       | 1,5                                                          | 94,6                    | 91                      | 64          | 20600                      | 15000                     |
| 7211AC                  | 0,635                 | 1                       | 1,5                                                          | 94,6                    | 91                      | 64          | 17500                      | 13100                     |
| 7212C                   | 0,820                 | 1                       | 1,5                                                          | 104,6                   | 101                     | 69          | 18800                      | 13700                     |
| 7212AC                  | 0,820                 | 1                       | 1,5                                                          | 104,6                   | 101                     | 69          | 16000                      | 12000                     |
| 7213C                   | 1,02                  | 1                       | 1,5                                                          | 114,6                   | 111                     | 74          | 17300                      | 12600                     |
| 7213AC                  | 1,02                  | 1                       | 1,5                                                          | 114,6                   | 111                     | 74          | 14700                      | 11000                     |
| 7214C                   | 1,12                  | 0,8                     | 1,5                                                          | 119,6                   | 116                     | 79          | 16400                      | 12000                     |
| 7214AC                  | 1,12                  | 0,8                     | 1,5                                                          | 119,6                   | 116                     | 79          | 13900                      | 10400                     |
| 7215C                   | 1,23                  | 1                       | 1,5                                                          | 124,6                   | 121                     | 84          | 15600                      | 11400                     |
| 7215AC                  | 1,23                  | 1                       | 1,5                                                          | 124,6                   | 121                     | 84          | 13300                      | 9900                      |
| 7216C                   | 1,50                  | 1                       | 2                                                            | 134                     | 130                     | 90          | 14500                      | 10600                     |
| 7216AC                  | 1,50                  | 1                       | 2                                                            | 134                     | 130                     | 90          | 12400                      | 9200                      |
| 7217C                   | 1,87                  | 1                       | 2                                                            | 144                     | 140                     | 95          | 13600                      | 9900                      |
| 7217AC                  | 1,87                  | 1                       | 2                                                            | 144                     | 140                     | 95          | 11600                      | 8600                      |
| 7218C                   | 2,30                  | 1                       | 2                                                            | 154                     | 150                     | 100         | 12800                      | 9300                      |
| 7218AC                  | 2,30                  | 1                       | 2                                                            | 154                     | 150                     | 100         | 10900                      | 8100                      |
| 7219C                   | 2,78                  | 1                       | 2                                                            | 163                     | 158                     | 107         | 12100                      | 8800                      |
| 7219C                   | 2,78                  | 1                       | 2                                                            | 163                     | 158                     | 107         | 10300                      | 7700                      |
| 7219AC                  | 3,32                  | 1                       | 2                                                            | 173                     | 168                     | 112         | 11400                      | 8300                      |
| 7220AC                  | 3,32                  | 1                       | 2                                                            | 173                     | 168                     | 112         | 9700                       | 7200                      |
| cinetti obliqui a sfere |                       |                         | 2                                                            | 170                     | 100                     | 112         | 9100                       | 1200                      |

## Cuscinetti obliqui a sfere ad alta velocità


## Serie BNH






#### Caratteristiche

- Sfere di acciaio per macchine più piccole, velocità più elevate e temperature minori rispetto ai cuscinetti obliqui a sfere precedenti. Utilizzati principalmente per centri di lavorazione ad alta velocità con mandrino principale.
- Sono disponibili le sfere in ceramica.





#### Angolo di contatto

Angolo di contatto a 15° fornito come standard.

#### Gabbia

Come standard viene fornita una gabbia fenolica di guida per la sfera. Disponibile anche una gabbia in resina poliammidica di guida per la sfera.

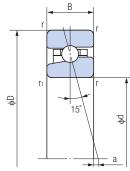
#### Precisione dimensionale, precisione rotazionale

Conforme come standard a JIS Classe 4. Vedere pagina 7 per maggiori dettagli.

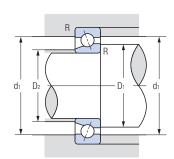
#### **Precarico**

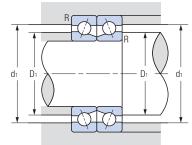
Precarico leggero come standard. Vedere pagina 19 per informazioni relative ai precarichi.

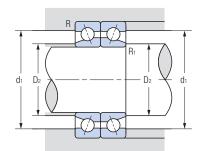
#### Tipi di sfere in ceramica


- Sono disponibili anche cuscinetti con sfere in ceramiche con densità minore delle sfere in acciaio per forza centrifuga minore quando le sfere ruotano ad alte velocità.
- Le caratteristiche delle sfere in ceramica e delle sfere in acciaio sono mostrate nella seguente tabella.
- I numeri dei cuscinetti che utilizzano sfere in ceramica inizia per "SH6-".
- Il precarico e la rigidità assiale è circa 1,2 volte quello dei cuscinetti con sfere in acciaio.

Confronto tra le caratteristiche delle sfere in ceramica e delle sfere in acciaio


| Caratteristiche                        | Unità | Ceramica<br>(Si₃N₄)       | Sfere in acciaio<br>(SUJ2)   |
|----------------------------------------|-------|---------------------------|------------------------------|
| Resistenza termica                     | °C    | 800                       | 180                          |
| Densità                                | g/cc  | 3,2                       | 7,8                          |
| Coefficiente di espansione<br>lineare  | 1/°C  | 3,2×10 <sup>-6</sup>      | 12,5×10 <sup>-6</sup>        |
| Durezza                                | Hv    | 1400~1700                 | 700~800                      |
| Coefficiente elastico<br>longitudinale | GPa   | 314                       | 206                          |
| Rapporto di Poisson                    |       | 0,26                      | 0,30                         |
| Resistenza alla corrosione             |       | Buona                     | Non buona                    |
| Magnetismo                             |       | Sostanza non<br>magnetica | Sostanza altamente magnetica |
| Conduttività                           |       | Materiale isolante        | Conduttore                   |
| Legame chimico cristallino             |       | Covalente                 | Metallico                    |


## Serie BNH Cuscinetti obliqui a sfere ad alta velocità


Angolo di contatto 15°



|               |     | Dim | ensioni limite ( | mm)        |             | Occidental di consiste        | Coefficiente di                          | Coefficiente di                       |  |
|---------------|-----|-----|------------------|------------|-------------|-------------------------------|------------------------------------------|---------------------------------------|--|
| Cuscinetto n. | d   | D   | В                | r<br>(Min) | r1<br>(Min) | Centro di carico<br>a<br>(mm) | carico dinamico<br>di base<br>Cr<br>(kN) | carico statico<br>base<br>Cor<br>(kN) |  |
| BNH007        | 35  | 62  | 14               | 1          | 0,6         | -0,5                          | 11,6                                     | 9,95                                  |  |
| BNH008        | 40  | 68  | 15               | 1          | 0,6         | -0,3                          | 14,8                                     | 12,9                                  |  |
| BNH009        | 45  | 75  | 16               | 1          | 0,6         | 0                             | 15,5                                     | 14,5                                  |  |
| BNH010        | 50  | 80  | 16               | 1          | 0,6         | 0,7                           | 16,1                                     | 15,9                                  |  |
| BNH011        | 55  | 90  | 18               | 1,1        | 0,6         | 0,7                           | 20,0                                     | 20,1                                  |  |
| BNH012        | 60  | 95  | 18               | 1,1        | 0,6         | 1,4                           | 20,8                                     | 21,9                                  |  |
| BNH013        | 65  | 100 | 18               | 1,1        | 0,6         | 2,1                           | 21,5                                     | 23,4                                  |  |
| BNH014        | 70  | 110 | 20               | 1,1        | 0,6         | 2,1                           | 29,4                                     | 31,5                                  |  |
| BNH015        | 75  | 115 | 20               | 1,1        | 0,6         | 2,7                           | 29,8                                     | 32,5                                  |  |
| BNH016        | 80  | 125 | 22               | 1,1        | 0,6         | 2,7                           | 35,0                                     | 39,0                                  |  |
| BNH017        | 85  | 130 | 22               | 1,1        | 0,6         | 3,4                           | 35,5                                     | 40,0                                  |  |
| BNH018        | 90  | 140 | 24               | 1,5        | 1           | 3,4                           | 46,5                                     | 53,0                                  |  |
| BNH019        | 95  | 145 | 24               | 1,5        | 1           | 4,1                           | 47,0                                     | 55,0                                  |  |
| BNH020        | 100 | 150 | 24               | 1,5        | 1           | 4,7                           | 48,0                                     | 56,5                                  |  |
| BNH021        | 105 | 160 | 26               | 2          | 1           | 4,8                           | 54,5                                     | 65,0                                  |  |
| BNH022        | 110 | 170 | 28               | 2          | 1           | 4,8                           | 61,0                                     | 74,0                                  |  |
| BNH024        | 120 | 180 | 28               | 2          | 1           | 6,1                           | 63,0                                     | 79,0                                  |  |
| BNH026        | 130 | 200 | 33               | 2          | 1           | 5,6                           | 83,5                                     | 105                                   |  |
| BNH028        | 140 | 210 | 33               | 2          | 1           | 6,9                           | 86,0                                     | 112                                   |  |
| BNH030        | 150 | 225 | 35               | 2,1        | 1,1         | 7,6                           | 102                                      | 132                                   |  |
| BNH032        | 160 | 240 | 38               | 2,1        | 1,1         | 7,8                           | 110                                      | 145                                   |  |
| BNH034        | 170 | 260 | 42               | 2,1        | 1,1         | 7,8                           | 129                                      | 173                                   |  |







