


BTD - BCR

Servomotori Sincroni

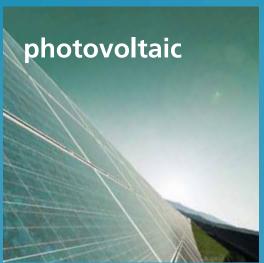
Power, control and green solutions

Bonfiglioli, un unico nome per un grande gruppo internazionale.

È il 1956 quando Clementino Bonfiglioli fonda a Bologna l'azienda che ancora oggi porta il suo nome. A oltre cinquant'anni di distanza, quel primo, fondamentale slancio continua la sua corsa, portando Bonfiglioli a essere protagonista mondiale nel settore delle soluzioni per la trasmissione e controllo potenza.

Con filiali dirette e stabilimenti produttivi in tutto il mondo, Bonfiglioli progetta, costruisce e distribuisce una gamma completa di motoriduttori di velocità, sistemi di azionamento e motoriduttori epicicloidali, in un'offerta di soluzioni integrate che non teme confronti.

Oggi Bonfiglioli aggiunge allo storico claim aziendale la parola "green", che dà evidenza dell'orientamento a sostenibilità ambientale e tutela della salute umana. Un impegno che si riflette anche nel restyling del marchio, dove forme e tre colori caratterizzano le tre grandi aree d'azione di Bonfiglioli - Power, Control & Green Solutions - disegnando un mondo di valori di cui fa parte l'apertura e il rispetto verso le altre culture.

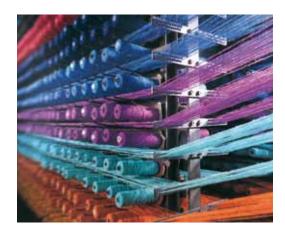

In un mercato in cui l'eccellenza qualitativa dei prodotti non basta più, Bonfiglioli mette in campo esperienza, know-how, una rete commerciale ampia e capillare, servizi impeccabili di pre e post-vendita, moderni strumenti e sistemi di comunicazione per dare vita a soluzioni di alto livello per l'industria, le macchine operatrici semoventi, lo sfruttamento delle energie rinnovabili.

Bonfiglioli solutions

Soluzioni innovative per il settore industriale.

Bonfiglioli Riduttori oggi è uno dei marchi leader nell'industria della trasmissione di potenza. Il successo dell'azienda è il risultato di una strategia basata su tre fattori fondamentali: know-how, innovazione e qualità.

La gamma completa di motoriduttori Bonfiglioli offre eccellenti caratteristiche tecniche e garantisce massime prestazioni.


Ingenti investimenti e competenza tecnica hanno permesso all'azienda di conseguire una produzione annuale di 1600000 unità usando processi completamente automatizzati.

La certificazione DNV e TÜV del Sistema Qualità dell'azienda è una prova degli elevati standard qualitativi raggiunti.

Con l'acquisizione del marchio Vectron, Bonfiglioli si è ora affermata quale leader nel settore dell'automazione industriale. Bonfiglioli Vectron offre prodotti e servizi per soluzioni inverter completamente integrate. Tali soluzioni integrano le offerte per il controllo e la trasmissione di potenza di Bonfiglioli destinate al settore industriale.

Dal 1976 il know-how di Bonfiglioli Trasmital nell'ambito della trasmissione di potenza si è concentrato su applicazioni speciali che offrono il 100% di affidabilità nella produzione di motoriduttori per macchine mobili.

È inclusa la gamma completa di applicazioni con azionamenti per rotazione e su ruote e riduttori per sistemi con azionamenti di regolazione del passo e deviazione della navetta per le turbine eoliche. Oggi Bonfiglioli Trasmital è all'avanguardia nell'industria e rappresenta un partner chiave per i principali produttori di tutto il mondo.

Tecnologie avanzate per tutti i settori industriali.

Questi motori brushless sinusoidali sono progettati per un'alimentazione trifase, 200 V CA e 330 V CA, con ventilazione libera. Tutti i modelli sono equipaggiati con un sensore di temperatura di tipo a termistore.

Questi servomotori sincroni sono l'ideale per applicazioni in macchine con elevati requisiti dinamici. Sono particolarmente adatti per applicazioni robotiche nelle industrie della lavorazione di plastica e metalli, degli imballaggi, della produzione di alimenti e bevande, di incannatura e tessili.

Sono fabbricati utilizzando la tecnologia più avanzata per ottimizzare i circuiti magnetici e gli avvolgimenti dei motori elettrici e migliorano significativamente la riserva di coppia e la longevità del motore.

La velocità e/o la coppia dei servomotori serie BTD e BCR può essere controllata solo mediante un servoazionamento elettronico idoneo. Il servoazionamento costituisce pertanto parte integrante dell'attuatore e richiede la perfetta sincronizzazione con esso per conseguire prestazioni ottimali.

La combinazione dei servomotori BTD e BCR con gli inverter di frequenza della serie ACTIVE CUBE di Bonfiglioli Vectron garantisce una sinergia ottimale ottimizzando il modello matematico del motore nell'azionamento grazie all'uso di una funzione di autoapprendimento assistita dal software di configurazione dell'inverter. Per ulteriori informazioni sugli inverter di frequenza, consultare i cataloghi e i manuali Bonfiglioli Vectron Active Cube.

I motori serie BTD e BCR sono progettati per essere impiegati all'interno di una macchina e dovrebbero essere installati solo dopo un accurato controllo della compatibilità con altri dispositivi. Poiché ogni servomotore dispone di un sensore di temperatura di protezione (PTC) integrato nei suoi avvolgimenti, la temperatura operativa è acquisita e monitorata costantemente dall'azionamento per prevenire tutti i rischi di danni al motore indipendentemente dalle condizioni operative. Per tutti i modelli è disponibile un freno di arresto elettromeccanico opzionale. Il funzionamento del freno è controllato interamente dall'inverter. Tenere sempre presente che i servomotori sincroni sono progettati per essere usati da tecnici meccatronici esperti.

Norme e direttive

I servomotori serie BTD e BCR sono conformi ai requisiti della direttiva CEE 73/23 (Direttiva bassa tensione) e della direttiva CEE 89/336 (Direttiva sulla compatibilità elettromagnetica) e la loro targa dati reca la marcatura CE.

Ai fini della direttiva EMC, sono fabbricati in conformità alle norme CEI EN 60034-1 sezione 12, EN 50081, EN 50082.

Anche se provvisti di freni elettromeccanici, questi motori rientrano ancora nei limiti di emissione specificati dalla EN 50081-1 "Compatibilità elettromagnetica – Requisiti generali - Parte 1: Industria residenziale, commerciale e leggera". Soddisfano inoltre i requisiti della norma CEI EN 60204-1 "Apparecchiature elettriche delle macchine".

Sono altresì conformi alla CEI EN 61000-6-4 "Compatibilità elettromagnetica, Parte 6-4: Norme generiche, Norme di emissione per ambienti industriali" e alla norma CEI EN 61000-6-2 Ed.

2 "Compatibilità elettromagnetica (EMC), Parte 6-2: Norme generiche, Immunità per gli ambienti industriali".

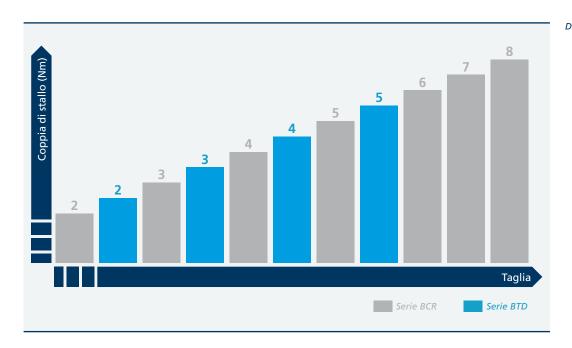
Per quanto concerne la conformità UL per il mercato del Nord America, questi servomotori Bonfiglioli soddisfano i requisiti della UL 1004 (file number E 321737).

Spetta al fabbricante o a chi assembla la macchina in cui sono incorporati questi motori assicurare la sicurezza della macchina nella sua interezza e la sua conformità a tutte le direttive sul prodotto finale pertinenti.

Simboli e unità di misura

Simbolo	Unità di misura	Descrizione
n _n	[min ⁻¹]	Velocità nominale
M _n	[Nm]	Coppia nominale
P _n	[kW]	Potenza nominale
I _n	[A]	Corrente nominale
M _o	[Nm]	Coppia di stallo
I _o	[A]	Corrente di stallo
\mathbf{M}_{max}	[Nm]	Coppia di picco
I _{max}	[A]	Corrente di picco
n _{max}	[min ⁻¹]	Velocità max
K _T	[Nm/A]	Costante di coppia
K _E	[V/1000min ⁻¹]	Costante di forza contro-elettromotrice
R_{pp}		Resistenza statorica tra due fasi
L _{pp}	[mH]	Induttanza statorica tra due fasi
$ au_{el}$	[ms]	Costante di tempo elettrica
$ au_{\text{therm}}$	[min]	Costante di tempo termica
J _M	[Kgcm²]	Momento di inerzia del motore
m	[kg]	Massa (peso) del motore
J _{Br}	[Kgcm²]	Momento di inerzia del freno di arresto
m _{Br}	[Kg]	Peso del freno di arresto
M _{Br}	[Nm]	Coppia del freno di arresto
P _{Br}	[W]	Potenza elettrica assorbita dal freno di arresto
V _{Br}	[V]	Tensione di alimentazione al freno di arresto
t _{Brc}	[ms]	Tempo di stabilizzazione della coppia di frenatura dall'interruzione di tensione al freno
t _{Brs}	[ms]	Tempo di riduzione al 10% della coppia di frenatura dal ripristino della tensione al freno

La gamma di servomotori **Bonfiglioli Vectron**

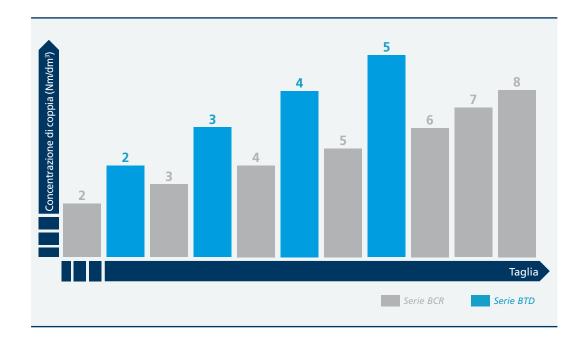

La gamma di servomotori Bonfiglioli Vectron è articolata in due serie di attuatori, una denominata BCR, l'altra BTD.

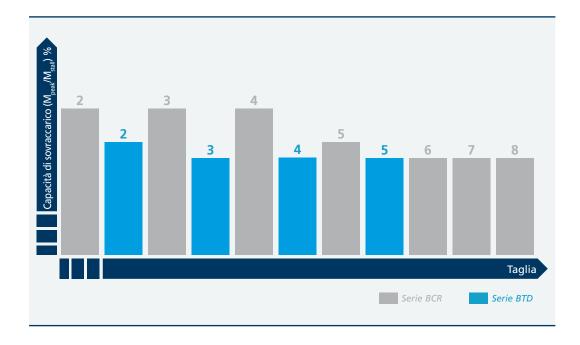
La differenza tra le due serie riguarda l'estensione dei rispettivi intervalli di velocità e di coppia, così come i loro sovraccarichi e rendimenti. Questo è ottenuto grazie a due differenti tecnologie costruttive: standard a statore avvolto per BCR, avanzata a poli avvolti per BTD. Grazie alle suddette caratteristiche, BCR offre un esteso intervallo di coppie ed un significativo potere di sovraccarico, così come BTD fornisce un alto coefficiente dinamico ed un rendimento

Ogni serie si suddivide in una quantità di taglie corrispondenti a differenti dimensioni di flangia. Ciascuna flangia è disponibile con motori aventi differenti lunghezze in grado di erogare altrettanti livelli di coppia.

La serie BCR è progettata per garantire valori di coppia continuativa fino a 115 Nm con sovraccarichi del 400%.

La serie BTD è progetatta pre soddisfare esigenze di compattezza in cui la coppia trae origine da dimensioni contenute. La tecnologia di avvolgimento dello statore e l'eccellente qualità dei magneti permanenti impiegati, permettono alla serie BTD di raggiungere densità di coppia fino a 16 Nm/dm³.

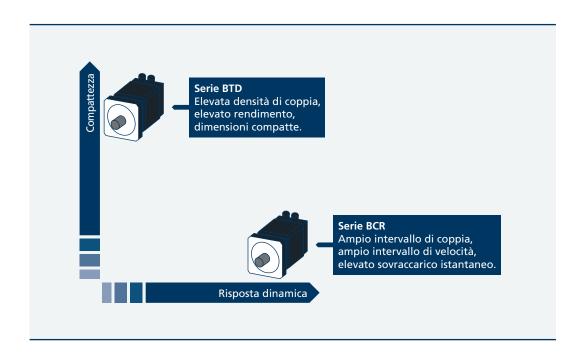

Distribuzione di coppia


La gamma di servomotori Bonfiglioli Vectron

BCR e BTD si suddividono l'intervallo di coppie e le dimensioni di ingombro con estrema efficienza, offrendo un ampio spettro di soluzioni applicative caratterizzate da spiccata dinamica e razionale compattezza.

Coppia specifica

Indice dinamico



La gamma di servomotori Bonfiglioli Vectron

Le serie BTD e BCR rappresentano la soluzione ideale per i progettisti di servosistemi che trovano sempre in esse una risposta efficace ad esigenze contrapposte di dinamica e compattezza.

Insieme sono in grado di offrire una soluzione adeguata alle specifiche applicative:

- alta coppia ed elevato sovraccarico
- alta coppia in dimensioni ristrette
- alta coppia ed elevato rendimento
- alto sovraccarico e intervallo di coppia esteso

Designazione commerciale dei servomotori Bonfiglioli Vectron

I servomotori Bonfiglioli sono tecnicamente identificati dalla loro designazione. Questa consiste in una successione rigorosa di caratteri alfanumerici le cui posizioni e i cui valori sono conformi a precise regole.

Per formulare un ordine commerciale di acquisto, occorre esprimere la designazione del servomotore desiderato.

La designazione identifica univocamente un prodotto e lo contraddistingue da tutte le altre sue possibili configurazioni presenti sul catalogo.

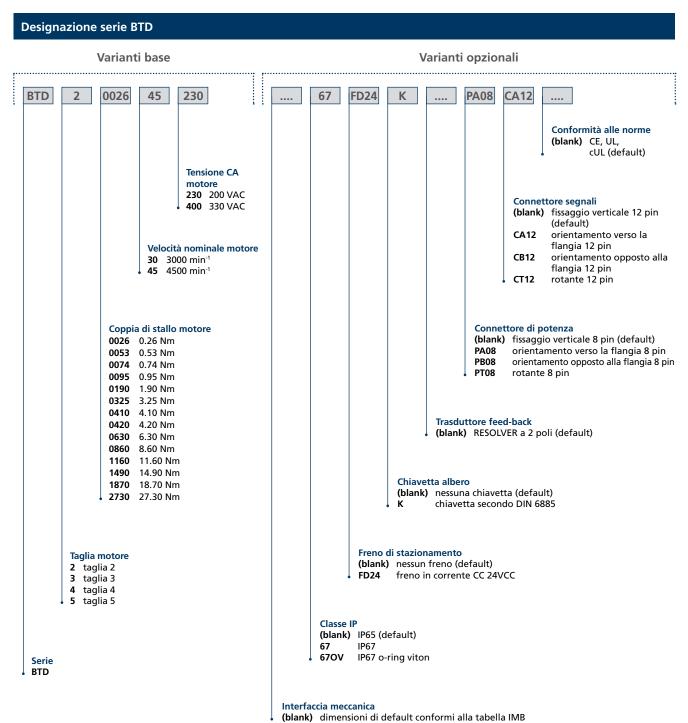
La designazione è formata da due parti principali dette varianti:

- varianti BASE
- varianti OPZIONALI

Le varianti sono a loro volta suddivise in campi, ciascuno dei quali definisce una particolare caratteristica di progetto del motore.

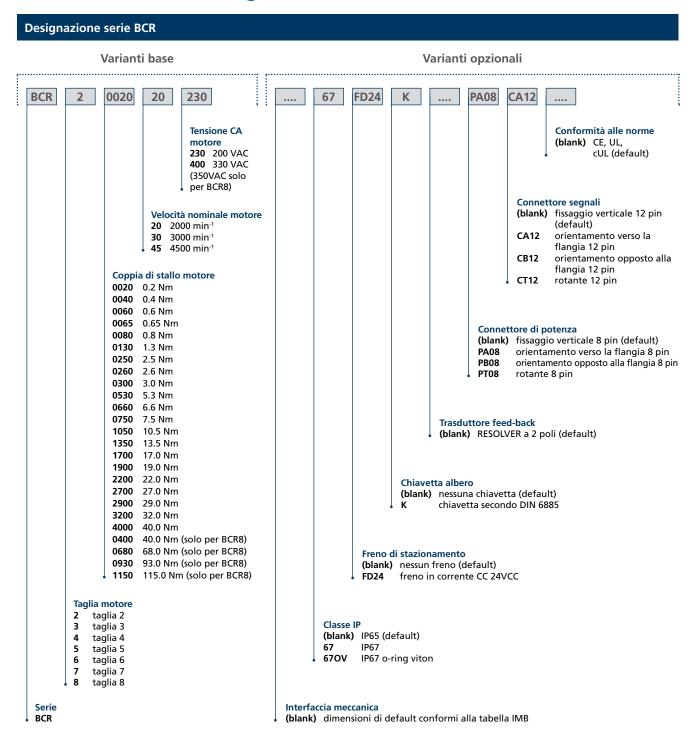
I campi delle varianti base sono obbligatori e devono essere sempre espressi in sede di ordinazione.