Disposizione singola o tandem

Spalla a spalla

Faccia-a-faccia

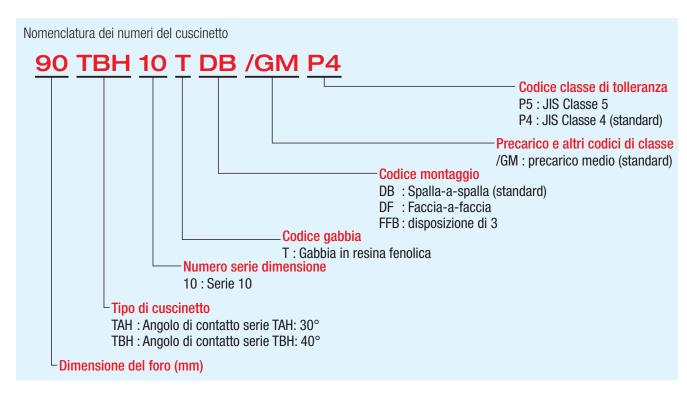
|                              | Dioposizione singola o     |                         |                         | орини и орини          |     |                         | i doold a idoold               |               |
|------------------------------|----------------------------|-------------------------|-------------------------|------------------------|-----|-------------------------|--------------------------------|---------------|
| Limite velocità di r         | otazione (giri/min)        |                         | Rag                     | gio angolare (r        | nm) |                         | Massa                          |               |
| Lubrificazione con<br>grasso | Lubrificazione<br>con olio | D <sub>1</sub><br>(Min) | D <sub>2</sub><br>(Min) | d <sub>1</sub> R (Max) |     | R <sub>1</sub><br>(Max) | Massa<br>(kg)<br>(Riferimento) | Cuscinetto n. |
| 28900                        | 39000                      | 40                      | 39                      | 57                     | 1   | 0,6                     | 0,167                          | BNH007        |
| 26000                        | 35000                      | 45                      | 44                      | 63                     | 1   | 0,6                     | 0,200                          | BNH008        |
| 23400                        | 31500                      | 50                      | 49,5                    | 70                     | 1   | 0,6                     | 0,260                          | BNH009        |
| 21600                        | 29200                      | 55                      | 54,5                    | 75                     | 1   | 0,6                     | 0,280                          | BNH010        |
| 19400                        | 26200                      | 61                      | 59,5                    | 84                     | 1   | 0,6                     | 0,400                          | BNH011        |
| 18100                        | 24500                      | 66                      | 64,5                    | 89                     | 1   | 0,6                     | 0,433                          | BNH012        |
| 17000                        | 23000                      | 71                      | 69,5                    | 94                     | 1   | 0,6                     | 0,460                          | BNH013        |
| 15600                        | 21100                      | 76                      | 74,5                    | 104                    | 1   | 0,6                     | 0,650                          | BNH014        |
| 14800                        | 20000                      | 81                      | 79,5                    | 109                    | 1   | 0,6                     | 0,690                          | BNH015        |
| 13700                        | 18500                      | 86                      | 84,5                    | 119                    | 1   | 0,6                     | 0,930                          | BNH016        |
| 13100                        | 17700                      | 91                      | 89,5                    | 124                    | 1   | 0,6                     | 0,973                          | BNH017        |
| 12200                        | 16500                      | 97                      | 95,5                    | 133                    | 1,5 | 1                       | 1,27                           | BNH018        |
| 11700                        | 15800                      | 102                     | 100,5                   | 138                    | 1,5 | 1                       | 1,33                           | BNH019        |
| 11200                        | 15200                      | 107                     | 105,5                   | 143                    | 1,5 | 1                       | 1,39                           | BNH020        |
| 10600                        | 14300                      | 115                     | 110,5                   | 150                    | 2   | 1                       | 1,77                           | BNH021        |
| 10000                        | 13600                      | 120                     | 115,5                   | 160                    | 2   | 1                       | 2,18                           | BNH022        |
| 9400                         | 12700                      | 130                     | 125,5                   | 170                    | 2   | 1                       | 2,32                           | BNH024        |
| 8500                         | 11500                      | 140                     | 135,5                   | 190                    | 2   | 1                       | 3,46                           | BNH026        |
| 8000                         | 10900                      | 150                     | 145,5                   | 200                    | 2   | 1                       | 3,68                           | BNH028        |
| 7500                         | 10100                      | 161                     | 156                     | 213                    | 2   | 1                       | 4,55                           | BNH030        |
| 7000                         | 9500                       | 172                     | 166                     | 228                    | 2   | 1                       | 5,57                           | BNH032        |
| 6500                         | 8800                       | 182                     | 176                     | 248                    | 2   | 1                       | 7,50                           | BNH034        |

## Cuscinetti obliqui a sfere con carico di spinta

## Serie TAH/TBH

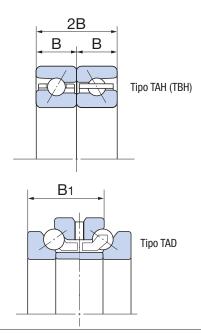


7900 7000 7200


BNH

TBH NN3000

NNU4900


XRN XRG

TAB



#### Caratteristiche

- Stesso numero e diametro di sfere del tipo TAD20, cuscinetti obliqui a sfere di spinta in direzione doppia e angoli di contatto minori, 30° (serie TAH) o 40° (serie TBH), ma con migliori prestazioni ad alta velocità senza anello separabile.
- Dimensione larghezza 2B di un montaggio doppio (DB o DF) che è equivalente alla dimensione B1 del tipo TAD20. Le serie TAH/TBH sono intercambiabili modificando il metodo utilizzato per fissarle all'albero.



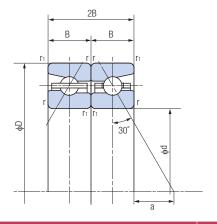
#### Angolo di contatto

Angolo di contatto a 30° per la serie TAH, angolo di contatto a 40° per la serie TBH.

#### Gabbia

Come standard viene fornita una gabbia fenolica di guida per la sfera.

#### Precisione dimensionale, precisione rotazionale


Conformità alla JIS Classe 4 come standard ma il diametro esterno anello esterno presenta tolleranze minori rispetto al cuscinetto radiale usato insieme. Vedere pagina 9 per maggiori dettagli.

#### **Precarico**

Precarico medio come standard. Vedere pagina 19 per informazioni relative ai precarichi.

## Cuscinetti obliqui a sfere con carico di spinta Serie TAH

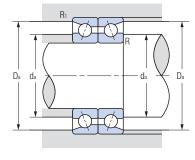
Angolo di contatto 30°



1N=0,102kgf

|    |               |     | Dim | ensioni limite ( | mm)        |             | O and the all a series        | Coefficiente di                          | Coefficiente di                       |  |
|----|---------------|-----|-----|------------------|------------|-------------|-------------------------------|------------------------------------------|---------------------------------------|--|
| (  | Cuscinetto n. | d   | D   | 2B               | r<br>(Min) | r1<br>(Min) | Centro di carico<br>a<br>(mm) | carico dinamico<br>di base<br>Ca<br>(kN) | carico statico<br>base<br>Coa<br>(kN) |  |
|    | 50TAH10DB     | 50  | 80  | 28,5             | 1          | 0,6         | 11,6                          | 19,2                                     | 40,5                                  |  |
|    | 55TAH10DB     | 55  | 90  | 33               | 1,1        | 0,6         | 12,7                          | 23,8                                     | 51,0                                  |  |
| (  | OTAH10DB      | 60  | 95  | 33               | 1,1        | 0,6         | 14,1                          | 24,7                                     | 56,0                                  |  |
| (  | STAH10DB      | 65  | 100 | 33               | 1,1        | 0,6         | 15,6                          | 25,6                                     | 61,0                                  |  |
| 7  | 70TAH10DB     | 70  | 110 | 36               | 1,1        | 0,6         | 17,0                          | 35,0                                     | 80,0                                  |  |
| 7  | 75TAH10DB     | 75  | 115 | 36               | 1,1        | 0,6         | 18,4                          | 35,5                                     | 83,5                                  |  |
| 8  | 30TAH10DB     | 80  | 125 | 40,5             | 1,1        | 0,6         | 19,5                          | 41,5                                     | 99,5                                  |  |
| 8  | 35TAH10DB     | 85  | 130 | 40,5             | 1,1        | 0,6         | 20,9                          | 42,0                                     | 104                                   |  |
|    | OTAH10DB      | 90  | 140 | 45               | 1,5        | 1           | 21,9                          | 55,5                                     | 135                                   |  |
| 9  | 95TAH10DB     | 95  | 145 | 45               | 1,5        | 1           | 23,4                          | 56,0                                     | 141                                   |  |
| 10 | OTAH10DB      | 100 | 150 | 45               | 1,5        | 1           | 24,8                          | 57,0                                     | 147                                   |  |
| 10 | 5TAH10DB      | 105 | 160 | 49,5             | 2          | 1           | 25,9                          | 64,5                                     | 168                                   |  |
| 11 | IOTAH10DB     | 110 | 170 | 54               | 2          | 1           | 26,9                          | 73,0                                     | 191                                   |  |
| 12 | 20TAH10DB     | 120 | 180 | 54               | 2          | 1           | 29,8                          | 75,0                                     | 207                                   |  |
| 13 | 30TAH10DB     | 130 | 200 | 63               | 2          | 1           | 31,9                          | 99,5                                     | 269                                   |  |
| 14 | 10TAH10DB     | 140 | 210 | 63               | 2          | 1           | 34,8                          | 103                                      | 291                                   |  |
| 15 | 50TAH10DB     | 150 | 225 | 67,5             | 2,1        | 1,1         | 37,3                          | 121                                      | 340                                   |  |
| 16 | 60TAH10DB     | 160 | 240 | 72               | 2,1        | 1,1         | 39,7                          | 131                                      | 375                                   |  |
| 17 | 70TAH10DB     | 170 | 260 | 81               | 2,1        | 1,1         | 41,8                          | 154                                      | 445                                   |  |

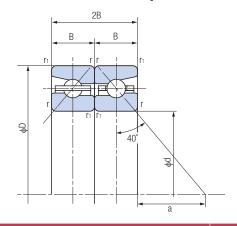



Tipologie e progettazione 7900 7000 7200

BNH

TAH TBH

NN3000 NNU4900


XRN XRG TAB TAF



| Limite velocità di r         | rotazione (giri/min)       |             | Raggio ang  | olare (mm) |                         | Massa                 |               |
|------------------------------|----------------------------|-------------|-------------|------------|-------------------------|-----------------------|---------------|
| Lubrificazione<br>con grasso | Lubrificazione<br>con olio | da<br>(Min) | Da<br>(Max) | R<br>(Min) | R <sub>1</sub><br>(Min) | (kg)<br>(Riferimento) | Cuscinetto n. |
| 11500                        | 14600                      | 61          | 75          | 1          | 0,6                     | 0,266                 | 50TAH10DB     |
| 10300                        | 13100                      | 68          | 84          | 1          | 0,6                     | 0,405                 | 55TAH10DB     |
| 9700                         | 12300                      | 73          | 89          | 1          | 0,6                     | 0,432                 | 60TAH10DB     |
| 9100                         | 11500                      | 78          | 94          | 1          | 0,6                     | 0,460                 | 65TAH10DB     |
| 8300                         | 10600                      | 85          | 104         | 1          | 0,6                     | 0,622                 | 70TAH10DB     |
| 7900                         | 10000                      | 90          | 109         | 1          | 0,6                     | 0,655                 | 75TAH10DB     |
| 7300                         | 9200                       | 97          | 118         | 1          | 0,6                     | 0,900                 | 80TAH10DB     |
| 7000                         | 8800                       | 102         | 123         | 1          | 0,6                     | 0,944                 | 85TAH10DB     |
| 6500                         | 8200                       | 107,5       | 132         | 1,5        | 1                       | 1,24                  | 90TAH10DB     |
| 6200                         | 7900                       | 112,5       | 137         | 1,5        | 1                       | 1,30                  | 95TAH10DB     |
| 6000                         | 7600                       | 117,5       | 142         | 1,5        | 1                       | 1,35                  | 100TAH10DB    |
| 5600                         | 7100                       | 125         | 151         | 2          | 1                       | 1,75                  | 105TAH10DB    |
| 5300                         | 6800                       | 132         | 160         | 2          | 1                       | 2,20                  | 110TAH10DB    |
| 5000                         | 6300                       | 142         | 170         | 2          | 1                       | 2,36                  | 120TAH10DB    |
| 4500                         | 5700                       | 156         | 188         | 2          | 1                       | 3,52                  | 130TAH10DB    |
| 4200                         | 5400                       | 166         | 198         | 2          | 1                       | 3,75                  | 140TAH10DB    |
| 4000                         | 5000                       | 178         | 212         | 2          | 1                       | 4,59                  | 150TAH10DB    |
| 3700                         | 4700                       | 190         | 227         | 2          | 1                       | 5,62                  | 160TAH10DB    |
| 3400                         | 4400                       | 204         | 245         | 2          | 1                       | 7,63                  | 170TAH10DB    |