Quelli delle varianti opzionali, invece, devono essere utilizzati solo se il motore prescelto ha caratteristiche differenti da quelle standard rappresentate dalle varianti base. Ogni servomotore Bonfiglioli è definito dalla serie (BCR o BTD), dalla taglia (2, 3, 4, 5, 6, 7, 8), dalla coppia di stallo, dalla velocità nominale e dalla tensione di alimentazione.


Le varianti BASE sono usate per designare le cinque proprietà dei servomotori appena indicate e definiscono le sequenti caratteristiche standard:

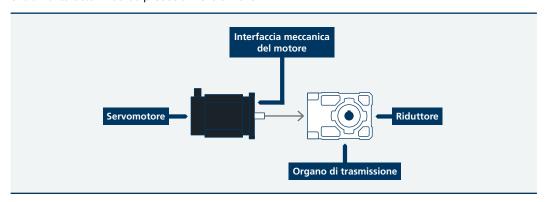
- Dimensioni geometriche standard
- Grado di protezione IP65
- Albero senza chiavetta
- Assenza di freno elettromeccanico
- Resolver a poli
- Connettore verticale a 8 pin di potenza
- Connettore verticale a 12 pin di controllo
- Certificazione CE, UL

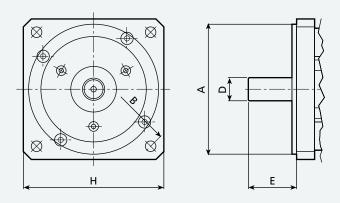
Qualunque deviazione dalle caratteristiche standard appena citate implica una variante opzionale.


Questa è espressa mediante l'uso dei successivi otto campi opzionali della stringa di designazione. Ogni campo delle varianti base e delle varianti opzionali può assumere un solo valore per volta attinto da una lista di valori possibili predefiniti.

Designazione commerciale dei servomotori Bonfiglioli

Designazione commerciale dei servomotori Bonfiglioli




Interfaccia meccanica

Con l'espressione Interfaccia Meccanica si intende la parte fisica del motore preposta all'accoppiamento di quest'ultimo con gli altri organi di trasmissione che compongono la catena cinematica.

L'interfaccia meccanica fa dunque parte del motore e comprende la flangia e l'albero, entrambi caratterizzati da precise dimensioni che ne definiscono univocamente la configurazione. La flangia e l'albero dei servomotori BTD e BCR sono dotati di geometrie prefissate secondo uno standard Bonfiglioli finalizzato all'accoppiamento con i riduttori di velocità, ma altresì disponibili all'adattamento a tutte le altre esigenze di collegamento richieste dalle applicazioni.

Interfaccia meccanica: Flangia di fissaggio + Albero di trasmissione. La geometria dell'interfaccia è definita dalle quote H, B, A, D, E riportate in figura i cui valori numerici in mm sono funzione della serie e della taglia di motore.

I servomotori BTD e BCR nella loro configurazione di base vengono allestiti con l'interfaccia meccanica riportata nella tabella sottostante, le cui dimensioni dipendono dalla grandezza del motore.

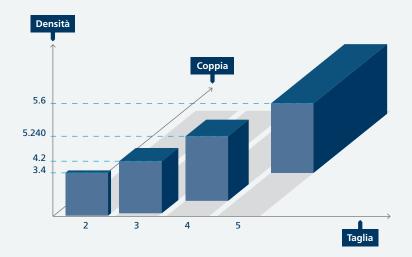
Tabella IMB (Interfaccia Meccanica di Base)

	Servomotore							
Interfaccia meccanica	BTD2 BCR2	BTD3 BCR3	BTD4 BCR4	BTD5 BCR5	BCR6	BCR7	ВС	R8
ø albero (D) [mm]	9	14	19	24	24	28	38	42
Lunghezza albero (E) [mm]	21.5	27	37	46.5	46.5	54	76	106
ø centraggio motore (A) [mm]	40	80	95	130	180	180	230	230
ø interasse fori (B) [mm]	63	100	115	165	215	215	265	265
Flangia (H) [mm]	55	86	98	142	190	190	240	240

I dati della tabella corrispondono alla selezione del carattere (blank) nel campo della designazione denominato "interfaccia meccanica". Dimensioni di interfaccia differenti da quelle

esposte possono essere concordate con il Drives Service Center di Bonfiglioli Riduttori previa valutazione tecnica e analisi di fattibilità dell'applicazione.

Servomotore brushless BTD (compatto)

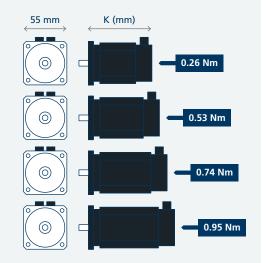

I moderni circuiti magnetici ed elettrici utilizzati in questo servomotore consentono alla serie BTD di ridurre la temperatura e di aumentare la coppia motrice mantenendo limitate le dimensioni.

La serie BTD è sviluppata in quattro taglie identificate da un numero progressivo (da 2 a 5) corrispondente ad un'analoga quantità di flangie progettate per accoppiamenti predefiniti con i riduttori.

Per ciascuna grandezza di flangia sono disponibili diversi valori di coppia ottenuti da diverse lunghezze del motore dalle quali si possono estrarre alti valori di coppia a partire da piccoli volumi.

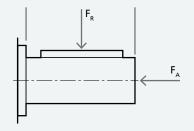
Il significato del nome è il seguente: BTD = Brushless - Torque - Density Il largo intervallo di coppia (0.26 ÷ 27.5 Nm) è ripartito fra le quattro taglie motore.

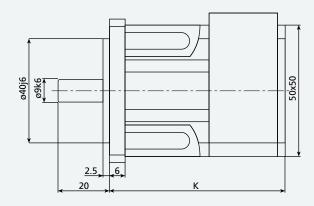
Serie	Taglia	Flangia	Velocità		Coppia di stallo			Densità di coppia
		[mm]	[min ⁻¹]		[N	m]		[Nm/dm³]
	2	55	4500	0.26	0.53	0.74	0.95	3.4
D.T.D.	3	86	3000	0.95	1.9	3.25	4.2	4.2
BTD	4	98	3000	4.1	6.3	8.6	-	5.2
	5	142	3000	11.6	14.9	18.7	27.3	5.6

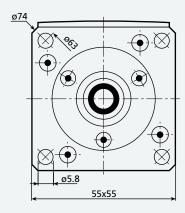

BTD2 - 0.26 ÷ 0.95 Nm

Tutti i servomotori BTD della taglia 2 sono dotati della stessa flangia geometrica, mentre essi differiscono per la lunghezza (K) da cui dipende il valore di coppia. Il motore nella configurazione base non è dotato di freno elettromeccanico il quale costituisce invece un'opzione.

L'eventuale presenza del freno condiziona la lunghezza del motore.


La grandezza BTD2 è strutturata su quattro livelli di coppia corrispondenti a quattro diverse lunghezze di motore, con velocità nominali di 4500 min¹. Il motore è disponibile sia con alimentazione 3ph x 400VAC sia 3 ph x 230 VAC, conservando sempre le medesime prestazioni meccaniche.

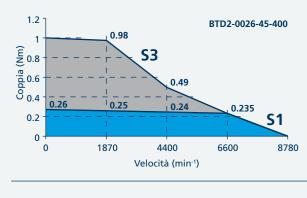

Sul servomotore standard sono installati entrambi i connettori di potenza e di controllo per la connessione elettrica all'inverter. A richiesta sono fornibili differenti tipi di connettori.

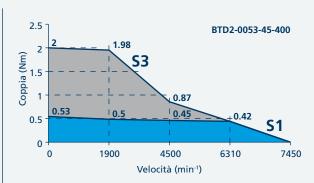


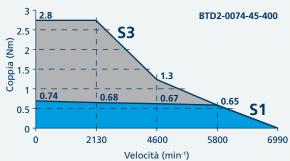
Motore	Coppia di stallo	Vel. nominale	Flangia	Lunghezza K	
	[Nm]	[min ⁻¹]	[mm]	Senza freno	Con freno
BTD2-0026	0.26			67	105
BTD2-0053	0.53	4500	55	82	120
BTD2-0074	0.74			97	135
BTD2-0095	0.95			112	150

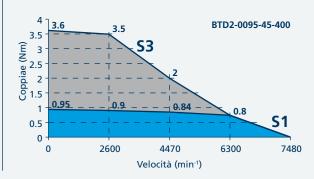
WOLOIG	Carico max sun albero (N)					
	Radiale F _R	Assiale F _A				
BTD2-0026	219	42				
BTD2-0053	234	45				
BTD2-0074	245	46				
BTD2-0095	252	48				

BTD2 400V


Motore		BTD2-0026-45-400	BTD2-0053-45-400	BTD2-0074-45-400	BTD2-0095-45-400
Coppia di stallo	M _o [Nm]	0.26	0.53	0.74	0.95
Velocità nominale	n _n [min ⁻¹]	4500	4500	4500	4500
Inverter CC-bus	V _{dc} [V]	560	560	560	560
Tensione nominale motore CA	V _n [V]	330	330	330	330
Numero di poli motore	p _{mot}	6	6	6	6
Numero di poli resolver	p _{res}	2	2	2	2
Coppia nominale	M _n [Nm]	0.24	0.45	0.67	0.84
Corrente CA nominale	I _n [A]	0.68	0.66	0.89	1.19
Corrente CA di stallo	I _o [A]	0.42	0.73	0.96	1.31
Picco di coppia	M _{max} [Nm]	1.0	2.0	2.8	3.6
Picco di corrente	I _{max} [A]	1.7	3.0	3.9	5.3
Costante EMF	K _E [V/1000min ⁻¹]	37.5	44.0	47.0	44.0
Costante di coppia	K _T [Nm/A]	0.62	0.73	0.78	0.73
Potenza nominale	P _n [W]	110	210	315	395
Resistenza statore fase - fase	$R_{pp}[\Omega]$	106	54	37.9	21.6
Induttanza statore fase - fase	L _{pp} [mH]	176.0	104.0	70.0	49.1
Inerzia del rotore	J _m [kgcm²]	0.06	0.08	0.10	0.12
Costante di tempo elettrica	τ _{el} [ms]	1.7	1.9	1.8	2.3
Costante di tempo meccanica	τ _{th} [min]	13	15	20	22
Costante di tempo termica	τ _{mec} [ms]	2.9	1.4	1.1	0.8
Peso senza freno	m _M [kg]	0.750	0.920	1.090	1.260
Peso con freno	m _{MF} [kg]	1.190	1.360	1.530	1.700

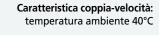

Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:

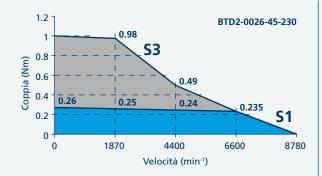

 T_{amb} = 40 °C (temperatura ambiente)

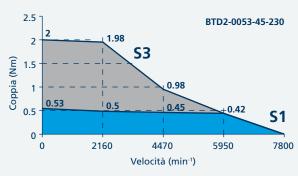

ΔT = 105 °C (temperatura riscaldamento avvolgimento)

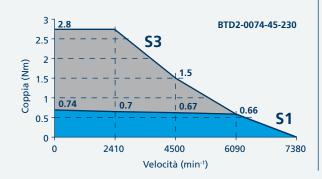
Curva S1 = per esercizio continuo Curva S3 = per esercizio intermittente

BTD2 230V


Motore		BTD2-0026-45-230	BTD2-0053-45-230	BTD2-0074-45-230	BTD2-0095-45-230
	T				
Coppia di stallo	M _o [Nm]	0.26	0.53	0.74	0.95
Velocità nominale	n _n [min ⁻¹]	4500	4500	4500	4500
Inverter CC-bus	V _{dc} [V]	320	320	320	320
Tensione nominale motore CA	V _n [V]	200	200	200	200
Numero di poli motore	P _{mot}	6	6	6	6
Numero di poli resolver	p _{res}	2	2	2	2
Coppia nominale	M _n [Nm]	0.24	0.45	0.67	0.84
Corrente CA nominale	I _n [A]	0.68	1.11	1.55	1.90
Corrente CA di stallo	I _o [A]	0.70	1.26	1.66	2.10
Picco di coppia	M _{max} [Nm]	1.0	2.0	2.8	3.6
Picco di corrente	I _{max} [A]	2.9	5.1	6.7	8.5
Costante EMF	K _E [V/1000min ⁻¹]	21.0	25.5	27.0	27.5
Costante di coppia	K _⊤ [Nm/A]	0.37	0.42	0.45	0.45
Potenza nominale	P _n [W]	110	210	315	395
Resistenza statore fase - fase	$R_{pp}[\Omega]$	36.8	17.4	12.1	8.4
Induttanza statore fase - fase	L _{pp} [mH]	62.0	34.1	22.8	19.4
Inerzia del rotore	J _m [kgcm²]	0.06	0.08	0.10	0.12
Costante di tempo elettrica	τ _{el} [ms]	1.7	2.0	1.9	2.3
Costante di tempo meccanica	τ _{th} [min]	13	15	20	22
Costante di tempo termica	τ _{mec} [ms]	3.2	1.4	1.0	0.8
Peso senza freno	m _M [kg]	0.750	0.920	1.090	1.260
Peso con freno	m _{MF} [kg]	1.190	1.360	1.530	1.700

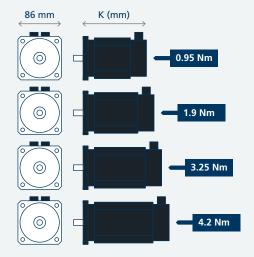

Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:


T_{amb} = 40 °C (temperatura ambiente)

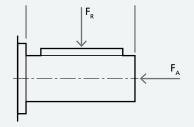

 ΔT = 105 °C (temperatura riscaldamento avvolgimento)


Curva S1 = per esercizio continuo
Curva S3 = per esercizio intermittente

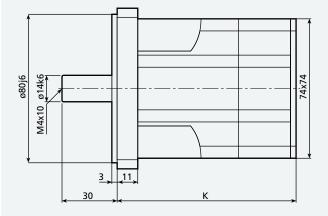
BTD3 - 0.95 ÷ 4.2 Nm

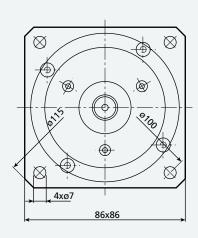

Tutti i servomotori BTD della taglia 3 sono dotati della stessa flangia geometrica, mentre essi differiscono per la lunghezza (K) da cui dipende il valore di coppia. Il motore nella configurazione base non è dotato di freno elettromeccanico il quale costituisce invece un'opzione.

L'eventuale presenza del freno condiziona la lunghezza del motore.


La grandezza BTD3 è strutturata su quattro livelli di coppia corrispondenti a quattro diverse lunghezze di motore, con velocità nominali di 3000 min⁻¹.

Il motore è disponibile sia con alimentazione 3ph x 400VAC sia 3 ph x 230 VAC, conservando sempre le medesime prestazioni meccaniche.

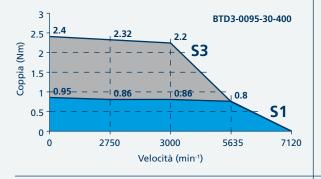

Sul servomotore standard sono installati entrambi i connettori di potenza e di controllo per la connessione elettrica all'inverter. A richiesta sono fornibili differenti tipi di connettori.

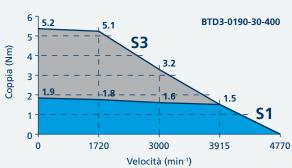


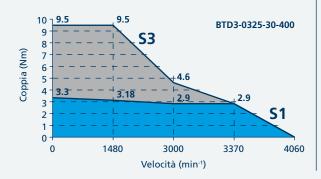
Motore	Coppia di stallo	Vel. nominale	Flangia	Lunghezza K	
	[Nm]	[min ⁻¹]	[mm]	Senza freno	Con freno
BTD3-0095	0.95			95	135
BTD3-0190	1.9	3000	86	113	153
BTD3-0325	3.25			149	189
BTD3-0420	4.2			185	225

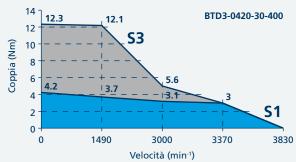
Motore	Carico max sull'albero (N)						
	Radiale F _R	Assiale F _A					
BTD3-0095	335	64					
BTD3-0190	368	70					
BTD3-0325	406	77					
BTD3-0420	427	81					

BTD3 400V


Motore		BTD3-0095-30-400	BTD3-0190-30-400	BTD3-0325-30-400	BTD3-0420-30-400
Coppia di stallo	M _o [Nm]	0.95	1.9	3.25	4.2
Velocità nominale	n _n [min ⁻¹]	3000	3000	3000	3000
Inverter CC-bus	V _{dc} [V]	560	560	560	560
Tensione nominale motore CA	V _n [V]	330	330	330	330
Numero di poli motore	p _{mot}	10	10	10	10
Numero di poli resolver	p _{res}	2	2	2	2
Coppia nominale	M _n [Nm]	0.86	1.6	2.9	3.1
Corrente CA nominale	I _n [A]	1.28	1.46	2.3	2.3
Corrente CA di stallo	I _o [A]	1.32	1.66	2.4	3
Picco di coppia	M _{max} [Nm]	2.4	5.2	9.5	12.3
Picco di corrente	I _{max} [A]	4.9	6.7	10.6	12.9
Costante EMF	K _E [V/1000min ⁻¹]	43.5	69	81	86
Costante di coppia	K _T [Nm/A]	0.72	1.14	1.34	1.42
Potenza nominale	P _n [W]	270	500	910	970
Resistenza statore fase - fase	$R_{pp}[\Omega]$	12.6	11.6	6.5	4.6
Induttanza statore fase - fase	L _{pp} [mH]	38	42.3	30.6	26.1
Inerzia del rotore	J _m [kgcm²]	0.5	0.7	1.1	1.5
Costante di tempo elettrica	τ _{el} [ms]	3	3.6	4.7	5.7
Costante di tempo meccanica	τ _{th} [min]	25	30	33	36
Costante di tempo termica	τ_{mec} [ms]	2.1	1.1	0.7	0.6
Peso senza freno	m _M [kg]	1.525	2.090	3.220	4.350
Peso con freno	m _{MF} [kg]	2.115	2.680	3.810	4.940

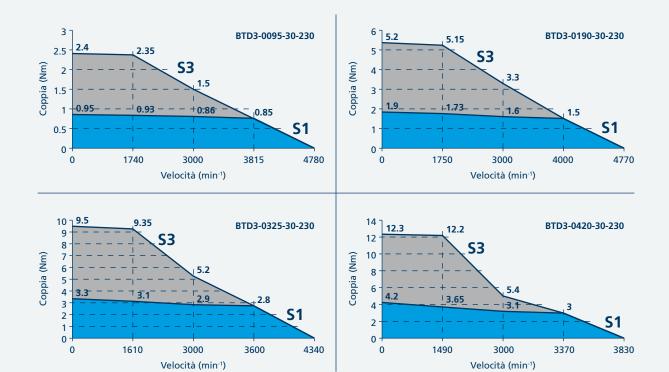

Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:


T_{amb} = 40 °C (temperatura ambiente)


 ΔT = 105 °C (temperatura riscaldamento avvolgimento)

Curva S1 = per esercizio continuo Curva S3 = per esercizio intermittente

BTD3 230V


Motore		BTD3-0095-30-230	BTD3-0190-30-230	BTD3-0325-30-230	BTD3-0420-30-230
Coppia di stallo	M _o [Nm]	0.95	1.9	3.25	4.2
Velocità nominale	n _n [min ⁻¹]	3000	3000	3000	3000
Inverter CC-bus	V _{dc} [V]	320	320	320	320
Tensione nominale motore CA	V _n [V]	200	200	200	200
Numero di poli motore	p _{mot}	10	10	10	10
Numero di poli resolver	p _{res}	2	2	2	2
Coppia nominale	M _n [Nm]	0.86	1.6	2.9	3.1
Corrente CA nominale	I _n [A]	1.43	2.4	4	3.7
Corrente CA di stallo	I _o [A]	1.47	2.8	4.3	4.8
Picco di coppia	M _{max} [Nm]	2.4	5.2	9.5	12.3
Picco di corrente	I _{max} [A]	5.4	11.1	18.6	21
Costante EMF	K _E [V/1000min ⁻¹]	39	41.5	46	53
Costante di coppia	K _T [Nm/A]	0.65	0.69	0.76	0.88
Potenza nominale	P _n [W]	270	500	910	970
Resistenza statore fase - fase	$R_{pp} [\Omega]$	9.9	4	2.2	1.77
Induttanza statore fase - fase	L _{pp} [mH]	30.6	15.4	9.8	10
Inerzia del rotore	J _m [kgcm²]	0.5	0.7	1.1	1.5
Costante di tempo elettrica	τ _{el} [ms]	3.1	3.9	4.5	5.6
Costante di tempo meccanica	τ _{th} [min]	25	30	33	36
Costante di tempo termica	τ _{mec} [ms]	2.1	1.0	0.7	0.6
Peso senza freno	m _M [kg]	1.525	2.090	3.220	4.350
Peso con freno	m _{MF} [kg]	2.115	2.680	3.810	4.940

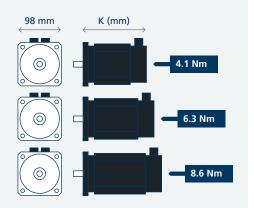
Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:

T_{amb} = 40 °C (temperatura ambiente)

ΔT = 105 °C (temperatura riscaldamento avvolgimento)

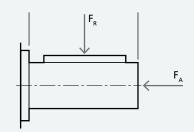
Curva S1 = per esercizio continuo Curva S3 = per esercizio intermittente

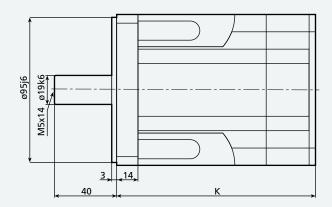
BTD4 - 4.1 ÷ 8.6 Nm

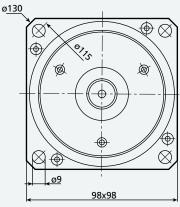

Tutti i servomotori BTD della taglia 4 sono dotati della stessa flangia geometrica, mentre essi differiscono per la lunghezza (K) da cui dipende il valore di coppia. Il motore nella configurazione base non è dotato di freno elettromeccanico il quale costituisce invece un'opzione.

L'eventuale presenza del freno condiziona la lunghezza del motore.

La grandezza BTD4 è strutturata su tre livelli di coppia corrispondenti a tre diverse lunghezze di motore, con velocità nominali di 3000 min⁻¹.


Il motore è disponibile sia con alimentazione 3ph x 400VAC sia 3 ph x 230 VAC, conservando sempre le medesime prestazioni meccaniche.

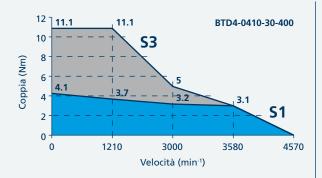

Sul servomotore standard sono installati entrambi i connettori di potenza e di controllo per la connessione elettrica all'inverter. A richiesta sono fornibili differenti tipi di connettori.

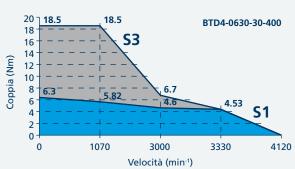


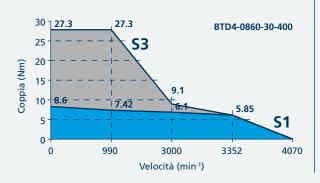
Motore	Coppia di stallo	Vel. nominale	Flangia	Lunghezza K	
	[Nm]	[min ⁻¹]	[mm]	Senza freno	Con freno
BTD4-0410	4.1			125	166
BTD4-0630	6.3	3000	98	155	196
BTD4-0860	8.6			185	226

Motore	Carico max sull'albero (N)				
	Radiale F _R	Assiale F _A			
BTD4-0410	594	113			
BTD4-0630	648	123			
BTD4-0860	682	130			

BTD4 400V


Motore		BTD4-0410-30-400	BTD4-0630-30-400	BTD4-0860-30-400
Coppia di stallo	M _o [Nm]	4.1	6.3	8.6
Velocità nominale	n _n [min ⁻¹]	3000	3000	3000
Inverter CC-bus	V _{dc} [V]	560	560	560
Tensione nominale motore CA	V _n [V]	330	330	330
Numero di poli motore	p _{mot}	10	10	10
Numero di poli resolver	p _{res}	2	2	2
Coppia nominale	M _n [Nm]	3.2	4.6	6.1
Corrente CA nominale	I _n [A]	2.8	3.6	4.8
Corrente CA di stallo	I _o [A]	3.4	4.77	6.4
Picco di coppia	M _{max} [Nm]	11.1	18.5	27
Picco di corrente	I _{max} [A]	13.6	21	31
Costante EMF	K _E [V/1000min ⁻¹]	72	80	81
Costante di coppia	K _T [Nm/A]	1.19	1.32	1.34
Potenza nominale	P _n [W]	1000	1440	1910
Resistenza statore fase - fase	$R_{pp}[\Omega]$	4	2.7	1.81
Induttanza statore fase - fase	L _{pp} [mH]	34	25	18.6
Inerzia del rotore	J _m [kgcm²]	1.7	2.6	3.5
Costante di tempo elettrica	τ _{el} [ms]	8.5	9.9	10.3
Costante di tempo meccanica	τ _{th} [min]	29	31	33
Costante di tempo termica	τ _{mec} [ms]	0.8	0.7	0.6
Peso senza freno	m _M [kg]	4.275	5.340	6.960
Peso con freno	m _{MF} [kg]	5.095	6.160	7.780


Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:

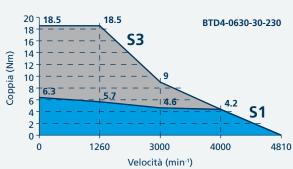

 $\begin{matrix} T_{\text{amb}} \\ \Delta T \end{matrix}$ = 40 °C (temperatura ambiente)

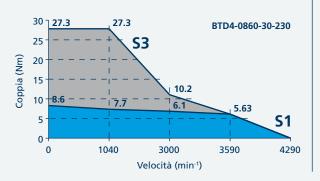
= 105 °C (temperatura riscaldamento avvolgimento)

Curva S1 = per esercizio continuo Curva S3 = per esercizio intermittente

BTD4 230V


Motore		BTD4-0410-30-230	BTD4-0630-30-230	BTD4-0860-30-230
			T	T
Coppia di stallo	M _o [Nm]	4.1	6.3	8.6
Velocità nominale	n _n [min ⁻¹]	3000	3000	3000
Inverter CC-bus	V _{dc} [V]	320	320	320
Tensione nominale motore CA	V _n [V]	200	200	200
Numero di poli motore	p _{mot}	10	10	10
Numero di poli resolver	p _{res}	2	2	2
Coppia nominale	M _n [Nm]	3.2	4.6	6.1
Corrente CA nominale	I _n [A]	5	7	8.3
Corrente CA di stallo	I _o [A]	6	9.13	11.2
Picco di coppia	M _{max} [Nm]	11.1	18.5	27
Picco di corrente	I _{max} [A]	24	40	53
Costante EMF	K _E [V/1000min ⁻¹]	40.5	41.5	46.5
Costante di coppia	K _T [Nm/A]	0.67	0.69	0.77
Potenza nominale	P _n [W]	1000	1440	1910
Resistenza statore fase - fase	$R_{pp}[\Omega]$	1.24	0.70	0.59
Induttanza statore fase - fase	L _{pp} [mH]	10.6	6.9	6.2
Inerzia del rotore	J _m [kgcm²]	1.7	2.6	3.5
Costante di tempo elettrica	τ _{el} [ms]	8.5	9.9	10.3
Costante di tempo meccanica	τ _{th} [min]	29	31	33
Costante di tempo termica	τ _{mec} [ms]	0.8	0.6	0.6
Peso senza freno	m _M [kg]	4.275	5.340	6.960
Peso con freno	m _{MF} [kg]	5.095	6.160	7.780

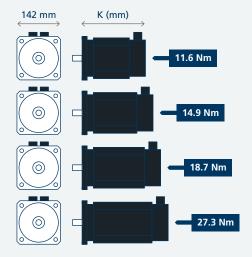

Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:


 T_{amb} = 40 °C (temperatura ambiente)

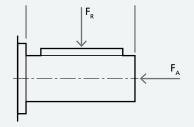
 ΔT = 105 °C (temperatura riscaldamento avvolgimento)

Curva S1 = per esercizio continuo
Curva S3 = per esercizio intermittente

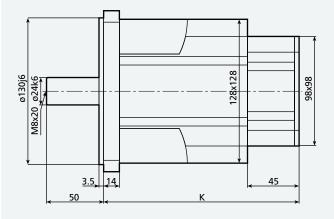
BTD5 - 11.6 ÷ 27.3 Nm

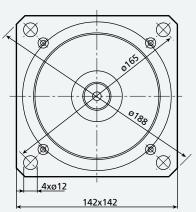

Tutti i servomotori BTD della taglia 5 sono dotati della stessa flangia geometrica, mentre essi differiscono per la lunghezza (K) da cui dipende il valore di coppia. Il motore nella configurazione base non è dotato di freno elettromeccanico il quale costituisce invece un'opzione.

L'eventuale presenza del freno condiziona la lunghezza del motore.


La grandezza BTD5 è strutturata su quattro livelli di coppia corrispondenti a quattro diverse lunghezze di motore, con velocità nominali di 3000 min⁻¹.

Il motore è disponibile sia con alimentazione 3ph x 400VAC sia 3 ph x 230 VAC, conservando sempre le medesime prestazioni meccaniche.

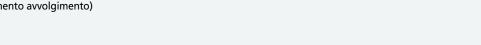

Sul servomotore standard sono installati entrambi i connettori di potenza e di controllo per la connessione elettrica all'inverter. A richiesta sono fornibili differenti tipi di connettori.

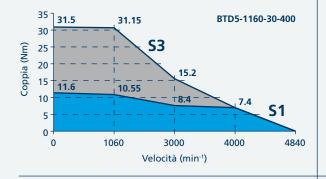


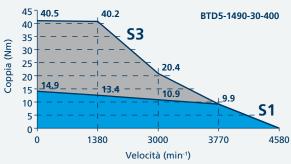
Motore	Coppia di stallo	Vel. nominale	Flangia	Lunghezza K	
	[Nm]	[min ⁻¹]	[mm]	Senza freno	Con freno
BTD5-1160	11.6			173	224
BTD5-1490	14.9	2000	142	201	252
BTD5-1870	18.7	3000	142	231	282
BTD5-2730	27.3			291	342

Motore	Carico max sull'albero (N)				
	Radiale F _R	Assiale F _A			
BTD5-1160	672	128			
BTD5-1490	713	135			
BTD5-1870	743	141			
BTD5-2730	783	149			

BTD5 400V

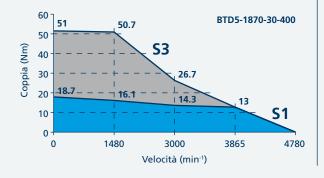

Motore		BTD5-1160-30-400	BTD5-1490-30-400	BTD5-1870-30-400	BTD5-2730-30-400
		1		1	
Coppia di stallo	M _o [Nm]	11.6	14.9	18.7	27.3
Velocità nominale	n _n [min ⁻¹]	3000	3000	3000	3000
Inverter CC-bus	V _{dc} [V]	560	560	560	560
Tensione nominale motore CA	V _n [V]	330	330	330	330
Numero di poli motore	P _{mot}	10	10	10	10
Numero di poli resolver	p _{res}	2	2	2	2
Coppia nominale	M _n [Nm]	8.4	10.9	14.3	21
Corrente CA nominale	I _n [A]	7.9	9.6	13.1	14.9
Corrente CA di stallo	I _o [A]	10.4	12.5	16.4	19
Picco di coppia	M _{max} [Nm]	32	41	51	75
Picco di corrente	I _{max} [A]	49	49	61	68
Costante EMF	K _E [V/1000min ⁻¹]	68	72	69	87
Costante di coppia	K _T [Nm/A]	1.12	1.19	1.14	1.44
Potenza nominale	P _n [W]	2640	3420	4490	6600
Resistenza statore fase - fase	$R_{pp}[\Omega]$	0.71	0.48	0.35	0.32
Induttanza statore fase - fase	L _{pp} [mH]	11.4	8.5	6.4	6.8
Inerzia del rotore	J _m [kgcm²]	6.8	8.3	11.0	15.3
Costante di tempo elettrica	τ _{el} [ms]	16.0	16.8	18.3	21
Costante di tempo meccanica	τ _{th} [min]	50	55	60	75
Costante di tempo termica	τ _{mec} [ms]	0.7	0.5	0.5	0.4
Peso senza freno	m _м [kg]	8.100	10.100	12.100	16.100
Peso con freno	m _{MF} [kg]	9.180	11.180	13.180	17.180

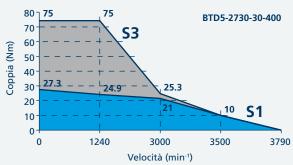

Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:


T_{amb} = 40 °C (temperatura ambiente)

 ΔT = 105 °C (temperatura riscaldamento avvolgimento)

Curva S1 = per esercizio continuo Curva S3 = per esercizio intermittente

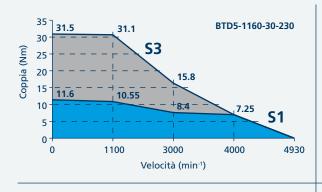


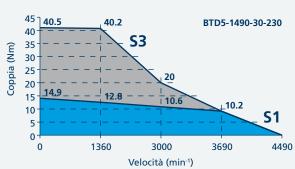


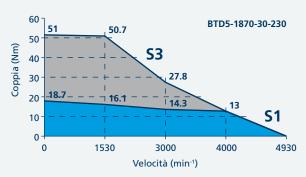
Caratteristica coppia-velocità:

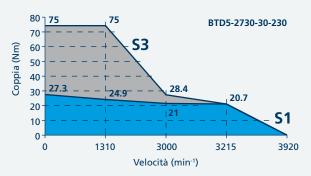
temperatura ambiente 40°C

BTD5 230V


Motore		BTD5-1160-30-230	BTD5-1490-30-230	BTD5-1870-30-230	BTD5-2730-30-230
Coppia di stallo	M _o [Nm]	11.6	14.9	18.7	27.3
Velocità nominale	n _n [min ⁻¹]	3000	3000	3000	3000
Inverter CC-bus	V _{dc} [V]	320	320	320	320
Tensione nominale motore CA	V _n [V]	200	200	200	200
Numero di poli motore	p _{mot}	10	10	10	10
Numero di poli resolver	p _{res}	2	2	2	2
Coppia nominale	M _n [Nm]	8.4	10.9	14.3	21.0
Corrente CA nominale	I _n [A]	13.2	15.6	22.4	25.4
Corrente CA di stallo	I _o [A]	17.3	20.1	27.9	32.4
Picco di coppia	M _{max} [Nm]	32	41	51	75
Picco di corrente	I _{max} [A]	82	80	105	116
Costante EMF	K _E [V/1000min ⁻¹]	40.5	44.5	40.5	51.0
Costante di coppia	K _T [Nm/A]	0.67	0.74	0.67	0.84
Potenza nominale	P _n [W]	2640	3420	4490	6600
Resistenza statore fase - fase	$R_{pp} [\Omega]$	0.25	0.19	0.12	0.12
Induttanza statore fase - fase	L _{pp} [mH]	4.0	3.2	2.2	2.3
Inerzia del rotore	J _m [kgcm²]	6.8	8.3	11.0	15.3
Costante di tempo elettrica	τ _{el} [ms]	16.0	16.8	18.3	19.2
Costante di tempo meccanica	τ _{th} [min]	50	55	60	75
Costante di tempo termica	τ _{mec} [ms]	0.7	0.5	0.5	0.4
Peso senza freno	m _M [kg]	8.100	10.100	12.100	16.100
Peso con freno	m _{MF} [kg]	9.180	11.180	13.180	17.180

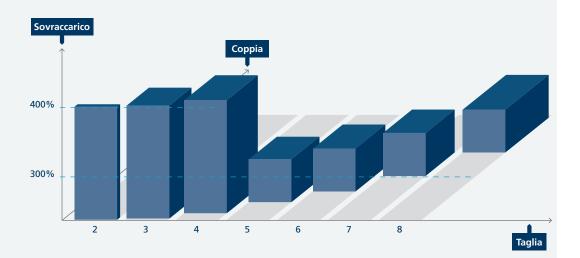

Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:


T_{amb} = 40 °C (temperatura ambiente)


 ΔT = 105 °C (temperatura riscaldamento avvolgimento)

Curva S1 = per esercizio continuo Curva S3 = per esercizio intermittente

Servomotore brushless BCR (dinamico)

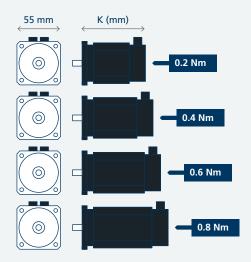

L'architettura dei circuiti magnetici e l'isolamento dell'avvolgimento conferiscono a questo servomotore prestazioni dinamiche elevate, garantendo sempre una lunga durata dell'attuatore. La serie BCR è realizzata in sette taglie identificate da un numero progressivo (da 2 a 8) corrispondente ad un'analoga quantità di flangie progettate per accoppiamenti predefiniti con i riduttori. Anche la serie BCR rende disponibili numerosi valori

di coppia ottenuti mediante diverse lunghezze del

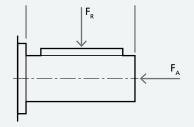
motore dalle quali si possono ottenere sia elevate coppie continuative sia elevati sovraccarichi fino al 400% dei livelli nominali.

Il significato del nome è il seguente:
BCR = Brushless - Classic - Range
L'ampio intervallo di coppia (0.2 ÷ 115 Nm) in
servizio continuo e l'elevato sovraccarico rendono
il BCR molto adatto per applicazioni estremamente
dinamiche caratterizzate da accelerazioni
significative.

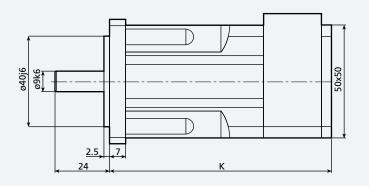
Serie	Taglia	Flangia	Velocità		Coppia di stallo			Sovraccarico	
		[mm]	[min ⁻¹]			[Nm]			[%]
	2	55	4500	0.2	0.4	0.6	0.8	-	400
	3	86	4500	0.65	1.3	2.5	3.0	-	400
	4	98	3000	1	2.6	5.3	7.5	-	400
BCR	5	142	3000	6.6	10.5	13.5	17.0	22.0	300
	6	190	3000	13.5	19.0	22.0	29.0	-	300
	7	190	3000	27.0	32.0	40.0	-	-	300
	8	240	3000/2000	40.0	68.0	93.0	115.0	-	300

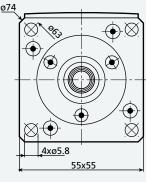


BCR2 - 0.2 ÷ 0.8 Nm


Tutti i servomotori BCR della taglia 2 sono dotati della stessa flangia geometrica, mentre essi differiscono per la lunghezza (K) da cui dipende il valore di coppia. Il motore nella configurazione base non è dotato di freno elettromeccanico il quale costituisce invece un'opzione. L'eventuale presenza del freno condiziona la lunghezza del motore.

La grandezza BCR2 è strutturata su quattro livelli di coppia corrispondenti a quattro diverse lunghezze di motore, con velocità nominali di 4500 min¹. Il motore è disponibile sia con alimentazione 3ph x 400VAC sia 3ph x 230VAC, conservando sempre le medesime prestazioni meccaniche.

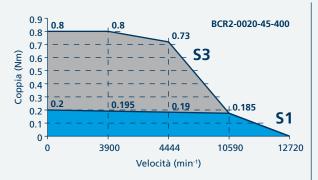

Sul servomotore standard sono installati entrambi i connettori di potenza e di controllo per la connessione elettrica all'inverter. A richiesta sono fornibili differenti tipi di connettori.

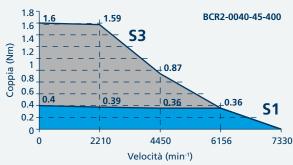


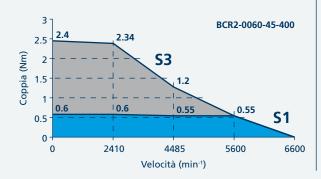
Motore	Coppia di stallo	Vel. nominale	Flangia	Lunghezza K	
	[Nm]	[min ⁻¹]	[mm]	Senza freno	Con freno
BCR2-0020	0.2			98	131
BCR2-0040	0.4	4500	55	113	146
BCR2-0060	0.6	4500	55	128	161
BCR2-0080	0.8			143	176

Motore	Carico max sull'albero (N)					
	Radiale F _R	Assiale F _A				
BCR2-0020	225	43				
BCR2-0040	237	45				
BCR2-0060	245	47				
BCR2-0080	252	48				

BCR2 400V


Motore		BCR2-0020-45-400	BCR2-0040-45-400	BCR2-0060-45-400	BCR2-0080-45-400
			1		
Coppia di stallo	M _o [Nm]	0.2	0.4	0.6	0.8
Velocità nominale	n _n [min ⁻¹]	4500	4500	4500	4500
Inverter CC-bus	V _{dc} [V]	560	560	560	560
Tensione nominale motore CA	V _n [V]	330	330	330	330
Numero di poli motore	P _{mot}	6	6	6	6
Numero di poli resolver	p _{res}	2	2	2	2
Coppia nominale	M _n [Nm]	0.19	0.36	0.55	0.72
Corrente CA nominale	I _n [A]	0.48	0.51	0.70	0.86
Corrente CA di stallo	I _o [A]	0.47	0.54	0.73	0.91
Picco di coppia	M _{max} [Nm]	0.8	1.6	2.4	3.2
Picco di corrente	I _{max} [A]	2.0	2.3	3.1	3.9
Costante EMF	K _E [V/1000min ⁻¹]	25.5	45.0	50.0	53.0
Costante di coppia	K _⊤ [Nm/A]	0.42	0.74	0.83	0.88
Potenza nominale	P _n [W]	90	170	260	340
Resistenza statore fase - fase	$R_{pp}[\Omega]$	84.0	77.0	51.0	38.4
Induttanza statore fase - fase	L _{pp} [mH]	50.0	62.0	45.5	39.7
Inerzia del rotore	J _m [kgcm²]	0.06	0.08	0.11	0.13
Costante di tempo elettrica	τ _{el} [ms]	0.59	0.80	0.90	1.00
Costante di tempo meccanica	τ _{th} [min]	10	15	20	22
Costante di tempo termica	τ _{mec} [ms]	4.9	1.9	1.4	1.1
Peso senza freno	m _M [kg]	0.9	1.06	1.21	1.36
Peso con freno	m _{MF} [kg]	1.05	1.21	1.36	1.51

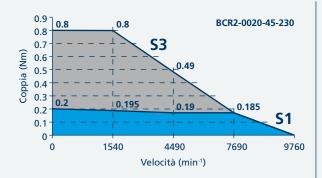

Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:

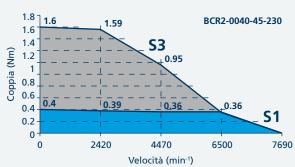

T_{amb} = 40 °C (temperatura ambiente)

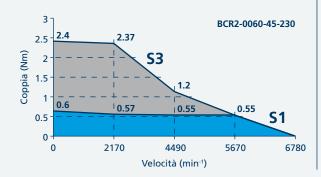
 ΔT = 105 °C (temperatura riscaldamento avvolgimento)

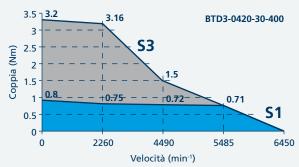
Curva S1 = per esercizio continuo Curva S3 = per esercizio intermittente

BCR2 230V

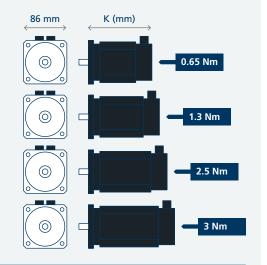

Motore		BCR2-0020-45-230	BCR2-0040-45-230	BCR2-0060-45-230	BCR2-0080-45-230
	1	1			_
Coppia di stallo	M _o [Nm]	0.2	0.4	0.6	0.8
Velocità nominale	n _n [min ⁻¹]	4500	4500	4500	4500
Inverter CC-bus	V _{dc} [V]	320	320	320	320
Tensione nominale motore CA	V _n [V]	200	200	200	200
Numero di poli motore	p _{mot}	6	6	6	6
Numero di poli resolver	p _{res}	2	2	2	2
Coppia nominale	M _n [Nm]	0.19	0.36	0.55	0.72
Corrente CA nominale	I _n [A]	0.60	0.88	1.18	1.47
Corrente CA di stallo	I _o [A]	0.59	0.93	1.23	1.56
Picco di coppia	M _{max} [Nm]	0.8	1.6	2.4	3.2
Picco di corrente	I _{max} [A]	2.5	4.0	5.3	6.7
Costante EMF	K _E [V/1000min ⁻¹]	20.5	26.0	30.0	31.0
Costante di coppia	K _T [Nm/A]	0.34	0.43	0.49	0.51
Potenza nominale	P _n [W]	90	170	260	340
Resistenza statore fase - fase	$R_{pp} [\Omega]$	54.0	26.3	19.9	14.6
Induttanza statore fase - fase	L _{pp} [mH]	32.0	21.4	17.2	14.4
Inerzia del rotore	J _m [kgcm²]	0.06	0.08	0.11	0.13
Costante di tempo elettrica	τ _{el} [ms]	0.59	0.82	0.87	0.98
Costante di tempo meccanica	τ _{th} [min]	10	15	20	22
Costante di tempo termica	τ _{mec} [ms]	4.9	2.0	1.5	1.3
Peso senza freno	m _м [kg]	0.9	1.06	1.21	1.36
Peso con freno	m _{MF} [kg]	1.05	1.21	1.36	1.51


Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:


T_{amb} = 40 °C (temperatura ambiente)

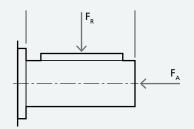

 ΔT = 105 °C (temperatura riscaldamento avvolgimento)

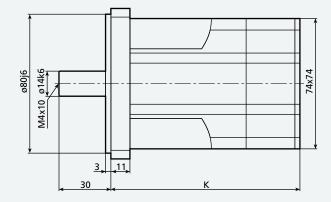
Curva S1 = per esercizio continuo Curva S3 = per esercizio intermittente

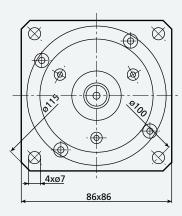


BCR3 - 0.65 ÷ 3 Nm

Tutti i servomotori BCR della taglia 3 sono dotati della stessa flangia geometrica, mentre essi differiscono per la lunghezza (K) da cui dipende il valore di coppia. Il motore nella configurazione base non è dotato di freno elettromeccanico il quale costituisce invece un'opzione. L'eventuale presenza del freno condiziona la lunghezza del motore.


La grandezza BCR3 è strutturata su quattro livelli di coppia corrispondenti a quattro diverse lunghezze di motore, con velocità nominali di 4500 min¹. Il motore è disponibile sia con alimentazione 3ph x 400VAC sia 3ph x 230VAC, conservando sempre le medesime prestazioni meccaniche.

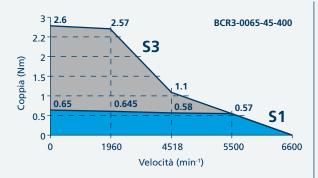

Sul servomotore standard sono installati entrambi i connettori di potenza e di controllo per la connessione elettrica all'inverter. A richiesta sono fornibili differenti tipi di connettori .

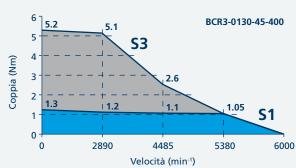


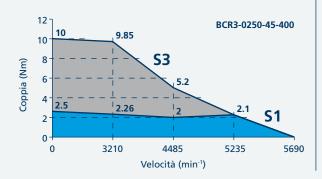
Motore	Coppia di stallo	Vel. nominale	Flangia	Lunghezza K	
	[Nm]	[min ⁻¹]	[mm]	Senza freno	Con freno
BCR3-0065	0.65	4500	86	109	142
BCR3-0130	1.3			127	160
BCR3-0250	2.5			163	196
BCR3-0300	3.0			181	214

MOTOLE	Carico max sun albero (N)		
	Radiale F _R	Assiale F _A	
BCR3-0065	370	70	
BCR3-0130	393	75	
BCR3-0250	422	80	
BCR3-0300	431	82	

BCR3 400V


Motore		BCR3-0065-45-400	BCR3-0130-45-400	BCR3-0250-45-400	BCR3-0300-45-400
Coppia di stallo	M _o [Nm]	0.65	1.3	2.5	3
Velocità nominale	n _n [min ⁻¹]	4500	4500	4500	4500
Inverter CC-bus	V _{dc} [V]	560	560	560	560
Tensione nominale motore CA	V _n [V]	330	330	330	330
Numero di poli motore	p _{mot}	6	6	6	6
Numero di poli resolver	p _{res}	2	2	2	2
Coppia nominale	M _n [Nm]	0.58	1.05	2.0	2.1
Corrente CA nominale	I _n [A]	0.75	1.24	2.2	2.0
Corrente CA di stallo	I _o [A]	0.79	1.43	2.6	2.6
Picco di coppia	M _{max} [Nm]	2.6	5.2	10.0	12.0
Picco di corrente	I _{max} [A]	3.4	6.1	11.2	12.4
Costante EMF	K _E [V/1000min ⁻¹]	50.0	55.0	58.0	63.0
Costante di coppia	K _T [Nm/A]	0.83	0.91	0.96	1.04
Potenza nominale	P _n [W]	220	495	940	990
Resistenza statore fase - fase	$R_{pp} [\Omega]$	50.0	17.0	7.0	6.0
Induttanza statore fase - fase	L _{pp} [mH]	62.0	29.9	15.4	14.2
Inerzia del rotore	J _m [kgcm²]	0.50	0.65	1.4	1.5
Costante di tempo elettrica	τ _{el} [ms]	1.2	1.8	2.2	2.3
Costante di tempo meccanica	τ _{th} [min]	25	30	32	33
Costante di tempo termica	τ _{mec} [ms]	6.4	2.3	1.8	1.4
Peso senza freno	m _M [kg]	1.75	2.25	3.20	3.65
Peso con freno	m _{MF} [kg]	2.22	2.72	3.67	4.12


Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:

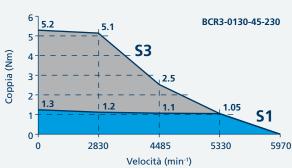

 T_{amb} = 40 °C (temperatura ambiente)

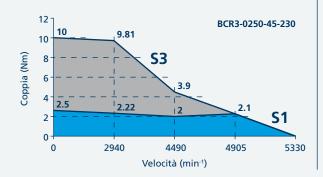
 ΔT = 105 °C (temperatura riscaldamento avvolgimento)