## Cuscinetti obliqui a sfere con carico di spinta Serie TBH

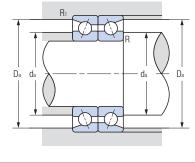
Angolo di contatto 40°



1N=0,102kgf

|                |        |     | Dim | ensioni limite ( | mm)        |             | O and the all a series        | Coefficiente di                          | Coefficiente di                       |  |
|----------------|--------|-----|-----|------------------|------------|-------------|-------------------------------|------------------------------------------|---------------------------------------|--|
| Cuscine        | tto n. | d   | D   | 2B               | r<br>(Min) | r1<br>(Min) | Centro di carico<br>a<br>(mm) | carico dinamico<br>di base<br>Ca<br>(kN) | carico statico<br>base<br>Coa<br>(kN) |  |
| 50TBH          | 10DB   | 50  | 80  | 28,5             | 1          | 0,6         | 20,2                          | 22,8                                     | 53,0                                  |  |
| 55TBH          | 10DB   | 55  | 90  | 33               | 1,1        | 0,6         | 22,2                          | 28,2                                     | 67,0                                  |  |
| 60TBH          | 10DB   | 60  | 95  | 33               | 1,1        | 0,6         | 24,3                          | 29,3                                     | 73,0                                  |  |
| 65TBH          | 10DB   | 65  | 100 | 33               | 1,1        | 0,6         | 26,4                          | 30,0                                     | 79,5                                  |  |
| 70TBH          | 10DB   | 70  | 110 | 36               | 1,1        | 0,6         | 28,8                          | 41,5                                     | 104                                   |  |
| 75 <b>TB</b> H | 10DB   | 75  | 115 | 36               | 1,1        | 0,6         | 30,9                          | 42,0                                     | 109                                   |  |
| 80TBH          | 10DB   | 80  | 125 | 40,5             | 1,1        | 0,6         | 32,9                          | 49,0                                     | 130                                   |  |
| 85 <b>TB</b> H | 10DB   | 85  | 130 | 40,5             | 1,1        | 0,6         | 35,0                          | 50,0                                     | 136                                   |  |
| 90TBH          | 10DB   | 90  | 140 | 45               | 1,5        | 1           | 37,0                          | 65,5                                     | 176                                   |  |
| 95TBH          | 10DB   | 95  | 145 | 45               | 1,5        | 1           | 39,1                          | 66,5                                     | 184                                   |  |
| 100TBH         | 10DB   | 100 | 150 | 45               | 1,5        | 1           | 41,2                          | 67,5                                     | 191                                   |  |
| 105TBH         | 10DB   | 105 | 160 | 49,5             | 2          | 1           | 43,2                          | 76,5                                     | 219                                   |  |
| 110TBH         | 10DB   | 110 | 170 | 54               | 2          | 1           | 45,3                          | 86,0                                     | 249                                   |  |
| 120TBH         | 10DB   | 120 | 180 | 54               | 2          | 1           | 49,5                          | 88,5                                     | 269                                   |  |
| 130TBH         | 10DB   | 130 | 200 | 63               | 2          | 1           | 53,5                          | 118                                      | 350                                   |  |
| 140TBH         | 10DB   | 140 | 210 | 63               | 2          | 1           | 57,7                          | 121                                      | 380                                   |  |
| 150TBH         | 10DB   | 150 | 225 | 67,5             | 2,1        | 1,1         | 61,8                          | 143                                      | 445                                   |  |
| 160TBH         | 10DB   | 160 | 240 | 72               | 2,1        | 1,1         | 65,9                          | 155                                      | 490                                   |  |
| 170TBH         | 10DB   | 170 | 260 | 81               | 2,1        | 1,1         | 70,0                          | 182                                      | 580                                   |  |



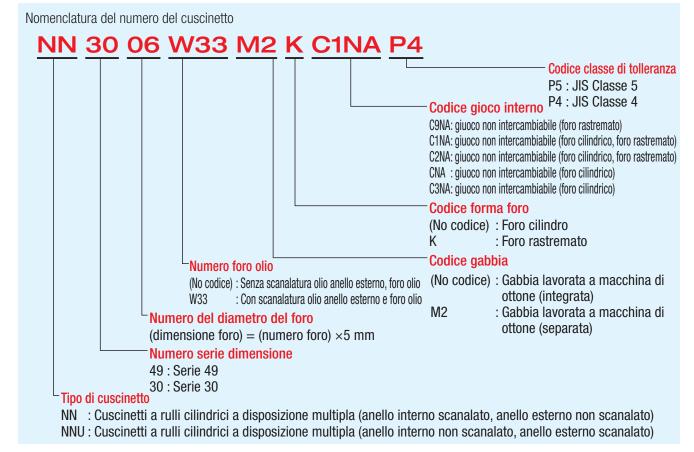

Tipologie e progettazione 7900 7000 7200

BNH

TAH TBH

NN3000 NNU4900

XRN XRG TAB TAF




| Limite velocità di r         | rotazione (giri/min)       |             | Raggio ang  | olare (mm) |                         | Massa                          |               |
|------------------------------|----------------------------|-------------|-------------|------------|-------------------------|--------------------------------|---------------|
| Lubrificazione<br>con grasso | Lubrificazione<br>con olio | da<br>(Min) | Da<br>(Max) | R<br>(Min) | R <sub>1</sub><br>(Min) | Massa<br>(kg)<br>(Riferimento) | Cuscinetto n. |
| 10000                        | 13200                      | 61          | 75          | 1          | 0,6                     | 0,266                          | 50TBH10DB     |
| 8900                         | 11800                      | 68          | 84          | 1          | 0,6                     | 0,405                          | 55TBH10DB     |
| 8300                         | 11000                      | 73          | 89          | 1          | 0,6                     | 0,432                          | 60TBH10DB     |
| 7900                         | 10400                      | 78          | 94          | 1          | 0,6                     | 0,460                          | 65TBH10DB     |
| 7200                         | 9500                       | 85          | 104         | 1          | 0,6                     | 0,622                          | 70TBH10DB     |
| 6800                         | 9000                       | 90          | 109         | 1          | 0,6                     | 0,655                          | 75TBH10DB     |
| 6300                         | 8300                       | 97          | 118         | 1          | 0,6                     | 0,900                          | 80TBH10DB     |
| 6000                         | 7900                       | 102         | 123         | 1          | 0,6                     | 0,944                          | 85TBH10DB     |
| 5600                         | 7400                       | 107,5       | 132         | 1,5        | 1                       | 1,24                           | 90TBH10DB     |
| 5400                         | 7100                       | 112,5       | 137         | 1,5        | 1                       | 1,30                           | 95TBH10DB     |
| 5200                         | 6800                       | 117,5       | 142         | 1,5        | 1                       | 1,35                           | 100TBH10DB    |
| 4900                         | 6400                       | 125         | 151         | 2          | 1                       | 1,75                           | 105TBH10DB    |
| 4600                         | 6100                       | 132         | 160         | 2          | 1                       | 2,20                           | 110TBH10DB    |
| 4300                         | 5700                       | 142         | 170         | 2          | 1                       | 2,36                           | 120TBH10DB    |
| 3900                         | 5200                       | 156         | 188         | 2          | 1                       | 3,52                           | 130TBH10DB    |
| 3700                         | 4900                       | 166         | 198         | 2          | 1                       | 3,75                           | 140TBH10DB    |
| 3400                         | 4500                       | 178         | 212         | 2          | 1                       | 4,59                           | 150TBH10DB    |
| 3200                         | 4200                       | 190         | 227         | 2          | 1                       | 5,62                           | 160TBH10DB    |
| 3000                         | 3900                       | 204         | 245         | 2          | 1                       | 7,63                           | 170TBH10DB    |

## Cuscinetti a rulli cilindrici a disposizione multipla

## Serie NN3000/ Serie NNU4900





#### **Caratteristiche**

- La struttura comparativamente semplice garantisce una precisione elevata. Presenza di un numero elevato di rulli per alta rigidità.
- Minori sezioni di scorrimento rispetto ai cuscinetti a rulli conici per cui minore generazione di calore.
- Il foro rastremato del cuscinetto consente la regolazione del giuoco interno radiale durante il montaggio.
- Questo tipo di cuscinetti non è idoneo per il carico assiale, per cui di solito è usato insieme ai cuscinetti assiali.

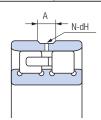
#### Gabbia

Sia la serie NN3000 che la serie NNU4900 sono forniti come standard con gabbia di guida rulli in lega di ottone.

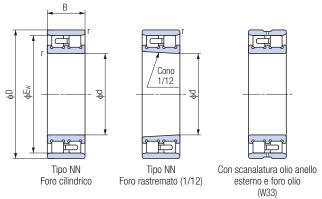
#### Precisione dimensionale, precisione rotazionale

- Conforme a JIS Classe 5 o Classe 4. Vedere pagina 7 per maggiori dettagli.
- Nachi definisce dei propri valori di tolleranza per precisione delle dimensioni. Vedere pagina 11 per maggiori dettagli.

#### Giuoco interno radiale


Nachi definisce i propri giochi non intercambiabili per fori cilindrici e fori conici per ridurre l'inconsistenza dell'eccentricità radiale. Vedere pagina 21 per maggiori dettagli.

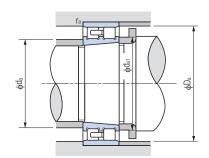
#### Dimensioni foro olio anello esterno


La seguente tabella mostra le dimensioni del foro olio dell'anello esterno e della scanalatura olio (specifiche W33).

| Dimensione larghezz<br>B (r |        | Diametro foro olio<br>dH (mm) | Larghezza<br>scanalatura olio |
|-----------------------------|--------|-------------------------------|-------------------------------|
| Oltre                       | Fino a | uri (ililii)                  | A (mm)                        |
| _                           | 19     | 2                             | 3,5                           |
| 19                          | 25     | 2                             | 4                             |
| 25                          | 35     | 3                             | 6                             |
| 35                          | 50     | 4                             | 8                             |
| 50                          | 80     | 6                             | 10                            |
| 80                          |        | 8                             | 12                            |

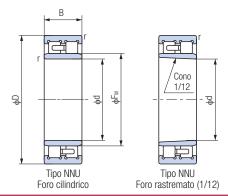
| Dimensioni diametr<br>D (r |        | Numero di fori olio |
|----------------------------|--------|---------------------|
| Oltre                      | Fino a | IN IN               |
|                            | 250    | 4                   |
| 250                        | _      | 6                   |




## Cuscinetti a rulli cilindrici a disposizione multipla Serie NN3000



|                 | (W33)  Cussinatta n  Confficiente di Confficiente di |     |     |                |      |            |                                 |                                   |
|-----------------|------------------------------------------------------|-----|-----|----------------|------|------------|---------------------------------|-----------------------------------|
| Cusci           | netto n.                                             |     | Dim | ensioni limite | (mm) |            | Coefficiente di carico dinamico | Coefficiente di<br>carico statico |
| Foro cilindrico | Foro rastremato                                      | d   | D   | В              | Ew   | r<br>(Min) | di base<br>Cr<br>(kN)           | base<br>Cor<br>(kN)               |
| NN3005          | NN3005K                                              | 25  | 47  | 16             | 41,3 | 0,6        | 25,8                            | 30,0                              |
| NN3006          | NN3006K                                              | 30  | 55  | 19             | 48,5 | 1          | 31,0                            | 37,0                              |
| NN3007          | NN3007K                                              | 35  | 62  | 20             | 55   | 1          | 39,5                            | 50,0                              |
| NN3008          | NN3008K                                              | 40  | 68  | 21             | 61   | 1          | 43,5                            | 55,5                              |
| NN3009          | NN3009K                                              | 45  | 75  | 23             | 67,5 | 1          | 52,0                            | 65,5                              |
| NN3010          | NN3010K                                              | 50  | 80  | 23             | 72,5 | 1          | 53,0                            | 72,5                              |
| NN3011          | NN3011K                                              | 55  | 90  | 26             | 81   | 1,1        | 69,5                            | 96,5                              |
| NN3012          | NN3012K                                              | 60  | 95  | 26             | 86,1 | 1,1        | 73,5                            | 106                               |
| NN3013          | NN3013K                                              | 65  | 100 | 26             | 91   | 1,1        | 77,0                            | 116                               |
| NN3014          | NN3014K                                              | 70  | 110 | 30             | 100  | 1,1        | 97,5                            | 148                               |
| NN3015          | NN3015K                                              | 75  | 115 | 30             | 105  | 1,1        | 96,5                            | 149                               |
| NN3016          | NN3016K                                              | 80  | 125 | 34             | 113  | 1,1        | 119                             | 186                               |
| NN3017          | NN3017K                                              | 85  | 130 | 34             | 118  | 1,1        | 125                             | 201                               |
| NN3018          | NN3018K                                              | 90  | 140 | 37             | 127  | 1,5        | 143                             | 228                               |
| NN3019          | NN3019K                                              | 95  | 145 | 37             | 132  | 1,5        | 150                             | 246                               |
| NN3020          | NN3020K                                              | 100 | 150 | 37             | 137  | 1,5        | 157                             | 265                               |
| NN3021          | NN3021K                                              | 105 | 160 | 41             | 146  | 2          | 198                             | 320                               |
| NN3022          | NN3022K                                              | 110 | 170 | 45             | 155  | 2          | 229                             | 375                               |
| NN3024          | NN3024K                                              | 120 | 180 | 46             | 165  | 2          | 239                             | 405                               |
| NN3026          | NN3026K                                              | 130 | 200 | 52             | 182  | 2          | 284                             | 475                               |
| NN3028          | NN3028K                                              | 140 | 210 | 53             | 192  | 2          | 298                             | 515                               |
| NN3030          | NN3030K                                              | 150 | 225 | 56             | 206  | 2,1        | 335                             | 585                               |
| NN3032          | NN3032K                                              | 160 | 240 | 60             | 219  | 2,1        | 375                             | 660                               |
| NN3034          | NN3034K                                              | 170 | 260 | 67             | 236  | 2,1        | 450                             | 805                               |
| NN3036          | NN3036K                                              | 180 | 280 | 74             | 255  | 2,1        | 565                             | 995                               |
| NN3038          | NN3038K                                              | 190 | 290 | 75             | 265  | 2,1        | 595                             | 1080                              |
| NN3040          | NN3040K                                              | 200 | 310 | 82             | 282  | 2,1        | 655                             | 1170                              |
| NN3044          | NN3044K                                              | 220 | 340 | 90             | 310  | 3          | 815                             | 1480                              |
| NN3048          | NN3048K                                              | 240 | 360 | 92             | 330  | 3          | 855                             | 1600                              |
| NN3052          | NN3052K                                              | 260 | 400 | 104            | 364  | 4          | 1080                            | 2070                              |
| NN3056          | NN3056K                                              | 280 | 420 | 106            | 384  | 4          | 1080                            | 2080                              |
| NN3060          | NN3060K                                              | 300 | 460 | 118            | 418  | 4          | 1430                            | 2740                              |
| NN3064          | NN3064K                                              | 320 | 480 | 121            | 438  | 4          | 1430                            | 2750                              |


TAH TBH

NN3000 NNU4900 XRN XRG

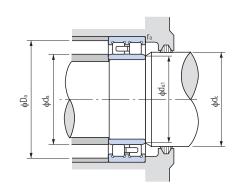


| Limite velocità di           | rotazione (giri/min)       |             | Ra           | ggio angolare (r | nm)   |             |                          |                   |  |
|------------------------------|----------------------------|-------------|--------------|------------------|-------|-------------|--------------------------|-------------------|--|
| Lubrificaziona               | Lubrificazione             | do          | do1          | [                | Da    |             | Massa (kg) (Riferimento) | Cuscinetto n.     |  |
| Lubrificazione<br>con grasso | Lubrificazione<br>con olio | da<br>(Min) | da1<br>(Min) | (Max)            | (Min) | ra<br>(Max) | (Foro rastremato)        | (Foro rastremato) |  |
| 21300                        | 25000                      | 30          | 30           | 42               | 41,8  | 0,6         | 0,123                    | NN3005K           |  |
| 18000                        | 21200                      | 36          | 37           | 49               | 49    | 1           | 0,199                    | NN3006K           |  |
| 15800                        | 18600                      | 41          | 42           | 56               | 56    | 1           | 0,258                    | NN3007K           |  |
| 14200                        | 16700                      | 46          | 48           | 62               | 62    | 1           | 0,312                    | NN3008K           |  |
| 12800                        | 15000                      | 51          | 52           | 69               | 69    | 1           | 0,405                    | NN3009K           |  |
| 11700                        | 13800                      | 56          | 58           | 74               | 74    | 1           | 0,454                    | NN3010K           |  |
| 10500                        | 12400                      | 62          | 64           | 83               | 82    | 1           | 0,651                    | NN3011K           |  |
| 9800                         | 11600                      | 67          | 68           | 88               | 87    | 1           | 0,704                    | NN3012K           |  |
| 9200                         | 10900                      | 72          | 74           | 93               | 92    | 1           | 0,758                    | NN3013K           |  |
| 8500                         | 10000                      | 77          | 78           | 103              | 101   | 1           | 1,04                     | NN3014K           |  |
| 8000                         | 9400                       | 82          | 84           | 108              | 106   | 1           | 1,14                     | NN3015K           |  |
| 7500                         | 8800                       | 87          | 90           | 118              | 114   | 1           | 1,52                     | NN3016K           |  |
| 7100                         | 8300                       | 92          | 96           | 123              | 119   | 1           | 1,61                     | NN3017K           |  |
| 6600                         | 7800                       | 98,5        | 100          | 131,5            | 129   | 1,5         | 2,07                     | NN3018K           |  |
| 6300                         | 7500                       | 103,5       | 106          | 136,5            | 134   | 1,5         | 2,17                     | NN3019K           |  |
| 6100                         | 7200                       | 108,5       | 112          | 141,5            | 139   | 1,5         | 2,26                     | NN3020K           |  |
| 5800                         | 6800                       | 115         | 116          | 150              | 148   | 2           | 2,89                     | NN3021K           |  |
| 5400                         | 6400                       | 120         | 122          | 160              | 157   | 2           | 3,68                     | NN3022K           |  |
| 5100                         | 6000                       | 130         | 132          | 170              | 167   | 2           | 3,98                     | NN3024K           |  |
| 4600                         | 5400                       | 140         | 144          | 190              | 183   | 2           | 5,92                     | NN3026K           |  |
| 4300                         | 5100                       | 150         | 154          | 200              | 194   | 2           | 6,44                     | NN3028K           |  |
| 4100                         | 4800                       | 162         | 164          | 213              | 208   | 2           | 7,81                     | NN3030K           |  |
| 3800                         | 4500                       | 172         | 174          | 228              | 221   | 2           | 8,92                     | NN3032K           |  |
| 3500                         | 4200                       | 182         | 184          | 248              | 238   | 2           | 12,6                     | NN3034K           |  |
| 3300                         | 3900                       | 192         | 196          | 268              | 257   | 2           | 16,6                     | NN3036K           |  |
| 3200                         | 3700                       | 202         | 206          | 278              | 267   | 2           | 17,5                     | NN3038K           |  |
| 2900                         | 3500                       | 212         | 216          | 298              | 285   | 2           | 21,6                     | NN3040K           |  |
| 2700                         | 3200                       | 234         | 238          | 326              | 313   | 2,5         | 28,4                     | NN3044K           |  |
| 2500                         | 3000                       | 254         | 256          | 346              | 333   | 2,5         | 31,8                     | NN3048K           |  |
| 2300                         | 2700                       | 278         | 280          | 382              | 367   | 3           | 46,0                     | NN3052K           |  |
| 2100                         | 2500                       | 298         | 300          | 402              | 387   | 3           | 49,6                     | NN3056K           |  |
| 2000                         | 2300                       | 318         | 325          | 442              | 421   | 3           | 68,7                     | NN3060K           |  |
| 1900                         | 2200                       | 338         | 345          | 462              | 442   | 3           | 74,0                     | NN3064K           |  |

## Cuscinetti a rulli cilindrici a disposizione multipla Serie NNU4900



| Cusc            | inetto n.       |     | Dim | ensioni limite ( | mm)   |            | Coefficiente di                          | Coefficiente di                       |
|-----------------|-----------------|-----|-----|------------------|-------|------------|------------------------------------------|---------------------------------------|
| Foro cilindrico | Foro rastremato | d   | D   | В                | Ew    | r<br>(Min) | carico dinamico<br>di base<br>Cr<br>(kN) | carico statico<br>base<br>Cor<br>(kN) |
| NNU4920         | NNU4920K        | 100 | 140 | 40               | 113   | 1,1        | 155                                      | 305                                   |
| NNU4921         | NNU4921K        | 105 | 145 | 40               | 118   | 1,1        | 161                                      | 325                                   |
| NNU4922         | NNU4922K        | 110 | 150 | 40               | 123   | 1,1        | 167                                      | 335                                   |
| NNU4924         | NNU4924K        | 120 | 165 | 45               | 134,5 | 1,1        | 183                                      | 360                                   |
| NNU4926         | NNU4926K        | 130 | 180 | 50               | 146   | 1,5        | 275                                      | 565                                   |
| NNU4928         | NNU4928K        | 140 | 190 | 50               | 156   | 1,5        | 283                                      | 585                                   |
| NNU4930         | NNU4930K        | 150 | 210 | 60               | 168,5 | 2          | 350                                      | 715                                   |
| NNU4932         | NNU4932K        | 160 | 220 | 60               | 178,5 | 2          | 365                                      | 760                                   |
| NNU4934         | NNU4934K        | 170 | 230 | 60               | 188,5 | 2          | 375                                      | 805                                   |
| NNU4936         | NNU4936K        | 180 | 250 | 69               | 202   | 2          | 480                                      | 1020                                  |
| NNU4938         | NNU4938K        | 190 | 260 | 69               | 212   | 2          | 485                                      | 1060                                  |
| NNU4940         | NNU4940K        | 200 | 280 | 80               | 225   | 2,1        | 570                                      | 1220                                  |
| NNU4944         | NNU4944K        | 220 | 300 | 80               | 245   | 2,1        | 600                                      | 1330                                  |
| NNU4948         | NNU4948K        | 240 | 320 | 80               | 265   | 2,1        | 625                                      | 1450                                  |
| NNU4952         | NNU4952K        | 260 | 360 | 100              | 292   | 2,1        | 935                                      | 2100                                  |
| NNU4956         | NNU4956K        | 280 | 380 | 100              | 312   | 2,1        | 960                                      | 2230                                  |
| NNU4960         | NNU4960K        | 300 | 420 | 118              | 339   | 3          | 1230                                     | 2880                                  |
| NNU4964         | NNU4964K        | 320 | 440 | 118              | 359   | 3          | 1270                                     | 3050                                  |