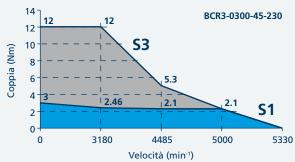
Curva S1 = per esercizio continuo Curva S3 = per esercizio intermittente

BCR3 230V

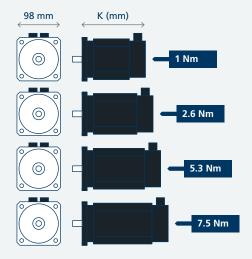
Motore		BCR3-0065-45-230	BCR3-0130-45-230	BCR3-0250-45-230	BCR3-0300-45-230
Coppia di stallo	M _o [Nm]	0.65	1.3	2.5	3
Velocità nominale	n _n [min ⁻¹]	4500	4500	4500	4500
Inverter CC-bus	V _{dc} [V]	320	320	320	320
Tensione nominale motore CA	V _n [V]	200	200	200	200
Numero di poli motore	p _{mot}	6	6	6	6
Numero di poli resolver	p _{res}	2	2	2	2
Coppia nominale	M _n [Nm]	0.58	1.05	2.0	2.1
Corrente CA nominale	I _n [A]	1.31	2.0	3.4	3.6
Corrente CA di stallo	I _o [A]	1.38	2.4	4.0	4.8
Picco di coppia	M _{max} [Nm]	2.6	5.2	10.0	12.0
Picco di corrente	I _{max} [A]	5.9	10.1	17.3	21.0
Costante EMF	K _E [V/1000min ⁻¹]	28.5	33.5	37.5	37.5
Costante di coppia	K _T [Nm/A]	0.47	0.55	0.62	0.62
Potenza nominale	P _n [W]	220	495	940	990
Resistenza statore fase - fase	$R_{pp}[\Omega]$	15.6	6.5	3.0	2.1
Induttanza statore fase - fase	L _{pp} [mH]	20.0	11.1	6.0	5.0
Inerzia del rotore	J _m [kgcm²]	0.50	0.65	1.4	1.5
Costante di tempo elettrica	τ _{el} [ms]	1.3	1.7	2.0	2.4
Costante di tempo meccanica	τ _{th} [min]	25	30	32	33
Costante di tempo termica	τ _{mec} [ms]	6.1	2.4	1.9	1.4
Peso senza freno	m _M [kg]	1.75	2.25	3.20	3.65
Peso con freno	m _{MF} [kg]	2.22	2.72	3.67	4.12


Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:

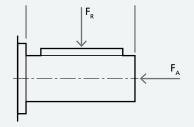

T_{amb} = 40 °C (temperatura ambiente)


 ΔT = 105 °C (temperatura riscaldamento avvolgimento)

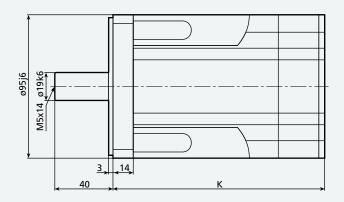
Curva S1 = per esercizio continuo
Curva S3 = per esercizio intermittente

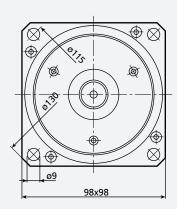


BCR4 - 1 ÷ 7.5 Nm


Tutti i servomotori BCR della taglia 4 sono dotati della stessa flangia geometrica, mentre essi differiscono per la lunghezza (K) da cui dipende il valore di coppia. Il motore nella configurazione base non è dotato di freno elettromeccanico il quale costituisce invece un'opzione. L'eventuale presenza del freno condiziona la lunghezza del motore.

La grandezza BCR4 è strutturata su quattro livelli di coppia corrispondenti a quattro diverse lunghezze di motore, con velocità nominali di 3000 min¹. Il motore è disponibile sia con alimentazione 3ph x 400VAC sia 3ph x 230VAC, conservando sempre le medesime prestazioni meccaniche.

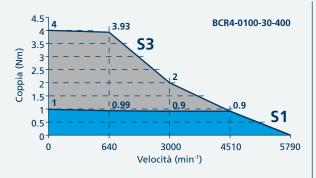

Sul servomotore standard sono installati entrambi i connettori di potenza e di controllo per la connessione elettrica all'inverter. A richiesta sono fornibili differenti tipi di connettori.

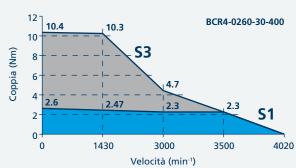


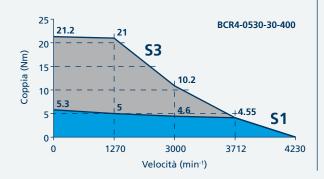
Motore	Coppia di stallo	Vel. nominale	Flangia	Lunghezza K	
	[Nm]	[min ⁻¹]	[mm]	Senza freno	Con freno
BCR4-0100	1	3000		116	148
BCR4-0260	2.6		98	146	178
BCR4-0530	5.3		98	176	208
BCR4-0750	7.5			221	253

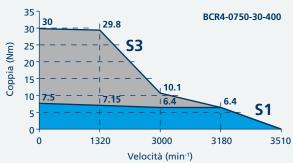
Motore	Carico max sull'albero (N)				
	Radiale F _R	Assiale F _A			
BCR4-0100	328	62			
BCR4-0260	638	121			
BCR4-0530	676	128			
BCR4-0750	711	135			

BCR4 400V


Motore		BCR4-0100-30-400	BCR4-0260-30-400	BCR4-0530-30-400	BCR4-0750-30-400
Coppia di stallo	M _o [Nm]	1.0	2.6	5.3	7.5
Velocità nominale	n _n [min ⁻¹]	3000	3000	3000	3000
Inverter CC-bus	V _{dc} [V]	560	560	560	560
Tensione nominale motore CA	V _n [V]	330	330	330	330
Numero di poli motore	p _{mot}	6	6	6	6
Numero di poli resolver	p _{res}	2	2	2	2
Coppia nominale	M _n [Nm]	0.98	2.3	4.6	6.4
Corrente CA nominale	I _n [A]	1.05	1.85	3.8	4.4
Corrente CA di stallo	I _o [A]	1.06	1.92	4.1	4.8
Picco di coppia	M _{max} [Nm]	4	10.4	21.0	30.0
Picco di corrente	I _{max} [A]	6.4	11.5	25.0	29.0
Costante EMF	K _E [V/1000min ⁻¹]	57	82.0	78.0	94.0
Costante di coppia	K _T [Nm/A]	0.94	1.36	1.29	1.55
Potenza nominale	P _n [W]	280	720	1440	2010
Resistenza statore fase - fase	$R_{pp}[\Omega]$	16.3	9.6	4.2	3.0
Induttanza statore fase - fase	L _{pp} [mH]	75	41.5	24.0	19.2
Inerzia del rotore	J _m [kgcm²]	0.79	1.9	2.7	4.2
Costante di tempo elettrica	τ _{el} [ms]	2.1	4.3	5.7	6.4
Costante di tempo meccanica	τ _{th} [min]	45	60	64	66
Costante di tempo termica	τ _{mec} [ms]	5.6	1.7	1.2	0.9
Peso senza freno	m _M [kg]	2.7	4.5	5.6	7.7
Peso con freno	m _{MF} [kg]	3.52	5.32	6.42	8.52

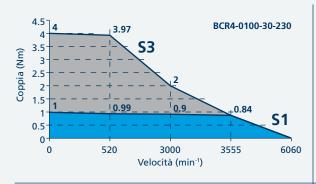

Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:

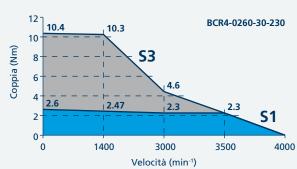

T_{amb} = 40 °C (temperatura ambiente)

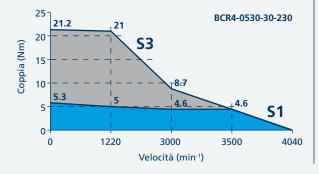

 ΔT = 105 °C (temperatura riscaldamento avvolgimento)

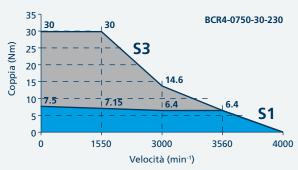
Curva S1 = per esercizio continuo Curva S3 = per esercizio intermittente Caratteristica coppia-velocità: temperatura ambiente 40°C

BCR4 230V


Motore		BCR4-0100-30-230	BCR4-0260-30-230	BCR4-0530-30-230	BCR4-0750-30-230
Coppia di stallo	M _o [Nm]	1.0	2.6	5.3	7.5
Velocità nominale	n _n [min ⁻¹]	3000	3000	3000	3000
Inverter CC-bus	V _{dc} [V]	320	320	320	320
Tensione nominale motore CA	V _n [V]	200	200	200	200
Numero di poli motore	p _{mot}	6	6	6	6
Numero di poli resolver	p _{res}	2	2	2	2
Coppia nominale	M _n [Nm]	0.98	2.3	4.6	6.4
Corrente CA nominale	I _n [A]	1.8	3.0	5.9	8.1
Corrente CA di stallo	I _o [A]	1.83	3.1	6.5	9.1
Picco di coppia	M _{max} [Nm]	4	10.4	21.0	30.0
Picco di corrente	I _{max} [A]	11	18.9	39.0	54.0
Costante EMF	K _E [V/1000min ⁻¹]	33	50.0	49.5	50.0
Costante di coppia	K _T [Nm/A]	0.55	0.83	0.82	0.83
Potenza nominale	P _n [W]	280	720	1440	2010
Resistenza statore fase - fase	$R_{pp} [\Omega]$	13.5	3.6	1.66	0.87
Induttanza statore fase - fase	L _{pp} [mH]	25.7	15.9	9.8	5.6
Inerzia del rotore	J _m [kgcm²]	0.79	1.9	2.7	4.2
Costante di tempo elettrica	τ _{el} [ms]	1.9	4.4	5.9	6.4
Costante di tempo meccanica	τ _{th} [min]	45	60	64	66
Costante di tempo termica	τ _{mec} [ms]	6.2	1.7	1.1	0.9
Peso senza freno	m _M [kg]	2.7	4.5	5.6	7.7
Peso con freno	m _{MF} [kg]	3.52	5.32	6.42	8.52


Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:


 T_{amb} = 40 °C (temperatura ambiente)


ΔT = 105 °C (temperatura riscaldamento avvolgimento)

Curva S1 = per esercizio continuo Curva S3 = per esercizio intermittente Caratteristica coppia-velocità: temperatura ambiente 40°C


Motore

BCR5 - 6.6 ÷ 22 Nm

Tutti i servomotori BCR della taglia 5 sono dotati della stessa flangia geometrica, mentre essi differiscono per la lunghezza (K) da cui dipende il valore di coppia. Il motore nella configurazione base non è dotato di freno elettromeccanico il quale costituisce invece un'opzione. L'eventuale presenza del freno condiziona la lunghezza del motore.

La grandezza BCR5 è strutturata su cinque livelli di coppia corrispondenti a cinque diverse lunghezze di motore, con velocità nominali di 3000 min $^{-1}$. Il motore è disponibile sia con alimentazione 3ph x 400VAC sia 3ph x 230VAC, conservando sempre le medesime prestazioni meccaniche.

Sul servomotore standard sono installati entrambi i connettori di potenza e di controllo per la connessione elettrica all'inverter. A richiesta sono fornibili differenti tipi di connettori.

Motore	Coppia di stallo	Vel. nominale	Flangia	Lunghezza K	
	[Nm]	[min ⁻¹]	[mm]	Senza freno	Con freno
BCR5-0660	6.6		142	185	228
BCR5-1050	10.5			219	262
BCR5-1350	13.5	3000		236	279
BCR5-1700	17			270	313
BCR5-2200	22			304	347

	Radiale F _R	Assiale F _A		L ↓
BCR5-0660	693	132		
BCR5-1050	733	139		
BCR5-1350	748	142		#
BCR5-1700	772	147		
BCR5-2200	790	150		Н
MISSO 024k6	14	82128 82128 4	86×86	4xo12 142x142

Carico max sull'albero (N)

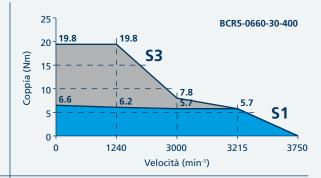
BCR5 400V

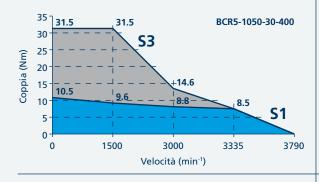
BCR5-0660-30-400 BCR5-1050-30-400 BCR5-1350-30-400 BCR5-1700-30-400 BCR5-2200-30-400 Motore Coppia di stallo M_o [Nm] 10.5 13.5 17.0 22.0 n_n [min⁻¹] 3000 3000 3000 3000 3000 Velocità nominale Inverter CC-bus $V_{dc}[V]$ 560 560 560 560 560 Tensione nominale motore CA $V_n[V]$ 330 330 330 330 330 Numero di poli motore 6 6 6 6 6 p_{mot} 2 Numero di poli resolver 2 2 2 2 M_n [Nm] 5.7 11.0 14.5 17.5 Coppia nominale 8.8 9.5 Corrente CA nominale 4.0 10.0 I_n [A] 6.3 10.5 Corrente CA di stallo ا_ه [A] 4.5 7.3 11.2 11.4 12.8 Picco di coppia M_{max} [Nm] 19.8 32.0 41.0 51.0 66.0 I_{max} [A] Picco di corrente 23 36 56 57 64 Costante EMF K_F [V/1000min⁻¹] 88.0 87.0 73.0 90.0 104.0 Costante di coppia 1.46 1.44 1.49 1.72 K_{τ} [Nm/A] 1.21 Potenza nominale $P_n[W]$ 1790 2760 3450 4550 5500 $R_{pp} [\Omega]$ 4.2 0.95 0.95 0.95 Resistenza statore fase - fase 1.70 Induttanza statore fase - fase L_{nn} [mH] 27.8 15.2 9.0 10.0 10.5 9.5 Inerzia del rotore 4.0 7.3 11.7 J_{m} [kgcm²] 6.2 $\tau_{\rm el}$ [ms] Costante di tempo elettrica 6.7 9.0 9.5 10.6 11.1 50 75 45 55 60 Costante di tempo meccanica τ_{th} [min] τ_{mec} [ms] 1.4 0.9 0.8 0.7 0.7 Costante di tempo termica Peso senza freno т_м [kg] 7.5 10.0 11.2 13.7 16.2 Peso con freno 9.3 11.8 13.0 15.5 18.0

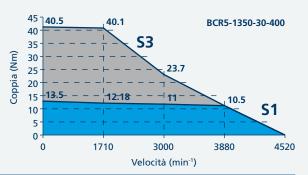
Tutte le caratteristiche del motore sono riferite alle sequenti condizioni:

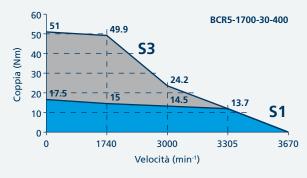
 $\mathsf{T}_{\mathsf{amb}}$ $\Delta\mathsf{T}$ = 40 °C (temperatura ambiente)

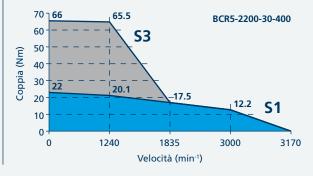
= 105 °C (temperatura riscaldamento avvolgimento)


m_{MF} [kg]


Curva S1 = per esercizio continuo


Curva S3 = per esercizio intermittente


Caratteristica coppia-velocità:

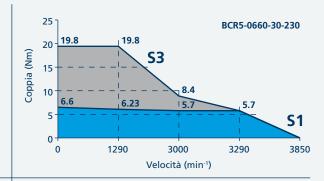

temperatura ambiente 40°C

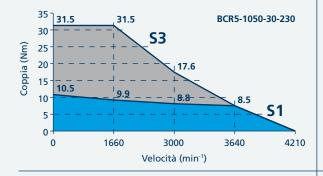
BCR5 230V

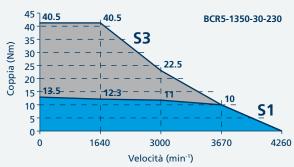
Motore BCR5-0660-30-230 BCR5-1050-30-230 BCR5-1350-30-230 BCR5-1700-30-230 BCR5-2200-30-230