BNH

TAH TBH

NN3000 NNU4900

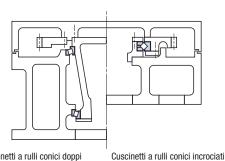
XRN XRG

TAB TAF



| L | Limite velocità di r | otazione (giri/min) |       |       | Raggio ang | olare (mm) |       |       | No. of the Control of |                   |
|---|----------------------|---------------------|-------|-------|------------|------------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| _ | Lubrificazione       | Lubrificazione      | d     | a     | da1        | dc         | Da    | ra    | Massa (kg)<br>(Riferimento)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cuscinetto n.     |
|   | con grasso           | con olio            | (Min) | (Max) | (Min)      | (Min)      | (Max) | (Max) | (Fòro rastremato)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Foro rastremato) |
|   | 6300                 | 7500                | 106,5 | 111   | 110        | 115        | 133,5 | 1     | 1,77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NNU4920K          |
|   | 6100                 | 7200                | 111,5 | 116   | 115        | 120        | 138,5 | 1     | 1,85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NNU4921K          |
|   | 5800                 | 6900                | 116,5 | 121   | 120        | 125        | 143,5 | 1     | 1,93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NNU4922K          |
|   | 5300                 | 6300                | 126,5 | 133   | 130        | 137        | 158,5 | 1     | 2,65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NNU4924K          |
|   | 4900                 | 5800                | 138   | 144   | 142        | 148        | 172   | 1,5   | 3,55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NNU4926K          |
|   | 4600                 | 5400                | 148   | 154   | 151        | 158        | 182   | 1,5   | 3,80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NNU4928K          |
|   | 4200                 | 5000                | 159   | 166   | 162        | 171        | 201   | 2     | 5,95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NNU4930K          |
|   | 4000                 | 4700                | 169   | 176   | 172        | 182        | 211   | 2     | 6,25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NNU4932K          |
|   | 3800                 | 4500                | 179   | 186   | 182        | 192        | 221   | 2     | 6,60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NNU4934K          |
|   | 3500                 | 4200                | 189   | 199   | 194        | 205        | 241   | 2     | 9,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NNU4936K          |
|   | 3400                 | 4000                | 199   | 209   | 204        | 215        | 251   | 2     | 10,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NNU4938K          |
|   | 3200                 | 3700                | 211   | 222   | 214        | 228        | 269   | 2     | 10,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NNU4940K          |
|   | 2900                 | 3400                | 231   | 242   | 234        | 248        | 289   | 2     | 15,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NNU4944K          |
|   | 2700                 | 3200                | 251   | 262   | 254        | 269        | 309   | 2     | 17,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NNU4948K          |
|   | 2400                 | 2900                | 271   | 288   | 276        | 296        | 349   | 2     | 28,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NNU4952K          |
|   | 2300                 | 2700                | 291   | 308   | 296        | 316        | 369   | 2     | 30,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NNU4956K          |
|   | 2100                 | 2500                | 313   | 335   | 320        | 343        | 407   | 2,5   | 46,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NNU4960K          |
|   | 2000                 | 2300                | 333   | 335   | 340        | 363        | 427   | 2,5   | 49,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NNU4964K          |

## Cuscinetti a rulli conici incrociati


## Serie XRN/Serie XRG

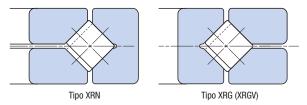


Un cuscinetto che fornisce le stesse funzioni di un cuscinetto a rulli conici ma con le dimensioni di un cuscinetto singolo. Gli elementi volventi sono sistemati con orientamento alternato tra l'anello separabile e l'anello primario.

#### **Caratteristiche**

- Un cuscinetto in grado di resistere a carichi radiali, carichi assiali e carichi di coppia.
- Può contribuire a semplificare le applicazioni dei cuscinetti, in quanto minori componenti riducono il peso, le dimensioni e il tempo di montaggio.
- L'espansione termica dell'albero influenza in misura minore il precarico del cuscinetto favorendo la precisione della macchina.
- Si utilizzano rulli conici e il centro di rotazione è preservato per la rotazione uniforme anche sotto precarico.
- I distanziali in resina poliammidica vengono inseriti tra i rulli per ridurre l'attrito rullo-a-rullo (tranne tipo XRGV).
- L'angolo di contatto è circa 45°.




Cuscinetti a rulli conici doppi Esempio di installazione di cuscinetti a rulli conici e di cuscinetti a rulli conici incrociati

#### **Precisione**

Nachi definisce dei propri standard di precisione. Vedere pagina 9 per maggiori dettagli.

#### Meccanismo

La serie XRN è formata da cuscinetti di tipo ad anello esterno primario e anello interno separabili, adatti principalmente per applicazioni incentrate sulla precisione dell'anello esterno durante la rotazione dello stesso. La serie XRG, d'altro canto è utilizzata per applicazioni incentrate principalmente sulla precisione di rotazione dell'anello interno durante la rotazione dello stesso.



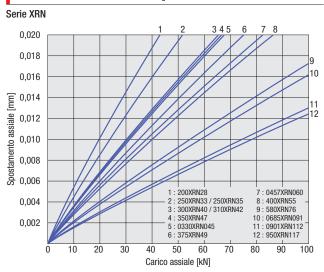
#### Applicazioni principali

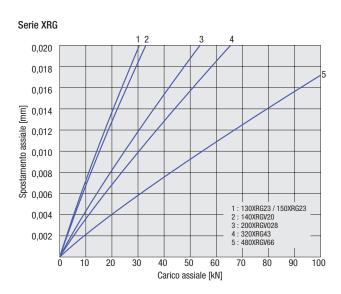
- Tavola da lavoro di centri di lavorazione, smerigliatrici, ecc.
- Mandrino di lavorazione di torni, smerigliatrici, ecc.
- Fresatrici sul larga scala, perforatrici o altre macchine a indicizzazione.
- Perno di antenne paraboliche, ecc.

Nomenclatura del numero del cuscinetto

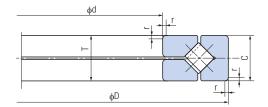
#### 300 XRN 4

#### Valore diametro esterno


Diametro esterno diviso per 10


Tipo di cuscinetto

XRN : Serie XRN Tipo ad anello interno separabile XRG : Serie XRG Tipo ad anello esterno separabile XRGV: Serie XRG Tipo ad anello esterno separabile, senza distanziale


-Dimensione del foro (mm)

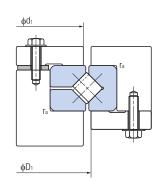
#### Carico assiale e spostamento assiale





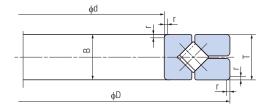
### Serie XRN di cuscinetti a rulli conici incrociati




|               |       | Dir   | mensioni limite (m | nm)    |     | Coefficiente di carico         |                                    |
|---------------|-------|-------|--------------------|--------|-----|--------------------------------|------------------------------------|
| Cuscinetto n. | d     | D     | Т                  | С      | r   | dinamico di base<br>Ca<br>(kN) | carico statico base<br>Coa<br>(kN) |
| 150XRN23      | 150   | 230   | 30                 | 30     | 1,5 | 105                            | 335                                |
| 200XRN28      | 200   | 280   | 30                 | 30     | 1,5 | 144                            | 520                                |
| 250XRN33      | 250   | 330   | 30                 | 30     | 1   | 164                            | 650                                |
| 250XRN35      | 250   | 350   | 40                 | 40     | 3   | 170                            | 680                                |
| 300XRN40      | 300   | 400   | 38                 | 38     | 3   | 268                            | 985                                |
| 310XRN42      | 310   | 420   | 40                 | 40     | 2,5 | 260                            | 1070                               |
| 0330XRN045    | 330,2 | 457,2 | 63,5               | 63,5   | 3,3 | 400                            | 1540                               |
| 350XRN47      | 350   | 470   | 50                 | 50     | 3   | 284                            | 1230                               |
| 375XRN49      | 375   | 490   | 45                 | 45     | 2,5 | 290                            | 1280                               |
| 400XRN55      | 400   | 550   | 60                 | 60     | 3,5 | 365                            | 1900                               |
| 0457XRN060    | 457,2 | 609,6 | 63,5               | 63,5   | 3,3 | 370                            | 1670                               |
| 580XRN76      | 580   | 760   | 80                 | 80     | 6,4 | 830                            | 3800                               |
| 0685XRN091    | 685,8 | 914,4 | 79,375             | 79,375 | 3,3 | 1090                           | 5000                               |
| 950XRN117     | 950   | 1170  | 85                 | 85     | 3   | 1440                           | 7400                               |

BNH

TAH TBH NN3000 NNU4900


XRN XRG

TAB TAF



| Limite velocità di r         | otazione (giri/min)     | F           | Raggio angolare (mm     | )           | Massa                 |               |
|------------------------------|-------------------------|-------------|-------------------------|-------------|-----------------------|---------------|
| Lubrificazione con<br>grasso | Lubrificazione con olio | dı<br>(Min) | D <sub>1</sub><br>(Max) | ra<br>(Max) | (kg)<br>(Riferimento) | Cuscinetto n. |
| 600                          | 1200                    | 182         | 197                     | 1           | 5,11                  | 150XRN23      |
| 480                          | 950                     | 235         | 249                     | 1           | 6,43                  | 200XRN28      |
| 400                          | 800                     | 285         | 298                     | 1           | 7,77                  | 250XRN33      |
| 400                          | 800                     | 302         | 312                     | 1,5         | 13,6                  | 250XRN35      |
| 330                          | 650                     | 345         | 369                     | 2,5         | 14,8                  | 300XRN40      |
| 320                          | 630                     | 358         | 380                     | 2           | 18,1                  | 310XRN42      |
| 290                          | 580                     | 380         | 409                     | 2           | 35,4                  | 0330XRN045    |
| 280                          | 560                     | 410         | 424                     | 1,5         | 27,7                  | 350XRN47      |
| 260                          | 530                     | 430         | 445                     | 1,5         | 25,5                  | 375XRN49      |
| 250                          | 500                     | 475         | 492                     | 1,5         | 48,8                  | 400XRN55      |
| 220                          | 440                     | 535         | 554                     | 2           | 57,1                  | 0457XRN060    |
| 170                          | 340                     | 667         | 691                     | 4           | 108                   | 580XRN76      |
| 140                          | 280                     | 807         | 834                     | 2           | 161                   | 0685XRN091    |
| 100                          | 200                     | 1050        | 1084                    | 2,5         | 218                   | 950XRN117     |

### Serie XRG di cuscinetti a rulli conici incrociati



|               |     | Dir | nensioni limite (m | ım)  |     | Coefficiente di carico         |                                    |
|---------------|-----|-----|--------------------|------|-----|--------------------------------|------------------------------------|
| Cuscinetto n. | d   | D   | Т                  | В    | r   | dinamico di base<br>Ca<br>(kN) | carico statico base<br>Coa<br>(kN) |
| 130XRG23      | 130 | 230 | 30                 | 30   | 1,5 | 105                            | 335                                |
| 140XRGV20     | 140 | 200 | 25                 | 25   | 1,5 | 89                             | 299                                |
| 150XRG23      | 150 | 230 | 30                 | 30   | 1,5 | 105                            | 335                                |
| 200XRGV028    | 200 | 285 | 30                 | 30   | 1   | 170                            | 655                                |
| 320XRG43      | 320 | 430 | 40                 | 40   | 2,5 | 260                            | 1070                               |
| 480XRGV66     | 480 | 660 | 50                 | 49,5 | 4   | 405                            | 2110                               |

BNH TAH TBH

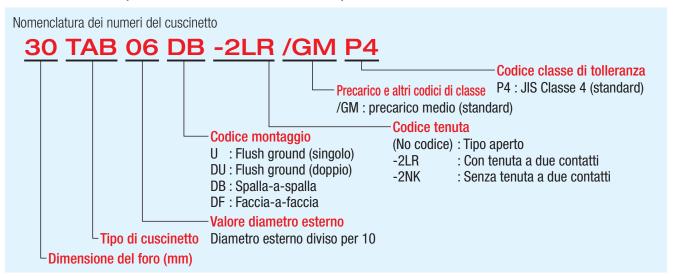
NN3000 NNU4900

XRN XRG

TAB TAF

| φdi                     | r <sub>a</sub> |
|-------------------------|----------------|
| <b>φ</b> D <sub>1</sub> | -              |

| Limite velocità di r         | otazione (giri/min)     | ı           | Raggio angolare (mm     | Massa       |                       |               |
|------------------------------|-------------------------|-------------|-------------------------|-------------|-----------------------|---------------|
| Lubrificazione con<br>grasso | Lubrificazione con olio | dı<br>(Min) | D <sub>1</sub><br>(Max) | ra<br>(Max) | (kg)<br>(Riferimento) | Cuscinetto n. |
| 650                          | 1250                    | 182         | 197                     | 1           | 5,97                  | 130XRG23      |
| 680                          | 1350                    | 162         | 176                     | 1           | 2,86                  | 140XRGV20     |
| 600                          | 1200                    | 182         | 197                     | 1           | 5,11                  | 150XRG23      |
| 480                          | 950                     | 235         | 249                     | 1           | 7,13                  | 200XRGV028    |
| 300                          | 600                     | 358         | 382                     | 2           | 18,9                  | 320XRG43      |
| 200                          | 400                     | 550         | 572                     | 3           | 61,0                  | 480XRGV66     |


## Cuscinetti per supporto di viti con ricircolo di sfere

## Serie TAB/TAF



**Serie TAB** 

I cuscinetti per supporto viti con ricircolo di sfere sono usati nelle macchine utensili ad elevata precisione e elevata velocità, macchine di misurazione di precisione, robot e altre macchine che presentano attuatori di alimentazione di precisione.



#### **Caratteristiche**

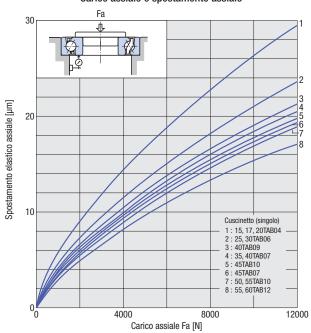
- Gabbia in resina e un numero maggiore di sfere rispetto ai cuscinetti precedenti per una maggiore rigidità.
- I cuscinetti combinati sono forniti con precarichi prestabiliti, eliminando la necessità di fastidiose regolazioni montaggio con spessori e misurazioni di coppia.
- Un angolo di contatto di 60° è in grado di gestire carichi radiali e assiali garantendo la compattezza del cuscinetto.
- Tipo di tenuta a scelta tra tenuta a contatto e tenuta non a contatto per adattarsi alle specifiche applicazioni.

#### Angolo di contatto

L'angolo di contatto è 60°.

#### Gabbia

Come standard viene fornita una gabbia poliammidica guidata per la sfera.


#### **Precisione**

JIS Classe 4 come standard. Vedere pagina 10 per maggiori dettagli.

#### **Precarico**

Precarico medio come standard. Vedere pagina 20 per maggiori dettagli.

#### Carico assiale e spostamento assiale



Tipologie e progettazione

7000 7200 **BNH** 

TBH

NN3000 NNU4900

XRN **XRG** 

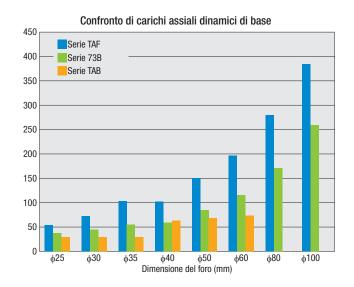
TAB TAF

#### Serie TAF

Sebbene gli attuatori idraulici siano stati ampiamente utilizzati nel passato in dispositivi di conduzione ad elevato carico quali le macchine per lo stampo ad iniezione, è diventato più comune l'uso di azionamenti elettrici (azionamenti con viti a ricircolo di sfere) in tali applicazioni. La Serie TAF è costituita da cuscinetti speciali progettati per sostenere viti con ricircolo di sfere ad alto carico.

Nomenclatura dei numeri del cuscinetto Codice classe di tolleranza P5: JIS Classe 5 (standard) Precarico e altri codici di classe /GM : precarico medio (standard) Codice montaggio DB: Spalla-a-spalla DF: Faccia-a-faccia DT: Tandem Valore diametro esterno Tipo di cuscinetto Diametro esterno diviso per 10 (con qualche eccezione) Dimensione del foro (mm)

#### **Caratteristiche**

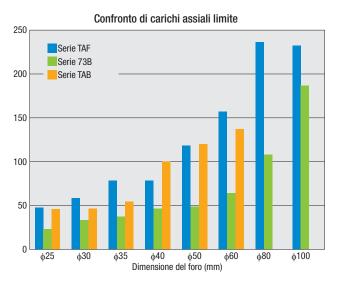

- Una sfera di diametro largo e un angolo di contatto ampio fornisce una capacità di carico a spinta elevata necessaria per i carichi elevati delle viti a ricircolo di sfere utilizzate in macchine per stampo ad iniezione.
- Una gabbia stampata mono-pezzo che combina sia maggiore precisione e forza che abilità di resistere a cambi ad alta velocità avanti e indietro.

#### Angolo di contatto

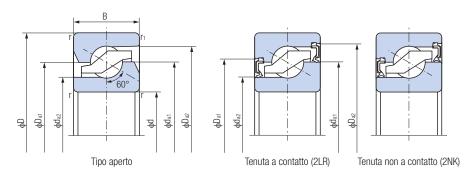
Un angolo di contatto di 50° fino a un diametro nominale di 80 mm e 55° per un diametro nominale di 100 mm o più.

#### **Precisione**

JIS Classe 5 come standard. Vedere pagina 11 per maggiori dettagli.




#### **Precarico**


Precarico medio come standard. Vedere pagina 20 per maggiori dettagli.

#### Gabbia

Come standard viene fornita una gabbia in resina poliammidica di guida per la sfera. Alcune dimensioni vengono prodotte con una gabbia in ottone lavorata a macchina.



## Cuscinetti per supporto di viti con ricircolo di sfere Serie TAB

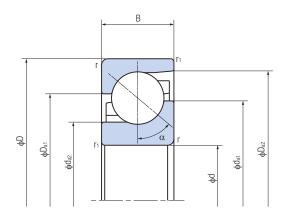


|               |    | Dir | mensioni limite (n | nm)              |             | Coefficiente di carico |                                |
|---------------|----|-----|--------------------|------------------|-------------|------------------------|--------------------------------|
| Cuscinetto n. | d  | D   | В                  | r<br>(Min)       | rı<br>(Min) | Ca<br>(kN)             | Carico assiale limite (3) (kN) |
| 15TAB04       | 15 | 47  | 15                 | 1 <sup>(1)</sup> | 0,6         | 25,9                   | 32,0                           |
| 15TAB04-2NK   | 15 | 47  | 15                 | 1 <sup>(1)</sup> | 0,6         | 25,9                   | 32,0                           |
| 15TAB04-2LR   | 15 | 47  | 15                 | 1 <sup>(1)</sup> | 0,6         | 25,9                   | 32,0                           |
| 17TAB04       | 17 | 47  | 15                 | 1                | 0,6         | 25,9                   | 32,0                           |
| 17TAB04-2NK   | 17 | 47  | 15                 | 1                | 0,6         | 25,9                   | 32,0                           |
| 17TAB04-2LR   | 17 | 47  | 15                 | 1                | 0,6         | 25,9                   | 32,0                           |
| 20TAB04       | 20 | 47  | 15                 | 1                | 0,6         | 25,9                   | 32,0                           |
| 20TAB04-2NK   | 20 | 47  | 15                 | 1                | 0,6         | 25,9                   | 32,0                           |
| 20TAB04-2LR   | 20 | 47  | 15                 | 1                | 0,6         | 25,9                   | 32,0                           |
| 25TAB06       | 25 | 62  | 15                 | 1                | 0,6         | 29,9                   | 46,4                           |
| 25TAB06-2NK   | 25 | 62  | 15                 | 1                | 0,6         | 29,9                   | 46,4                           |
| 25TAB06-2LR   | 25 | 62  | 15                 | 1                | 0,6         | 29,9                   | 46,4                           |
| 30TAB06       | 30 | 62  | 15                 | 1                | 0,6         | 29,9                   | 46,4                           |
| 30TAB06-2NK   | 30 | 62  | 15                 | 1                | 0,6         | 29,9                   | 46,4                           |
| 30TAB06-2LR   | 30 | 62  | 15                 | 1                | 0,6         | 29,9                   | 46,4                           |
| 35TAB07       | 35 | 72  | 15                 | 1                | 0,6         | 32,5                   | 54,3                           |
| 35TAB07-2NK   | 35 | 72  | 15                 | 1                | 0,6         | 32,5                   | 54,3                           |
| 35TAB07-2LR   | 35 | 72  | 15                 | 1                | 0,6         | 32,5                   | 54,3                           |
| 40TAB07       | 40 | 72  | 15                 | 1                | 0,6         | 32,5                   | 54,3                           |
| 40TAB07-2NK   | 40 | 72  | 15                 | 1                | 0,6         | 32,5                   | 54,3                           |
| 40TAB07-2LR   | 40 | 72  | 15                 | 1                | 0,6         | 32,5                   | 54,3                           |
| 40TAB09       | 40 | 90  | 20                 | 1                | 0,6         | 65,0                   | 101                            |
| 40TAB09-2NK   | 40 | 90  | 20                 | 1                | 0,6         | 65,0                   | 101                            |
| 40TAB09-2LR   | 40 | 90  | 20                 | 1                | 0,6         | 65,0                   | 101                            |
| 45TAB07       | 45 | 75  | 15                 | 1                | 0,6         | 33,5                   | 59,5                           |
| 45TAB10       | 45 | 100 | 20                 | 1                | 0,6         | 68,0                   | 113                            |
| 50TAB10       | 50 | 100 | 20                 | 1                | 0,6         | 69,5                   | 119                            |
| 55TAB10       | 55 | 100 | 20                 | 1                | 0,6         | 69,5                   | 119                            |
| 55TAB12       | 55 | 120 | 20                 | 1                | 0,6         | 73,0                   | 137                            |
| 60TAB12       | 60 | 120 | 20                 | 1                | 0,6         | 73,0                   | 137                            |

Nota (1) Il minimo per foro anello interno è 0,6.

(2) Quando il carico assiale è su disposizioni di 2 o di 3, i valori della tabella devono essere moltiplicati rispettivamente per 1,62 e 2,16.

(3) Quando il carico assiale è su disposizioni di 2 o di 3, i valori della tabella devono essere moltiplicati rispettivamente per 2 e 3.


(4) Velocità limite di rotazione per precarico medio (codice precarico GM).