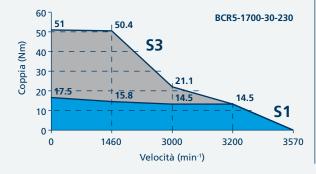
Coppia di stallo	M _o [Nm]	6.6	10.5	13.5	17.0	22.0
Velocità nominale	n [min-1]	3000	3000	3000	3000	3000
Inverter CC-bus	V _{dc} [V]	320	320	320	320	320
Tensione nominale motore CA	V [V]	200	200	200	200	200
Numero di poli motore	p _{mot}	6	6	6	6	6
Numero di poli resolver	P _{res}	2	2	2	2	2
Coppia nominale	M _n [Nm]	5.7	8.8	11.0	14.5	17.5
Corrente CA nominale	I _n [A]	6.8	11.5	14.5	16.0	20.2
Corrente CA di stallo	I ₀ [A]	7.7	13.4	17.4	18.4	25.6
Picco di coppia	M _{max} [Nm]	19.8	32.0	41.0	51.0	66.0
Picco di corrente	I _{max} [A]	38	67	87	91	127
Costante EMF	K _F [V/1000min ⁻¹]	52.0	47.5	47.0	56.0	52.0
Costante di coppia	K _τ [Nm/A]	0.86	0.79	0.78	0.93	0.86
Potenza nominale	P _n [W]	1790	2760	3450	4550	5500
Resistenza statore fase - fase	$R_{np}[\Omega]$	1.44	0.51	0.38	0.36	0.24
Induttanza statore fase - fase	L _{nn} [mH]	9.6	4.6	3.6	3.8	2.6
Inerzia del rotore	J_ [kgcm²]	4.0	6.2	7.3	9.5	11.7
Costante di tempo elettrica	$\tau_{\rm el}$ [ms]	6.7	9.0	9.5	10.6	10.8
Costante di tempo meccanica	τ _{th} [min]	45	50	55	60	75
Costante di tempo termica	τ _{mec} [ms]	1.3	0.9	0.8	0.7	0.7
Peso senza freno	m _M [kg]	7.5	10.0	11.2	13.7	16.2
Peso con freno	m _{MF} [kg]	9.3	11.8	13.0	15.5	18.0

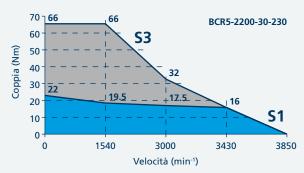
Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:

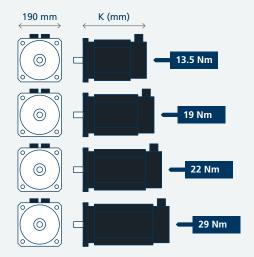

T_{amb} ΔT = 40 °C (temperatura ambiente)


= 105 °C (temperatura riscaldamento avvolgimento)

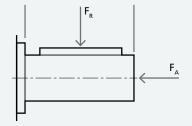

Curva S1 = per esercizio continuo Curva S3 = per esercizio intermittente


Caratteristica coppia-velocità:

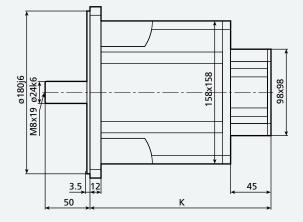

temperatura ambiente 40°C

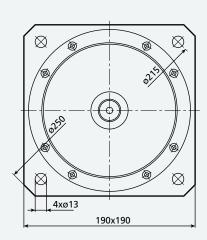

BCR6 - 13.5 ÷ 29 Nm

Tutti i servomotori BCR della taglia 6 sono dotati della stessa flangia geometrica, mentre essi differiscono per la lunghezza (K) da cui dipende il valore di coppia. Il motore nella configurazione base non è dotato di freno elettromeccanico il quale costituisce invece un'opzione. L'eventuale presenza del freno condiziona la lunghezza del motore.


La grandezza BCR6 è strutturata su quattro livelli di coppia corrispondenti a quattro diverse lunghezze di motore, con velocità nominali di 3000 min⁻¹.

Il motore è disponibile sia con alimentazione 3ph x 400VAC sia 3ph x 230VAC, conservando sempre le medesime prestazioni meccaniche.

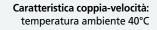

Sul servomotore standard sono installati entrambi i connettori di potenza e di controllo per la connessione elettrica all'inverter. A richiesta sono fornibili differenti tipi di connettori.

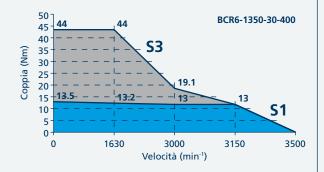


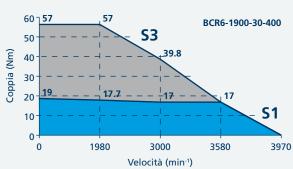
Motore	Coppia di stallo	Vel. nominale	Flangia	Lunghezza K	
	[Nm]	[min ⁻¹]	[mm]	Senza freno	Con freno
BCR6-1350	13.5	3000		201	254
BCR6-1900	19		190	235	288
BCR6-2200	22			250	303
BCR6-2900	29			310	363

Motore	Carico max sull'albero (N)				
	Radiale F _R Assiale F _A				
BCR6-1350	708	135			
BCR6-1900	743	141			
BCR6-2200	756	144			
BCR6-2900	794	151			

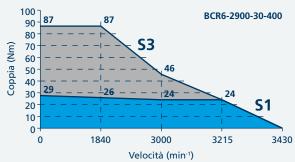
BCR6 400V


Motore		BCR6-1350-30-400	BCR6-1900-30-400	BCR6-2200-30-400	BCR6-2900-30-400
	1		1		
Coppia di stallo	M _o [Nm]	13.5	19	22	29
Velocità nominale	n _n [min ⁻¹]	3000	3000	3000	3000
Inverter CC-bus	V _{dc} [V]	560	560	560	560
Tensione nominale motore CA	V _n [V]	330	330	330	330
Numero di poli motore	P _{mot}	6	6	6	6
Numero di poli resolver	p _{res}	2	2	2	2
Coppia nominale	M _n [Nm]	13.0	17.0	19.0	24.0
Corrente CA nominale	I _n [A]	8.2	12.8	13.1	14.7
Corrente CA di stallo	I _o [A]	8.2	13.8	14.6	17.2
Picco di coppia	M _{max} [Nm]	41.0	57.0	66.0	87.0
Picco di corrente	I _{max} [A]	35	59	62	73
Costante EMF	K _E [V/1000min ⁻¹]	100.0	83.0	91.0	102.0
Costante di coppia	K _⊤ [Nm/A]	1.65	1.37	1.51	1.69
Potenza nominale	P _n [W]	4080	5340	5970	7540
Resistenza statore fase - fase	$R_{pp}[\Omega]$	1.10	0.42	0.41	0.31
Induttanza statore fase - fase	L _{pp} [mH]	13.5	6.3	6.4	5.6
Inerzia del rotore	J _m [kgcm²]	13.1	18.7	22.0	33.0
Costante di tempo elettrica	τ _{el} [ms]	12.3	15.0	15.6	18.1
Costante di tempo meccanica	τ _{th} [min]	45	53	60	70
Costante di tempo termica	τ _{mec} [ms]	0.9	0.7	0.7	0.6
Peso senza freno	m _м [kg]	13.9	18.2	20.3	26.7
Peso con freno	m _{MF} [kg]	16.76	21.06	23.16	29.56


Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:


T_{amb} = 40 °C (temperatura ambiente)

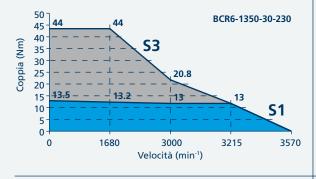
 ΔT = 105 °C (temperatura riscaldamento avvolgimento)

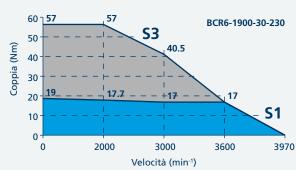

Curva S1 = per esercizio continuo Curva S3 = per esercizio intermittente

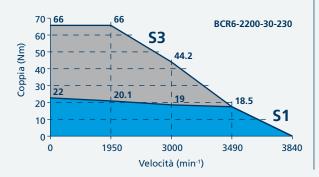
BCR6 230V

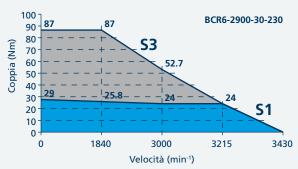
Motore		BCR6-1350-30-230	BCR6-1900-30-230	BCR6-2200-30-230	BCR6-2900-30-230
Coppia di stallo	M _o [Nm]	13.5	19	22	29
Velocità nominale	n _n [min ⁻¹]	3000	3000	3000	3000
Inverter CC-bus	V _{dc} [V]	320	320	320	320
Tensione nominale motore CA	V _n [V]	200	200	200	200
Numero di poli motore	p _{mot}	6	6	6	6
Numero di poli resolver	p _{res}	2	2	2	2
Coppia nominale	M _n [Nm]	13.0	17.0	19.0	24.0
Corrente CA nominale	I _n [A]	14.6	21.3	22.9	26.8
Corrente CA di stallo	I _o [A]	14.6	23.0	25.6	31.3
Picco di coppia	M _{max} [Nm]	41.0	57.0	66.0	87.0
Picco di corrente	I _{max} [A]	62	97	108	132
Costante EMF	K _E [V/1000min ⁻¹]	56.0	50.0	52.0	56.0
Costante di coppia	K _T [Nm/A]	0.93	0.83	0.86	0.93
Potenza nominale	P _n [W]	4080	5340	5970	7540
Resistenza statore fase - fase	$R_{pp} [\Omega]$	0.34	0.15	0.13	0.09
Induttanza statore fase - fase	L _{pp} [mH]	4.2	2.3	2.1	1.7
Inerzia del rotore	J _m [kgcm²]	13.1	18.7	22.0	33.0
Costante di tempo elettrica	τ _{el} [ms]	12.4	15.3	16.2	18.9
Costante di tempo meccanica	τ _{th} [min]	45	53	60	70
Costante di tempo termica	τ _{mec} [ms]	0.9	0.7	0.7	0.6
Peso senza freno	m _M [kg]	13.9	18.2	20.3	26.7
Peso con freno	m _{MF} [kg]	16.76	21.06	23.16	29.56

Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:

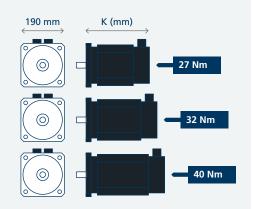

= 40 °C (temperatura ambiente)


= 105 °C (temperatura riscaldamento avvolgimento)


Curva S1 = per esercizio continuo

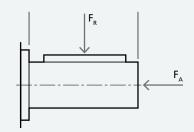

Curva S3 = per esercizio intermittente

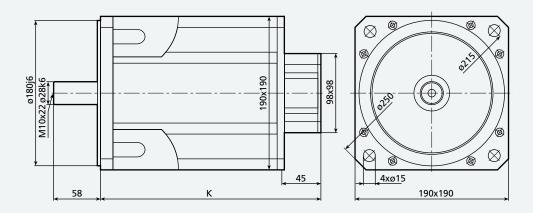
Caratteristica coppia-velocità: temperatura ambiente 40°C


BCR7 - 27 ÷ 40 Nm

Tutti i servomotori BCR della taglia 7 sono dotati della stessa flangia geometrica, mentre essi differiscono per la lunghezza (K) da cui dipende il valore di coppia. Il motore nella configurazione base non è dotato di freno elettromeccanico il quale costituisce invece un'opzione. L'eventuale presenza del freno condiziona la lunghezza del motore.

La grandezza BCR7 è strutturata su tre livelli di coppia corrispondenti a tre diverse lunghezze di motore, con velocità nominali di 3000 min⁻¹.

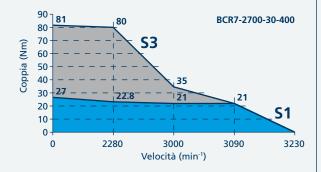

Il motore è disponibile sia con alimentazione 3ph x 400VAC sia 3ph x 230VAC, conservando sempre le medesime prestazioni meccaniche.


Sul servomotore standard sono installati entrambi i connettori di potenza e di controllo per la connessione elettrica all'inverter. A richiesta sono fornibili differenti tipi di connettori.

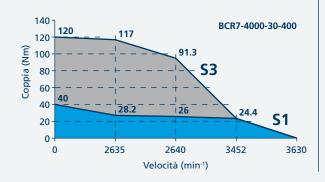
Motore	Coppia di stallo	Vel. nominale	Flangia	Lunghezza K	
	[Nm]	[min ⁻¹]	[mm]	Senza freno	Con freno
BCR7-2700	27			242	296
BCR7-3200	32	3000	190	257	311
BCR7-4000	40			287	341

Motore	Carico max suil albero (N)				
	Radiale F _R	Assiale F _A			
BCR7-2700	1348	256			
BCR7-3200	1370	260			
BCR7-4000	1406	267			

BCR7 400V


Motore		BCR7-2700-30-400	BCR7-3200-30-400	BCR7-4000-30-400
Coppia di stallo	M _o [Nm]	27	32	40
Velocità nominale	n _n [min ⁻¹]	3000	3000	3000
Inverter CC-bus	V _{dc} [V]	560	560	560
Tensione nominale motore CA	V _n [V]	330	330	330
Numero di poli motore	p _{mot}	6	6	6
Numero di poli resolver	p _{res}	2	2	2
Coppia nominale	M _n [Nm]	21.0	23.0	26.0
Corrente CA nominale	I _n [A]	13.5	15.0	17.9
Corrente CA di stallo	I _o [A]	16.0	19.0	24.7
Picco di coppia	M _{max} [Nm]	81.0	96.0	120.0
Picco di corrente	I _{max} [A]	62	74	96
Costante EMF	K _E [V/1000min ⁻¹]	102	102	98
Costante di coppia	K _T [Nm/A]	1.69	1.69	1.62
Potenza nominale	P _n [W]	6600	7160	8170
Resistenza statore fase - fase	$R_{pp} [\Omega]$	0.43	0.35	0.23
Induttanza statore fase - fase	L _{pp} [mH]	4.4	3.8	2.7
Inerzia del rotore	J _m [kgcm²]	36.1	39.0	45.5
Costante di tempo elettrica	τ _{el} [ms]	10.2	10.8	11.7
Costante di tempo meccanica	τ _{th} [min]	60	67	72
Costante di tempo termica	τ _{mec} [ms]	0.9	0.8	0.7
Peso senza freno	m _M [kg]	23.5	26.0	31.5
Peso con freno	m _{MF} [kg]	26.75	29.25	34.4


Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:

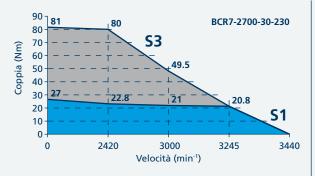

 T_{amb} = 40 °C (temperatura ambiente)

 ΔT = 105 °C (temperatura riscaldamento avvolgimento)

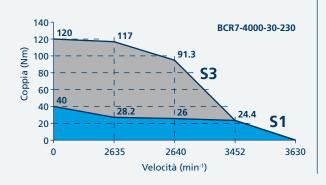
Curva S1 = per esercizio continuo Curva S3 = per esercizio intermittente Caratteristica coppia-velocità: temperatura ambiente 40°C

BCR7 230V

Motore		BCR7-2700-30-230	BCR7-3200-30-230	BCR7-4000-30-230
Coppia di stallo	M _o [Nm]	27	32	40
Velocità nominale	n _n [min ⁻¹]	3000	3000	3000
Inverter CC-bus	V _{dc} [V]	320	320	320
Tensione nominale motore CA	V _n [V]	200	200	200
Numero di poli motore	p _{mot}	6	6	6
Numero di poli resolver	p _{res}	2	2	2
Coppia nominale	M _n [Nm]	21.0	23.0	26.0
Corrente CA nominale	I _n [A]	23.7	25.9	31.8
Corrente CA di stallo	I _o [A]	28.2	32.8	44.0
Picco di coppia	M _{max} [Nm]	81.0	96.0	120.0
Picco di corrente	I _{max} [A]	110	128	172
Costante EMF	K _E [V/1000min ⁻¹]	58	59	55
Costante di coppia	K _T [Nm/A]	0.96	0.98	0.91
Potenza nominale	P _n [W]	6600	7160	8170
Resistenza statore fase - fase	$R_{pp}[\Omega]$	0.15	0.12	0.07
Induttanza statore fase - fase	L _{pp} [mH]	2.2	3.0	0.8
Inerzia del rotore	J _m [kgcm²]	36.1	39.0	45.5
Costante di tempo elettrica	τ _{el} [ms]	14.7	10.8	11.4
Costante di tempo meccanica	τ _{th} [min]	60	67	72
Costante di tempo termica	τ _{mec} [ms]	1.0	0.9	0.7
Peso senza freno	m _M [kg]	23.5	26.0	31.5
Peso con freno	m _{MF} [kg]	26.75	29.25	34.4

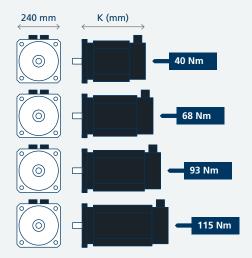

Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:

 T_{amb} = 40 °C (temperatura ambiente)

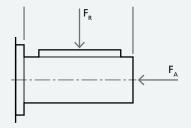

 ΔT = 105 °C (temperatura riscaldamento avvolgimento)

Curva S1 = per esercizio continuo
Curva S3 = per esercizio intermittente

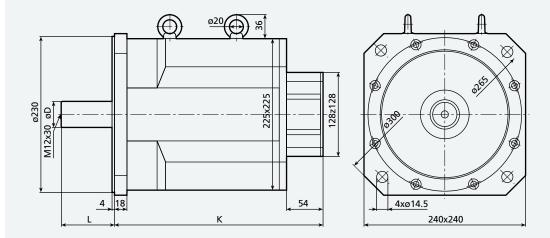
Caratteristica coppia-velocità: temperatura ambiente 40°C



BCR8 - 40 ÷ 115 Nm


Tutti i servomotori BCR della taglia 8 sono dotati della stessa flangia geometrica, mentre essi differiscono per la lunghezza (K) da cui dipende il valore di coppia. Il motore nella configurazione base non è dotato di freno elettromeccanico il quale costituisce invece un'opzione. L'eventuale presenza del freno condiziona la lunghezza del motore.

La grandezza BCR8 è strutturata su quattro livelli di coppia corrispondenti a quattro diverse lunghezze di motore, con velocità nominali di 2000/3000 min-1. Il motore è disponibile sia con alimentazione 3ph x 400VAC sia 3ph x 230VAC, conservando sempre le medesime prestazioni meccaniche.

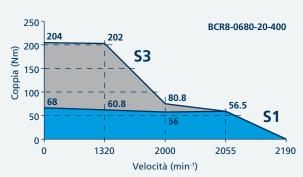

Sul servomotore standard sono installati entrambi i connettori di potenza e di controllo per la connessione elettrica all'inverter. A richiesta sono fornibili differenti tipi di connettori.

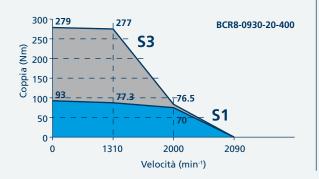
Motore	Coppia di stallo	Vel. nominale	Albero		Flangia	Lungh	ezza K
	[Nm]	[min ⁻¹]	Diametro ø	Lunghezza L	[mm]	Senza freno	Con freno
BCR8-0400	40	3000	38	80		311	379
BCR8-0680	68	2000	38	80	240	379	447
BCR8-0930	93	2000	42	110	240	447	515
BCR8-1150	115	2000	42	110		515	583

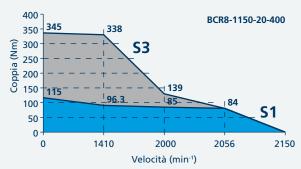
Motore	Carico max sull'albero (N)				
	Radiale F _R	Assiale F _A			
BCR8-0400	1702	323			
BCR8-0680	1785	339			
BCR8-0930	1775	337			
BCR8-1150	1823	346			

BCR8 400V

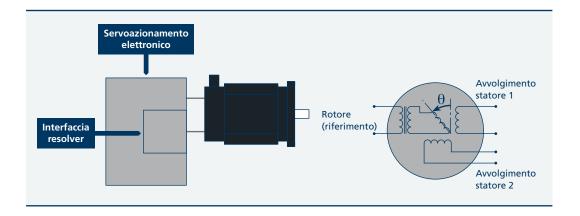

Motore		BCR8-0400-30-400	BCR8-0680-20-400	BCR8-0930-20-400	BCR8-1150-20-400
Coppia di stallo	M _o [Nm]	40	68	93	115
Velocità nominale	n _n [min ⁻¹]	3000	2000	2000	2000
Inverter CC-bus	V _{dc} [V]	560	560	560	560
Tensione nominale motore CA	V _n [V]	350	350	350	350
Numero di poli motore	P _{mot}	6	6	6	6
Numero di poli resolver	p _{res}	2	2	2	2
Coppia nominale	M _n [Nm]	30.0	56.0	70.0	85.0
Corrente CA nominale	I _n [A]	17.8	22.0	25.3	32.4
Corrente CA di stallo	I _o [A]	21.8	25.4	33.1	42.1
Picco di coppia	M _{max} [Nm]	120	204	279	345
Picco di corrente	I _{max} [A]	85	99	129	164
Costante EMF	K _E [V/1000min ⁻¹]	111	162	170	165
Costante di coppia	K _T [Nm/A]	1.84	2.7	2.8	2.7
Potenza nominale	P _n [W]	9420	11730	14660	17800
Resistenza statore fase - fase	$R_{pp}[\Omega]$	0.25	0.24	0.15	0.11
Induttanza statore fase - fase	L _{pp} [mH]	5.7	6.3	4.8	3.4
Inerzia del rotore	J _m [kgcm²]	76	114	153	190
Costante di tempo elettrica	τ _{el} [ms]	23	26	32	31
Costante di tempo meccanica	τ _{th} [min]	47	65	79	90
Costante di tempo termica	τ _{mec} [ms]	1.0	0.7	0.5	0.5
Peso senza freno	m _M [kg]	41	56	73	89
Peso con freno	m _{MF} [kg]	50.5	65.5	92.5	98.5

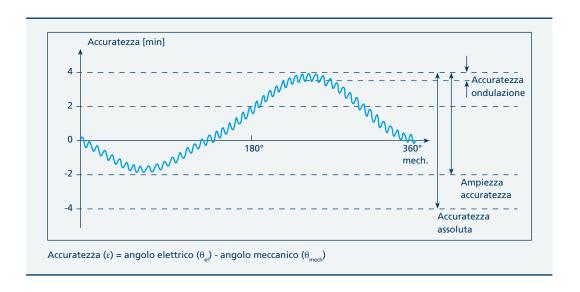

Tutte le caratteristiche del motore sono riferite alle seguenti condizioni:


T_{amb} = 40 °C (temperatura ambiente)


 ΔT = 105 °C (temperatura riscaldamento avvolgimento)

Curva S1 = per esercizio continuo Curva S3 = per esercizio intermittente Caratteristica coppia-velocità: temperatura ambiente 40°C

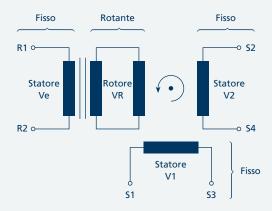




Feedback resolver

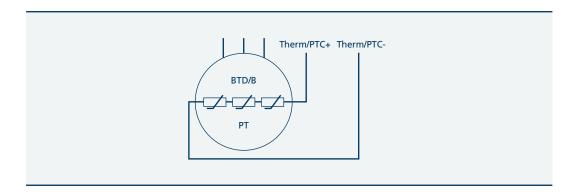
Tutti i servomotori serie BCR e BTD di Bonfiglioli usano un feedback resolver a due poli per raggiungere un livello di accuratezza di 1' di ondulazione in corrispondenza dell'albero motore.

L'uso di questo tipo di trasduttore garantisce un'accuratezza assoluta di \pm 4' in corrispondenza dell'albero motore nonché un'ondulazione massima di 1'.

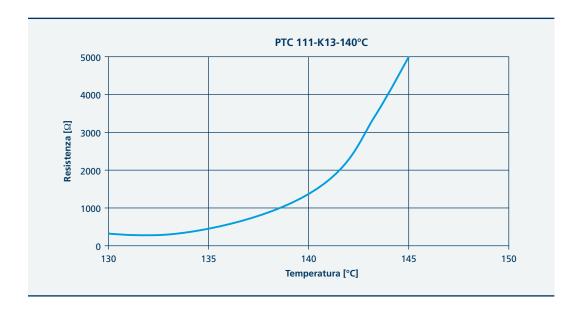


Gli inverter della serie ACTIVE di Bonfiglioli Vectron usano una sofisticata interfaccia elettronica per acquisire i segnali di azionamento. L'uso dei servomotori BCR e BTD con questi inverter riduce drasticamente gli effetti della distorsione armonica dei segnali sinusoidali e migliora significativamente sia l'accuratezza assoluta che di ondulazione.

Su richiesta, i servomotori BCR e BTD possono essere dotati di encoder assoluti e sin/cos. Contattare i Bonfiglioli Drives Service Centre per ulteriori informazioni.


Scheda dati resolver

Voce	Valore
Numero di poli	2
Rapporto di trasformazione	0.5±0.05
Tensione di ingresso	7 V _{rms}
Corrente di ingresso	58 mA
Frequenza di ingresso	5 kHz
Spostamento di fase	8°
Tensione zero	30 mV max
Impedenza Zro (W)	75 j 98
Impedenza Zrs (W)	70 j 85
Impedenza Zso (W)	180 j 230
Impedenza Zss (W)	170 j 200
Resistenza CC (±10%) rotore	40 Ω
Resistenza CC (±10%) statore	102 Ω
Accuratezza	±10′
Ondulazione accuratezza	1' max
Temperatura operativa	-55°C+155°C
Velocità max	20,000 min ⁻¹
Urto (11 ms)	£ 100 m/s ²
Vibrazione (da 10 a 500 Hz)	£ 500 m/s²
Peso rotore	25 g
Peso statore	60 g
Inerzia rotore	0.02 x 10 ⁻⁴ kgm ²
Isolamento alloggiamento/avvolgimento	500 V min.
Isolamento avvolgimento/avvolgimento	250 V min.
Tecnologia rotore	Impregnazione completa
Tecnologia statore	Impregnazione completa
Lunghezza statore	16.1 mm


Protezione termica PTC

Tutti i motori delle serie BTD e BCR sono dotati di sensore di temperatura PTC integrato per proteggere gli avvolgimenti contro le sovratemperature che superano la capacità dell'isolamento del motore di classe F. Questi sensori non sono opzionali ma dispositivi standard su tutti i servomotori Bonfiglioli, in conformità alla norma DIN 44081.

Il sensore PTC integrato nei servomotori BTD e BCR usa la tecnologia a doppio isolamento per assicurare la conformità alla norma EN 61800-5-1 sulla sicurezza quando i motori sono collegati a un inverter di frequenza.

Il sensore di temperatura PTC consiste di una speciale resistenza in ceramica il cui valore Ohmico varia con la temperatura dell'avvolgimento elettrico con cui è mantenuta a stretto contatto. Ogni valore di temperatura genera una resistenza nota cosicché, a condizione che la resistenza sia alimentata con una tensione costante, la corrente di uscita può essere usata per determinare la temperatura corrispondente. Se la temperatura raggiunge un limite stabilito, il circuito che monitora il segnale determina la necessaria interruzione della potenza al motore ed evitare danni.

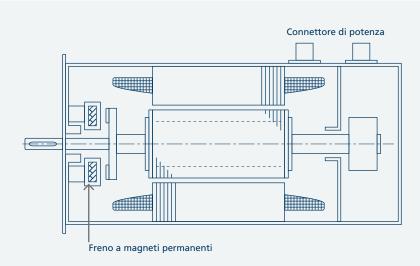
Il segnale di uscita dal sensore PTC passa attraverso il connettore segnali a 12 pin del motore, sui pin 2 (PTC+) e 6 (PTC-), insieme ai segnali del resolver.

Freno di arresto elettromeccanico (opzione)

I BTD e i BCR sono usati come attuatori a quattro quadranti quindi sono progettati per offrire una coppia positiva quando funzionano come motori e una coppia negativa quando funzionano come generatori. Sono quindi entrambi in grado di frenare dinamicamente e staticamente (coppia di arresto) il carico meccanico in ogni punto di lavoro coerentemente con la corrispondente curva del motore

Tuttavia in caso di inattività prolungata del motore, è disponibile un freno di parcheggio opzionale per risparmiare energia.

L'opzione freno può essere ordinata usando il valore "FD24" nella corrispondente posizione della


designazione del servomotore (vedere pagine 8 e 9 del presente catalogo).

Quando il motore è fornito senza freno non è possibile installarne uno.

La bobina del freno deve essere alimentata con tensione 24V CC.

L'opzione freno è responsabile di un incremento della lunghezza del motore (vedere la dimensione K nel disegno di ogni motore)

Quando il freno è installato, i suoi conduttori sono collegati al connettore di potenza insieme all'avvolgimento del motore.

Per ogni taglia di motore è installato un freno elettromeccanico adatto con una coppia di frenatura diversa in funzione delle caratteristiche del motore.

Dati del freno Unità BTD2 BTD3 BTD4 BTD5 BCR2 BCR3 BCR4 BCR5 BCR6 BCR7 BCR8

Coppia	Nm	2	4.5	9	18	2.0	4.5	9.0	18.0	36.0	36.0	145.0
Alimentazione	VDC					24 (+ 6% -	10%)				
Potenza nominale	W	11	12	18	24	11	12	18	24	26	26	50
Momento di inerzia	Kgcm ²	0.068	0.18	0.54	1.66	0.068	0.18	0.54	1.66	5.56	5.56	53.0
Peso	Kg	0.440	0.590	0.820	1.080	0.15	0.47	0.650	1.350	2.860	3.250	9.500

Connettori elettrici

Anche nelle configurazioni base, i servomotori delle serie BTD e BCR sono completi di tutti i necessari connettori di potenza e di segnale.

Sono situati nella sommità posteriore del motore in una posizione facilmente accessibile.

I connettori sono dotati per default di pin orientati in verticale ma sono anche disponibili con pin orizzontali rivolti verso la flangia (tipi PA e CA) o nella direzione opposta (tipi PB e CB).

I connettori possono anche essere orientati in orizzontale e in grado di ruotare attorno ad un asse perpendicolare alla superficie dell'involucro del motore (tipi PT e CT).

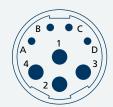
Tutti i connettori del motore sono connettori maschio completamente compatibili con i corrispondenti connettori femmina dei cavi accessori.

Layout dei connettori

I connettori sono parte integrante dei servomotori BTD e BCR.

Sebbene la foto a lato si riferisca al caso verticale, occorre precisare che il layout funzionale dei contatti elettrici alloggiati al loro interno è indipendente dall'orientamento (verticale, orizzontale, girevole) assunto dal connettore rispetto al motore.

Connettore di potenza (motore + freno)

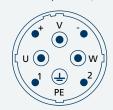

I connettori di potenza sono dotati sia dei poli per l'alimentazione del motore, sia dei poli ausiliari per l'alimentazione del freno, indipendentemente dal fatto che questo sia presente o meno a bordo del motore. Questo consente una uniformità rappresentativa delle funzioni associate ai singoli contatti prescindendo dalla serie e dall'equipaggiamento opzionale di cui è dotato il motore

Motore + freno

Pin	Descrizione
1	Fase U
4	Fase V
3	Fase W
2	Terra / SL
С	Freno +
D	Freno -
Α	nc / riserva
В	nc / riserva

Servomotori BTD2-BTD5 / BCR2-BCR7:

Connettore di potenza (maschio)


Tipo: Intercontec tipo B, dim. 1, 4+4 poli

Motore + freno

Pin	Descrizione
U	Fase U
V	Fase V
W	Fase W
PE	Terra / SL
+	Freno +
-	Freno -
1	nc / riserva
2	nc / riserva

Servomotori BCR8:

Connettore di potenza (maschio)

Tipo: Intercontec tipo B, dim. 1.5, 4+4 poli

Connettore di segnale (resolver + PTC)

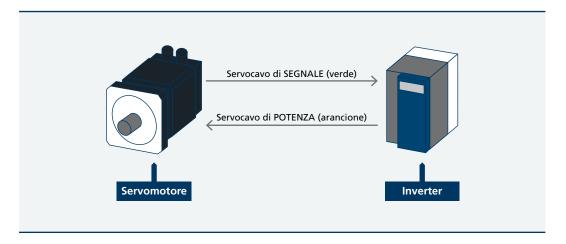
I connettori di segnale sono preposti alla connessione elettrica fra il resolver alloggiato all'interno del servomotore e l'inverter adibito alla sua ricezione. All'interno dello stesso connettore trovano posto anche i terminali di uscita della sonda termica PTC alloggiata all'interno del servomotore. Il layout di questo connettore è indipendente dalla serie e dalla taglia del motore.

Resolver + PTC

Pin	Descrizione
3	Cos + (S4)
7	Cos - (S2)
4	Sin + (S1)
8	Sin - (S3)
5	Ref + (R2)
9	Ref - (R1)
2	Therm / PTC +
6	Therm / PTC -

Connettore resolver + PTC (maschio)

Tipo: Intercontec tipo A, 12 poli



Cavi per servomotori

Il termine servocavo si riferisce al cavo elettrico che collega il servomotore brushless Bonfiglioli al rispettivo inverter.

Un assortimento di servocavi è disponibile per tutte le taglie dei servomotori BTD e BCR sia per l'alimentazione che per la retroazione, richiedendo la distinzione fra cavi di potenza e cavi di segnale. I cavi di potenza oltre a provvedere all'alimentazione del motore, sono predisposti per supportare anche l'alimentazione del freno qualora esso sia presente a bordo come opzione.

I cavi di segnale, invece, sono preposti alla trasmissione dei segnali elettrici generati dal dispositivo di retroazione presente nel motore. Al tempo stesso il cavo di segnale è adibito al trasporto del segnale prodotto dalla sonda termica PTC, sempre presente all'interno del motore. Tutti i servocavi sono disponibili in tre lunghezze predefinite (3 metri, 5 metri, 10 metri) che offrono all'utente una proposta esaustiva alle numerose esigenze di configurazione.

Servocavi di segnale (verde)

I cavi di segnale sono contraddistinti dal colore verde in accordo con lo standard Desina. Il numero di conduttori, la loro sezione ed il tipo di terminazione dipendono dalla tipologia del trasduttore supportato dal cavo. Attualmente il cavo è preposto alla connessione del resolver.

Le due estremità del servocavo di segnale sono realizzate con due diverse tipologie di terminazione:

- sul fronte del motore il cavo è equipaggiato con connettore circolare metallico a dodici contatti
- femmina per un innesto facile e sicuro con il rispettivo connettore maschio presente sul motore;
- sul fronte dell'inverter, invece, il cavo termina con un connettore standard DB9 maschio per l'innesto rapido e sicuro al corrispondente DB9 femmina presente sull'interfaccia EMRES-03 del drive Active Cube.
 Esso è disponibile anche nella versione a puntali per consentire il collegamento anche ad una morsettiera con terminali a vite sull'inverter.