#### Carico assiale dinamico equivalente Pa=X Fr+Y Fa

| N. di cuscinetti<br>N. di disposizioni che ricevono il carico<br>assiale |   | 2                    | 2 3                  |                      |                      | 4                    |                      |                      |                      |                      |
|--------------------------------------------------------------------------|---|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
|                                                                          |   | Disposizione<br>di 1 | Disposizione<br>di 2 | Disposizione<br>di 1 | Disposizione<br>di 2 | Disposizione<br>di 3 | Disposizione<br>di 1 | Disposizione<br>di 2 | Disposizione<br>di 3 | Disposizione<br>di 4 |
| Fa/Fr ≤ 2,17                                                             | Х | 1,90                 | _                    | 1,43                 | 2,33                 | _                    | 1,17                 | 2,33                 | 2,53                 | _                    |
|                                                                          | Υ | 0,54                 | _                    | 0,77                 | 0,35                 | _                    | 0,89                 | 0,35                 | 0,26                 | _                    |
| Fa/Fr > 2,17                                                             | Х | 0,92                 | 0,92                 | 0,92                 | 0,92                 | 0,92                 | 0,92                 | 0,92                 | 0,92                 | 0,92                 |
|                                                                          | Υ | 1                    | 1                    | 1                    | 1                    | 1                    | 1                    | 1                    | 1                    | 1                    |

| Limite velocità di r      | otazione <sup>(4)</sup> giri/min) |                 | Dimensioni di r | iferimento (mm) |                 | Massa                 |               |
|---------------------------|-----------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------------|---------------|
| Lubrificazione con grasso | Lubrificazione<br>con olio        | da <sub>1</sub> | da <sub>2</sub> | Da <sub>1</sub> | Da <sub>2</sub> | (kg)<br>(Riferimento) | Cuscinetto n. |
| 6300                      | 8000                              | 33,7            | 26,8            | 33,5            | 41              | 0,14                  | 15TAB04       |
| 6300                      | _                                 | 33,7            | 26,8            | 35              | 41,9            | 0,14                  | 15TAB04-2NK   |
| 6300                      | _                                 | 33,7            | 26,8            | 35              | 41,9            | 0,14                  | 15TAB04-2LR   |
| 6300                      | 8000                              | 33,7            | 26,8            | 33,5            | 41              | 0,13                  | 17TAB04       |
| 6300                      | _                                 | 33,7            | 26,8            | 35              | 41,9            | 0,13                  | 17TAB04-2NK   |
| 6300                      | _                                 | 33,7            | 26,8            | 35              | 41,9            | 0,13                  | 17TAB04-2LR   |
| 6300                      | 8000                              | 33,7            | 26,8            | 33,5            | 41              | 0,12                  | 20TAB04       |
| 6300                      | _                                 | 33,7            | 26,8            | 35              | 41,9            | 0,12                  | 20TAB04-2NK   |
| 6300                      | _                                 | 33,7            | 26,8            | 35              | 41,9            | 0,12                  | 20TAB04-2LR   |
| 4650                      | 6000                              | 46,2            | 39,7            | 46              | 53,4            | 0,24                  | 25TAB06       |
| 4650                      | _                                 | 46,2            | 39,7            | 47,5            | 54,9            | 0,24                  | 25TAB06-2NK   |
| 4650                      | _                                 | 46,2            | 39,7            | 47,5            | 54,9            | 0,24                  | 25TAB06-2LR   |
| 4650                      | 6000                              | 46,2            | 39,7            | 46              | 53,4            | 0,21                  | 30TAB06       |
| 4650                      | _                                 | 46,2            | 39,7            | 47,5            | 54,9            | 0,21                  | 30TAB06-2NK   |
| 4650                      | _                                 | 46,2            | 39,7            | 47,5            | 54,9            | 0,21                  | 30TAB06-2LR   |
| 3750                      | 5000                              | 56,2            | 49,7            | 56              | 63,4            | 0,29                  | 35TAB07       |
| 3750                      | _                                 | 56,2            | 49,7            | 57,5            | 64,9            | 0,29                  | 35TAB07-2NK   |
| 3750                      | _                                 | 56,2            | 49,7            | 57,5            | 64,9            | 0,29                  | 35TAB07-2LR   |
| 3750                      | 5000                              | 56,2            | 49,7            | 56              | 63,4            | 0,26                  | 40TAB07       |
| 3750                      | _                                 | 56,2            | 49,7            | 57,5            | 64,9            | 0,26                  | 40TAB07-2NK   |
| 3750                      | _                                 | 56,2            | 49,7            | 57,5            | 64,9            | 0,26                  | 40TAB07-2LR   |
| 3150                      | 4000                              | 67,2            | 57,2            | 67              | 78,4            | 0,62                  | 40TAB09       |
| 3150                      | _                                 | 67,2            | 57,2            | 68,5            | 79,9            | 0,62                  | 40TAB09-2NK   |
| 3150                      | _                                 | 67,2            | 57,2            | 68,5            | 79,9            | 0,62                  | 40TAB09-2LR   |
| 3400                      | 4500                              | 61,7            | 55,2            | 61,5            | 68,9            | 0,25                  | 45TAB07       |
| 2850                      | 3500                              | 74,2            | 64,2            | 74              | 85,4            | 0,79                  | 45TAB10       |
| 2700                      | 3500                              | 78,2            | 68,2            | 78              | 89,4            | 0,72                  | 50TAB10       |
| 2700                      | 3500                              | 78,2            | 68,2            | 78              | 89,4            | 0,95                  | 55TAB10       |
| 2300                      | 3000                              | 92,2            | 82,2            | 92              | 103,4           | 1,15                  | 55TAB12       |
| 2300                      | 3000                              | 92,2            | 82,2            | 92              | 103,4           | 1,08                  | 60TAB12       |

## Cuscinetti per supporto di viti con ricircolo di sfere Serie TAF



|  | Cuscinetto n. |     | Dim | ensioni limite ( | mm)        |                         | Au wata di                     | Coefficiente di                                         | 0                                               |  |
|--|---------------|-----|-----|------------------|------------|-------------------------|--------------------------------|---------------------------------------------------------|-------------------------------------------------|--|
|  |               | d   | D   | В                | r<br>(Min) | r <sub>1</sub><br>(Min) | Angolo di<br>contatto<br>α (°) | carico dinamico<br>di base <sup>(1)</sup><br>Ca<br>(kN) | Carico assiale<br>limite <sup>(2)</sup><br>(kN) |  |
|  | 25TAF06       | 25  | 62  | 17               | 1,1        | 0,6                     | 50                             | 56,0                                                    | 47,5                                            |  |
|  | 30TAF07       | 30  | 72  | 19               | 1,1        | 0,6                     | 50                             | 74,0                                                    | 58,0                                            |  |
|  | 35TAF09       | 35  | 90  | 23               | 1,5        | 1                       | 50                             | 103                                                     | 77,0                                            |  |
|  | 40TAF09       | 40  | 90  | 23               | 1,5        | 1                       | 50                             | 103                                                     | 77,0                                            |  |
|  | 40TAF11       | 40  | 110 | 27               | 2          | 1                       | 50                             | 152                                                     | 118                                             |  |
|  | 45TAF11       | 45  | 110 | 27               | 2          | 1                       | 50                             | 152                                                     | 118                                             |  |
|  | 50TAF11       | 50  | 110 | 27               | 2          | 1                       | 50                             | 152                                                     | 118                                             |  |
|  | 60TAF13       | 60  | 130 | 31               | 2,1        | 1,1                     | 50                             | 196                                                     | 157                                             |  |
|  | 60TAF17       | 60  | 170 | 39               | 2,1        | 1,1                     | 50                             | 279                                                     | 238                                             |  |
|  | 80TAF17       | 80  | 170 | 39               | 2,1        | 1,1                     | 50                             | 279                                                     | 238                                             |  |
|  | 100TAF21      | 100 | 215 | 47               | 3          | 1,1                     | 55                             | 385                                                     | 234                                             |  |
|  | 120TAF03      | 120 | 260 | 55               | 3          | 1,1                     | 55                             | 445                                                     | 380                                             |  |

Nota (1) Quando il carico assiale è su disposizioni di 2 o di 3, i valori della tabella devono essere moltiplicati rispettivamente per 1,62 e 2,16.

(2) Quando il carico assiale è su disposizioni di 2 o di 3, i valori della tabella devono essere moltiplicati rispettivamente per 2 e 3.

(3) Si consiglia l'uso dell'80% o meno del carico assiale consentito.

(4) Velocità limite di rotazione per precarico medio (codice precarico GM).

#### Carico assiale dinamico equivalente Pa=X Fr+Y Fa

#### Angolo di contatto 50°

| N. di cuscinetti                                 | N. di cuscinetti     |                      |      |  |  |
|--------------------------------------------------|----------------------|----------------------|------|--|--|
| N. di disposizioni che ricevono il ca<br>assiale | Disposizione<br>di 1 | Disposizione<br>di 2 |      |  |  |
| Fa/Fr ≤ 1,49                                     | Х                    | 1,37                 | _    |  |  |
| Fd/F1 ≥ 1,49                                     | Υ                    | 0,57                 | _    |  |  |
| Eo/Er > 1.40                                     | Х                    | 0,73                 | 0,73 |  |  |
| Fa/Fr > 1,49                                     | Υ                    | 1                    | 1    |  |  |

#### Angolo di contatto 55°

|   | •                                                |                      |                      |      |
|---|--------------------------------------------------|----------------------|----------------------|------|
|   | N. di cuscinetti                                 | 2                    |                      |      |
|   | N. di disposizioni che ricevono il ca<br>assiale | Disposizione<br>di 1 | Disposizione<br>di 2 |      |
|   | Fa/Fr ≤ 1,79                                     | Х                    | 1,60                 | _    |
|   | Fa/F1 ≤ 1,79                                     | Υ                    | 0,56                 | _    |
| Ī | Eo/Fr > 1 70                                     | Х                    | 0,81                 | 0,81 |
|   | Fa/Fr > 1,79                                     | Y                    | 1                    | 1    |

| Limite velocità di                                                     |                 | Dimensioni di ri | ferimento (mm)  |                 | Marca                          |               |
|------------------------------------------------------------------------|-----------------|------------------|-----------------|-----------------|--------------------------------|---------------|
| rotazione <sup>(4)</sup><br>(giri/min)<br>Lubrificazione con<br>grasso | da <sub>1</sub> | da <sub>2</sub>  | Da <sub>1</sub> | Da <sub>2</sub> | Massa<br>(kg)<br>(Riferimento) | Cuscinetto n. |
| 4500                                                                   | 42,9            | 32,7             | 44,9            | 56,6            | 0,237                          | 25TAF06       |
| 3800                                                                   | 49,8            | 38,6             | 53              | 65,9            | 0,357                          | 30TAF07       |
| 3000                                                                   | 63,2            | 49,7             | 67,7            | 82,3            | 0,709                          | 35TAF09       |
| 3000                                                                   | 63,2            | 49,7             | 67,7            | 82,3            | 0,655                          | 40TAF09       |
| 2500                                                                   | 77,6            | 60,3             | 83,4            | 101,1           | 1,28                           | 40TAF11       |
| 2500                                                                   | 77,6            | 60,3             | 83,4            | 101,1           | 1,21                           | 45TAF11       |
| 2500                                                                   | 77,6            | 60,3             | 83,4            | 101,1           | 1,13                           | 50TAF11       |
| 2100                                                                   | 92,4            | 72,9             | 98,9            | 119,7           | 1,79                           | 60TAF13       |
| 1500                                                                   | 121,1           | 97,2             | 130,3           | 155,8           | 4,48                           | 60TAF17       |
| 1500                                                                   | 121,1           | 97,2             | 130,3           | 155,8           | 3,80                           | 80TAF17       |
| 1200                                                                   | 152,3           | 123,4            | 164,1           | 194,7           | 7,41                           | 100TAF21      |
| 1000                                                                   | 186,2           | 151,1            | 193,8           | 228,4           | 14,8                           | 120TAF03      |

#### NACHI-FUJIKOSHI CORP.

URL:http://www.nachi.com/

Tokyo Head Office: Shiodome Sumitomo Bldg. 17F 1-9-2 Higashi-shinbashi, Minato-ku, Tokyo 105-0021, JAPAN

Tel: +81-(0)3-5568-5247 Fax: +81-(0)3-5568-5237

Toyama Head Office: 1-1-1 Fujikoshi-Honmachi, Toyama 930-8511, JAPAN Tel: +81-(0)76-423-5111 Fax: +81-(0)76-493-5211

#### Overseas Companies =

#### **AMERICA**

#### Sales

● NACHI AMERICA INC. HEADQUARTERS 715 Pushville Road, Greenwood, Indiana, 46143, U.S.A. Tel: +1-317-530-1002 Fax: +1-317-530-1012 URL: http://www.nachiamerica.com/

#### WEST COAST BRANCH

12652 E. Alondra Blvd. Cerritos, California, 90703, U.S.A. Tel: +1-562-802-0055 Fax: +1-562-802-2455

MIAMI BRANCH - LATIN AMERICA DIV. 2315 N.W. 107th Ave., Doral, Florida, 33172, U.S.A. Tel: +1-305-501-0054/0059/2604 Fax: +1-305-591-3110

#### NACHI ROBOTIC SYSTEMS INC.

42775 West 9 Mile Road Novi, Michigan, 48375, U.S.A. Tel: +1-248-305-6545 Fax: +1-248-305-6542 URL: http://www.nachirobotics.com/

• NACHI CANADA INC.
89 Courtland Ave., Unit 2, Concord, Ontario, L4K 3T4, CANADA
Tel: +1-905-660-0088 Fax: +1-905-660-1146 URL:http://www.nachicanada.com/

● NACHI MEXICANA, S.A. DE C.V. Urbina No. 54, Parque Industrial Naucalpan, Naucalpan de Juarez, Estado de Mexico, C.P. 53489, MEXICO
Tel: +52-55-3604-0832/0842/0881 Fax: +52-55-3604-0882

#### NACHI MEXICANA ENGINEERING CENTER

1171A, Calle Julio Diaz Torre, Fracc. Ciudad Industrial, Aguascalientes, C.P. 20290, MEXICO Tel: +52-449-971-1689 Fax: +52-449-971-1689

#### Manufacturing

#### NACHI TECHNOLOGY INC.

713 Pushville Road, Greenwood, Indiana, 46143, U.S.A. Tel: +1-317-535-5000 Fax: +1-317-535-8484 URL: http://nachitech.com/

● NACHI TOOL AMERICA INC. 717 Pushville Road, Greenwood, Indiana, 46143, U.S.A. Tel: +1-317-535-0320 Fax: +1-317-535-0983

● NACHI BRASIL LTDA.

Avenida João XXIII, No.2330, Jardim São Pedro, Mogi das Cruzes, S.P., BRASIL, CEP 08830-000 Tel: +55-11-4793-8800 Fax: +55-11-4793-8870 URL: http://www.nachi.com.br/

#### **SAO PAULO BRANCH**

Av. Paulista, 453, Primeiro Andar, Conj.11, 12, 13 e 14, Cerqueira Cesar, Sao Paulo - SP, CEP: 01311-000, BRASIL Tel: +55-11-3284-9844 Fax: +55-11-3284-1751

#### **EUROPE**

#### Sales

#### ● NACHI EUROPE GmbH

Bischofstrasse 99, 47809, Krefeld, GERMANY Tel: +49-(0)2151-65046-0 Fax: +49-(0)2151-65046-90 URL: http://www.nachi.de/

**SOUTH GERMANY OFFICE**Pleidelsheimer Str. 47, 74321, Bietigheim-Bissingen, GERMANY

Tel: +49-(0)7142-77418-0 Fax: +49-(0)7142-77418-20

SPAIN BRANCH
P.I. EL MONTALVO III C/Segunda, 6. Portal 1-2ª,
Oficina 5 37188-Carbajosa de La Sagrada
Salamanca- España
Tel: +34-(0)923-197-837
Fax: +34-(0)923-197-758

#### **CZECH BRANCH**

Fax: +420-(0)255-734-001

Obchodni 132 251 01 Cestlice CZECH Tel: +420-(0)255-734-000

#### **U.K. BRANCH**

Unit 3, 92, Kettles Wood Drive Woodgate Business Park, BIRMINGHAM B32 3DB, U.K.

Tel: +44-(0)121-423-5000 Fax: +44-(0)121-421-7520

#### **TURKEY BRANCH**

Karaman Ciftligi Mevkii, Agaoglu My Prestige, K;13, D;110, 34746, Atasehir, Istanbul, TURKEY Tel: +90-(0)216-688-4457 Fax: +90-(0)216-688-4458

#### Manufacturing

● NACHI CZECH s.r.o Prumyslova 2732, 440 01 Louny, CZECH Tel: +420-415-930-930 Fax: +420-415-930-940

#### ASIA and OCEANIA

#### Sales

#### NACHI SINGAPORE PTE. LTD.

No.2 Joo Koon Way, Jurong Town, Singapore 628943, SINGAPORE Tel: +65-65587393 Fax: +65-65587371

#### VIETNAM REPRESENTATIVE OFFICE, HO CHI MINH

4FI., Yoco Bld., 41 Nguyen Thi Minh Khai St., Dist.1, Ho Chi Minh, VIETNAM Tel: +84-8-3822-3919 Fax: +84-8-3822-3918

#### VIETNAM REPRESENTATIVE OFFICE, **HANOI**

5B FI., Noza Bld., 243 Cau Giay St., Cau Giay Dist., Hanoi, VIETNAM Tel: +84-4-3767-8605 Fax: +84-4-3767-8604

● FUJIKOSHI-NACHI (MALAYSIA) SDN. BHD. No.17, Jalan USJ 21/3, 47630 UEP Subang Jaya, Selangor Darul Ehsan, MALAYSIA Tel: +60-(0)3-80247900 Fax: +60-(0)3-80235884

#### PT.NACHI INDONESIA

TEMPO PAVILION I, 7FL JL. HR Rasuna Said Kav. 10-11 Setiabudi Jakarta Selatan DKI Jakarta -12950, INDONESIA Tel: +62-021-527-2841 Fax: +62-021-527-3029

#### NACHI KG TECHNOLOGY INDIA PVT. **GURGAON HEAD OFFICE**

Unit No.207, 2nd Floor, Sewa Corporate Park, MG Road, Iffco Chowk, Gurgaon 122001, Haryana, INDIA Tel: +91-(0)12-4450-2900 Fax: +91-(0)12-4450-9210

#### BANGALORE OFFICE

**DANIGALURE OFFICE**F-11, Asha Chamber, No.2, Venkata Swami, Raju
Road, Kumara Park West, Bangalore-560020, INDIA
Tel: +91-(0)80-3920-8701 / 8702 / 8703
Fax: +91-(0)80-3920-8700

#### ● 那智不二越(上海)贸易有限公司

NACHI (SHANGHAI) CO.,LTD.

11F Royal Wealth Center, No.7 Lane 98 Danba
Road, Putuo District, Shanghai, 200062, CHINA
Tel: +86-(0)21-6915-2200 Fax: +86-(0)21-6915-5427

#### 重庆分公司

#### **CHONGQING BRANCH**

C17-18/19 Hogding International Building, Jiangbei District, Chongqing 400020, CHINA Tel: +86-(0)23-8816-1967 Fax: +86-(0)23-8816-1968

#### 沈阳分公司

SHENYANG BRANCH
Room 304, No.1 Yuebin Street, Shenhe District,
Shenyang 110000, CHINA
Tel: +86-(0)24-3120-2252
Fax: +86-(0)24-2250-5316

#### 北京分公司

BEIJING BRANCH
Room 903A, Kuntai International Mansion, Building J, Yi No. 12 Chao Wai Street, Chao yang District, Beijing 100020, CHINA Tel: +86-(0)10-5879-0181
Fax: +86-(0)10-5879-0182

#### NACHI-FUJIKOSHI CORP. TAIPEI REPRESENTATIVE OFFICE

No.109, Kao Young North Rd, Lung-Tan Hsin, Tao-Yuan Hsien, TAIWAN Tel: +886-(0)3-411-7776 Fax: +886-(0)3-471-8402

#### NACHI-FUJIKOSHI CORP.

KOREA REPRESENTATIVE OFFICE 3F A-Youn Digital Tower 314-37, Seongsu-dong 2-ga, Seongdong-gu, Seoul 133-120, KOREA Tel: +82-(0)2-469-2254 Fax: +82-(0)2-469-2264

● NACHI (AUSTRALIA) PTY. LTD. Unit 1, 23-29 South Street, Rydalmere, N.S.W, 2116, AUSTRALIA Tel: +61-(0)2-9898-1511 Fax: +61-(0)2-9898-1678 URL: http://www.nachi.com.au/

#### Manufacturing

NACHI TECHNOLOGY (THAILAND) CO., LTD. 5/5 M, 2, Rojana Industrial Estate Nongbua, Ban Khai, Rayong, 21120, THAILAND
Tel: +66-38-961-682 Fax: +66-38-961-683

#### **BANGKOK SALES OFFICE**

Unit 23/109(A), Fl.24th Sorachai Bldg., Sukhumvit 63 Road(Ekamai), Klongtonnua, Wattana, Bangkok 10110, THAILAND Tel: +66-2-714-0008 Fax: +66-2-714-0740

#### • NACHI INDUSTRIES PTE. LTD.

No.2 Joo Koon Way, Jurong Town, Singapore 628943, SINGAPORE Tel: +65-68613944 Fax: +65-68611153 URL: http://www.nachinip.com.sg/

#### NACHI PILIPINAS INDUSTRIES, INC.

1st Avenue, Manalac Compound, Sta. Maria Industrial Estate, Bagumbayan, Taguig, Metro Manila, PHILIPPINES Tel: +63-(0)2-838-3620 Fax: +63-(0)2-838-3623

#### NACHI KG TECHNOLOGY INDIA PVT.

NEEMRANA PLANT
Plot No. Sp-86, Nic(M)Neemrana, Riico
Industrial Area, Alwar-301705, Rajasthan, INDIA
Tel: +91-(0)14-9467-1300
Fax: +91-(0)14-9467-1310

#### NACHI MOTHERSON PRECISION LTD.

179, Sector4, IMT Manesar, District Gurgaon-122 050, Haryana, INDIA Tel: +91-124-4936-000 Fax: +91-124-4936-022

#### NACHI MOTHERSON TOOL TECHNOLOGY LTD.

D-59-60, Sector-6, Noida-201301, Distt. Gautam Budh Nagar, U.P. INDIA Tel: +91-120-425-8372 Fax: +91-120-425-8374

#### ● 那智不二越(江苏)精密机械有限公司 NACHI (JIANGSU) INDUSTRIES CO., LTD.

39 Nanyuan Road, Economic and Technological Development Zone (south), Zhangjiagang, Jiangsu, 215618, CHINA Tel: +86-(0)512-3500-7616 Fax: +86-(0)512-3500-7615

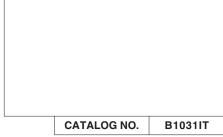
#### ● 东莞建越精密轴承有限公司 **DONGGUAN NACHI C.Y. CORPORATION**

Dangyong Village, Hongmei Town Dongguan City, Guangdong 523160, CHINA Tel: +86-(0)769-8843-1300 Fax: +86-(0)769-8843-1330

#### ● 上海不二越精密轴承有限公司 SHANGHAI NACHI BEARINGS CO.,LTD.

Yitong Industry Zone 258, Fengmao Rd. Malu Town, Jiading, Shanghai 201801, CHINA Tel: +86-(0)21-6915-6200 Fax: +86-(0)21-6915-6202

#### ● 建越工業股份有限公司


NACHI C.Y. CORP.
No.109, Kao Young North Rd, Lung-Tan Hsin,
Tao-Yuan Hsien, TAIWAN
Tel: +886-(0)3-471-7651 Fax: +886-(0)3-471-8402





L'aspetto e le specifiche sono soggette a modifiche senza preavviso per migliorare le prestazioni

È stato adottata la massima cura per preservare la precisione delle informazioni contenute nel presente catalogo e non si assume responsabilità di sorta per errori od omissioni.