Lato inverter

Lato motore

I codici di ordinazione dei cavi di retroazione sono riportati nella seguente tabella:

Dispositivo di retroazione	Tipo cavo			Note		
	3 metri 5 metri 10 metri		Terminazione lato motore	Terminazione lato inverter		
	8RTC0325	8RTC0525	8RTC1025	Connettore circolare 12 poli femmina	SUB-D9	
Resolver	8RTC0325L	8RTC0525L	8RTC1025L	Connettore circolare 12 poli femmina	8 fili volanti	

I cavi di segnale soddisfano i seguenti requisiti tecnici

Conformità	DESINA (ISO 23570), UL/CSA, ROHS	
Schermatura	rame stagnato con maglia di copertura > 85 %	
Isolante esterno	in poliuretano espanso rigido (PUR) di colore verde	
Conduttori	trefoli di rame stagnato	
Raggio di curvatura	10 x diametro esterno n° max cicli di curvatura = 10 milioni	
Accelerazione	Max. 4 m/s²	
Temperatura	di stoccaggio -30°C +80°C di esercizio 0°C +60°C	

Servocavi di potenza (arancione)

Le due estremità del servocavo di potenza sono realizzate con due diverse tipologie di terminazione:

- sul fronte del motore il cavo è equipaggiato con connettore circolare metallico a otto contatti femmina per un innesto facile e sicuro con il rispettivo connettore maschio presente sul motore;
- sul fronte dell'inverter, invece, il cavo presenta fili volanti ricoperti di puntali metallici per l'innesto nei morsetti del drive

Lato inverter

Lato motore

Tutti i servocavi riportati nella tabella sono dotati delle seguenti caratteristiche tecniche

Conformità	DESINA (ISO 23570), UL/CSA, ROHS	
Schermatura	rame stagnato con maglia di copertura > 85 %	
Isolante esterno	in poliuretano espanso rigido (PUR) di colore arancione	
Conduttori	trefoli di rame stagnato conforme a DIN VDE 95 K1,6	
Raggio di curvatura	statico = 7 x diametro esterno dinamico = 12 x diametro esterno N° max cicli di curvatura = 10 milioni	
Accelerazione	Max. 4 m/s ²	
Temperatura	di stoccaggio -30°C +80°C di esercizio 0°C +60°C	

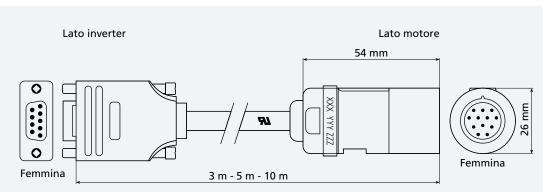
Servocavi di potenza (arancione)

Per fare fronte ai differenti livelli di corrente assorbita dalle diverse taglie di motori, i cavi di potenza sono realizzati con quattro sezioni di conduttori (1.5 mm², 2.5 mm², 4.0 mm², 10.0 mm²) alternative fra loro. Per agevolare l'utilizzatore nella scelta della combinazione servomotore-cavo, vengono proposte le seguenti tabelle che riportano a fianco di ciascun motore il cavo consigliato per l'ottimizzazione della connessione.

Servomotore BTD	Tipo di cavo di potenza			
	3 metri	5 metri	10 metri	
BTD 2 0026 45 400			42MBC1015	
BTD 2 0053 45 400				
BTD 2 0074 45 400				
BTD 2 0095 45 400				
BTD 2 0026 45 230				
BTD 2 0053 45 230				
BTD 2 0074 45 230				
BTD 2 0095 45 230				
BTD 3 0095 30 400				
BTD 3 0190 30 400				
BTD 3 0325 30 400	42MBC0315			
BTD 3 0420 30 400		4214050545		
BTD 3 0095 30 230		42MBC0515		
BTD 3 0190 30 230				
BTD 3 0325 30 230				
BTD 3 0420 30 230				
BTD 4 0410 30 400				
BTD 4 0630 30 400				
BTD 4 0860 30 400				
BTD 4 0410 30 230				
BTD 4 0630 30 230				
BTD 4 0860 30 230				
BTD 5 1160 30 400				
BTD 5 1490 30 400				
BTD 5 1870 30 400		42MBC0525	42MBC1025	
BTD 5 2730 30 400	42NAD C0225			
BTD 5 1160 30 230	42MBC0325			
BTD 5 1490 30 230				
BTD 5 1870 30 230	42NAD CO2 40	42NADCOE 40	42MBC1040	
BTD 5 2730 30 230	42MBC0340	42MBC0540		

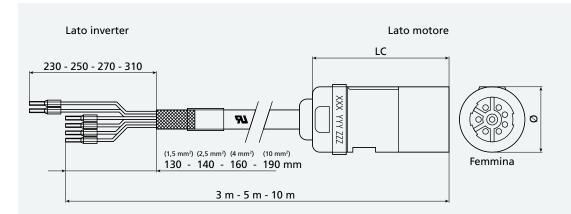
Il codice di ordinazione del cavo è caratterizzato dalla seguente struttura: 42MBCxxyy dove il campo xxyy varia in funzione della lunghezza del cavo e della sezione dei conduttori (vedere tabella a finno).

Servocavi di potenza (arancione)


Il codice di ordinazione del cavo è caratterizzato dalla seguente struttura:

42MBCxxyy
dove il campo xxyy varia in funzione della lunghezza del cavo e della sezione dei conduttori (vedere tabella a fianco)

Servomotore BCR	Tipo di cavo di potenza			
	3 metri	5 metri	10 metri	
BCR 2 0020 45 400				
BCR 2 0040 45 400				
BCR 2 0060 45 400				
BCR 2 0080 45 400				
BCR 2 0020 45 230				
BCR 2 0040 45 230				
BCR 2 0060 45 230				
BCR 2 0080 45 230				
BCR 3 0065 45 400				
BCR 3 0130 45 400				
BCR 3 0250 45 400				
BCR 3 0300 45 400				
BCR 3 0065 45 230				
BCR 3 0130 45 230				
BCR 3 0250 45 230				
BCR 3 0300 45 230	42MBC0315	42MBC0515	42MBC1015	
BCR 4 0100 30 400				
BCR 4 0260 30 400				
BCR 4 0530 30 400				
BCR 4 0750 30 400				
BCR 4 0100 30 230				
BCR 4 0260 30 230				
BCR 4 0530 30 230				
BCR 4 0750 30 230				
BCR 5 0660 30 400				
BCR 5 1050 30 400				
BCR 5 1350 30 400				
BCR 5 1700 30 400				
BCR 5 2200 30 400				
BCR 5 0660 30 230				
BCR 5 1050 30 230				
BCR 5 1350 30 230	42MBC0325	42MBC0525	42MBC1025	
BCR 5 1700 30 230	42MBC0325	42MBC0525	42MBC1025	
BCR 5 2200 30 230	42MBC0340	42MBC0540	42MBC1040	
BCR 6 1350 30 400	42101000040	42IVIBC0540	42IVIBC1040	
BCR 6 1900 30 400	42MBC0315	42MBC0515	42MBC1015	
BCR 6 2200 30 400	42101000313	421VIB C0313	72WBC1013	
BCR 6 2900 30 400	42MBC0325	42MBC0525	42MBC1025	
BCR 6 1350 30 230	42MBC0315	42MBC0515	42MBC1015	
BCR 6 1900 30 230	421VIDCU313	TZIVIDCOJ I J	TEIVIDE TOTS	
BCR 6 2200 30 230	42MBC0340	42MBC0540	42MBC1040	
BCR 6 2900 30 230	721VIDC0340	IZIVID COSTO	ILIVID C 1070	
BCR 7 2700 30 400				
BCR 7 3200 30 400	42MBC0325	42MBC0525	42MBC1025	
BCR 7 4000 30 400				
BCR 7 2700 30 230	42MBC0340	42MBC0540	42MRC1040	
	421VIDCU34U	HZIVIDCUJ4U	42MBC1040	
BCR 7 3200 30 230				
BCR 7 4000 30 230				
BCR 8 0400 30 400	42NAP.C02400	42MBC05100	42MPC10100	
BCR 8 0680 20 400	42MBC03100	42MBC05100	42MBC10100	
BCR 8 0930 20 400				
BCR 8 1150 20 400				



Cavo di segnale (tipo 8RTCxxyy)

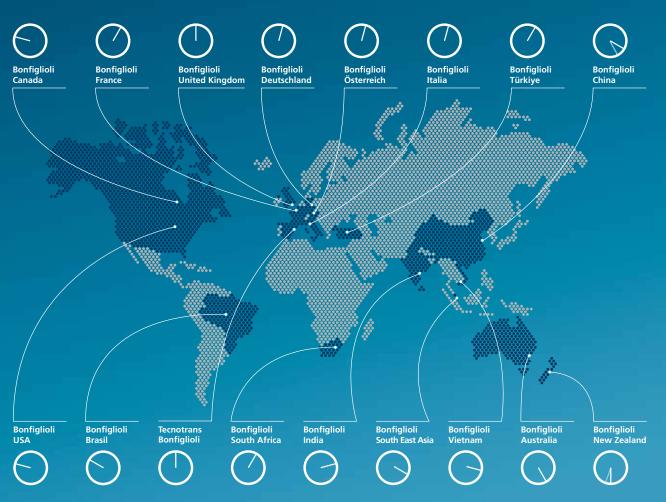
Cavo di potenza (tipo 42MBCxxyy)

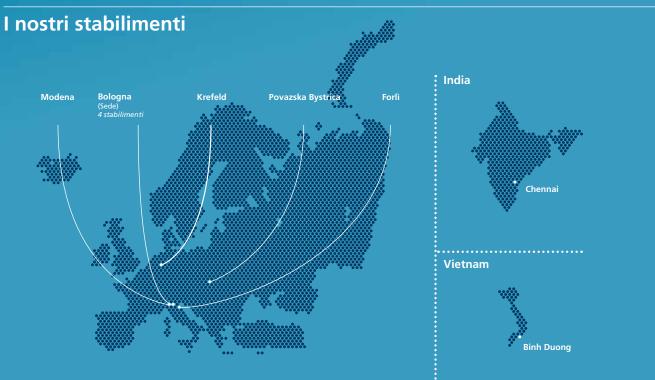
Tipo cavo	LC Ø	
	(mm)	(mm)
42MBCXX15		
42MBCXX25	75	28
42MBCXX40		
42MBCXX100	95	45.8

Condividiamo con voi il valore del nostro lavoro.

RoHS

Sviluppare soluzioni efficaci e su misura per i più diversi settori applicativi è una parte fondamentale del nostro lavoro. Ci riusciamo grazie a una stretta collaborazione con i nostri clienti, ascoltandoli e lavorando con loro per migliorare sempre le nostre performance.


Vogliamo assicurare il migliore servizio prima, durante e dopo la vendita dei nostri prodotti, mettendo a disposizione know-how, esperienza, tecnologia, strumenti di comunicazione all'avanguardia. Il tutto secondo i più severi parametri di qualità e sicurezza, certificati da sette diversi istituti, riconosciuti a livello internazionale. Crediamo nell'innovazione, destinando alla ricerca e sviluppo oltre 100 addetti, 5 centri di ricerca, collaborazioni rilevanti con università prestigiose in tutto il mondo.


Sempre più, il nostro lavoro ci porta a conoscere culture lontane, a cui dedichiamo il massimo rispetto e con cui condividiamo la visione di uno sviluppo sostenibile, basato sulle energie rinnovabili. Questo è l'impegno che ci lega e che ci permette di essere, adesso e nel futuro, un partner globale autorevole e affidabile.

Filiali e stabilimenti

Le nostre filiali

Bonfiglioli è il vostro partner per la trasmissione e il controllo di potenza nel mondo.

La soddisfazione del cliente è da sempre un valore fondamentale per Bonfiglioli. Perseguita alle più diverse latitudini e nei più svariati contesti, può contare su una rete di filiali attive in 17 paesi dei 5 continenti.

Ognuna di esse mette a vostra disposizione un servizio efficiente e tempestivo di pre e postvendita, con consegne tempestive, grazie a stabilimenti di assemblaggio e magazzini locali. Oltre alle filiali dirette, Bonfiglioli mette in campo la capillare presenza di rivenditori autorizzati, che garantiscono ovunque un impeccabile servizio di vendita e assistenza.

Dare a tutti la possibilità di acquistare, ovunque nel mondo, un prodotto Bonfiglioli.

Con questo ambizioso obiettivo, abbiamo sviluppato una rete vendita a valore aggiunto attiva off-line e on-line.

Il programma BEST (Bonfiglioli Excellence Service Team) è una delle più moderne organizzazioni di vendita nel mercato delle trasmissioni di potenza. I nostri distributori BEST possono trarre vantaggio dalle nostre strutture di assemblaggio e magazzini locali, dai nostri corsi e strumenti di formazione, dalle nostre attività promozionali.

Per la prima volta, azienda e distributori collaborano sin dalla fase di assemblaggio e studio delle applicazioni, in un processo di condivisione fra chi trasmette conoscenze e tecnologie e chi informazioni sul mercato.

Rete mondiale Bonfiglioli.

Bonfiglioli Australia

2, Cox Place Glendenning NSW 2761 Locked Bag 1000 Plumpton NSW 2761 Tel. (+ 61) 2 8811 8000 - Fax (+ 61) 2 9675 6605 www.bonfiglioli.com.au - sales@bonfiglioli.com.au

Bonfiglioli Brazil

Travessa Cláudio Armando 171 - Bloco 3 CEP 09861-730 - Bairro Assunção São Bernardo do Campo - São Paulo Tel. (+55) 11 4344 1900 - Fax (+55) 11 4344 1906 www.bonfigliolidobrasil.com.br bonfiglioli@bonfigliolidobrasil.com.br

Bonfiglioli Canada

2-7941 Jane Street - Concord, Ontario L4K 4L6 Tel. (+1) 905 7384466 - Fax (+1) 905 7389833 www.bonfigliolicanada.com sales@bonfigliolicanada.com

Bonfiglioli China

19D, No. 360 Pu Dong Nan Road New Shanghai International Tower 200120 Shanghai Tel. (+86) 21 5054 3357 - Fax (+86) 21 5970 2957 www.bonfiglioli.cn - bdssales@bonfiglioli.com.cn

Bonfiglioli Deutschland

Sperberweg 12 - 41468 Neuss Tel. (+49) 02131 2988-0 Fax (+49) 02131 2988-100 www.bonfiglioli.de - info@bonfiglioli.de

Bonfiglioli España

TECNOTRANS BONFIGLIOLI S.A.
Pol. Ind. Zona Franca sector C, calle F, n°6
08040 Barcelona
Tel. (+34) 93 4478400 - Fax (+34) 93 3360402
www.tecnotrans.com - tecnotrans@tecnotrans.com

Bonfiglioli France

14 Rue Eugène Pottier BP 19 Zone Industrielle de Moimont II 95670 Marly la Ville Tel. (+33) 1 34474510 - Fax (+33) 1 34688800 www.bonfiglioli.fr - btf@bonfiglioli.fr

Bonfiglioli India

PLOT AC7-AC11 Sidco Industrial Estate Thirumudivakkam - Chennai 600 044 Tel. +91(0) 44 24781035 - 24781036 - 24781037 Fax +91(0) 44 24780091 - 24781904 www.bonfiglioliindia.com - bonfig@vsnl.com

Bonfiglioli Italia

Via Sandro Pertini lotto 7b 20080 Carpiano (Milano) Tel. (+39) 02 985081 - Fax (+39) 02 985085817 www.bonfiglioli.it customerservice.italia@bonfiglioli.it

Bonfiglioli New Zealand

88 Hastie Avenue, Mangere Bridge, Auckland 2022, New Zealand - PO Box 11795, Ellerslie Tel. (+64) 09 634 6441 - Fax (+64) 09 634 6445 npollington@bonfiglioli.com.au

Bonfiglioli Österreich

Molkereistr 4 - A-2700 Wiener Neustadt Tel. (+43) 02622 22400 - Fax (+43) 02622 22386 www.bonfiglioli.at - info@bonfiglioli.at

Bonfiglioli South East Asia

No 21 Woodlands indusrial park E1 #02-03 Singapore 757720 Tel. (+65) 6893 6346/7 - Fax (+65) 6893 6342 www.bonfiglioli.com.au sales@bonfiglioli.com.sg

Bonfiglioli South Africa

55 Galaxy Avenue, Linbro Business Park - Sandton Tel. (+27) 11 608 2030 OR - Fax (+27) 11 608 2631 www.bonfiglioli.co.za bonfigsales@bonfiglioli.co.za

Bonfiglioli Türkiye

Atatürk Organíze Sanayi Bölgesi, 10015 Sk. No: 17, Çigli - Izmir Tel. +90 (0) 232 328 22 77 (pbx) Fax +90 (0) 232 328 04 14 www.bonfiglioli.com.tr info@bonfiglioli.com.tr

Bonfiglioli United Kingdom

Industrial Solutions

Unit 7, Colemeadow Road
North Moons Moat - Redditch,
Worcestershire B98 9PB
Tel. (+44) 1527 65022 - Fax (+44) 1527 61995
www.bonfiglioli.com
uksales@bonfiglioli.com
Mobile Solutions
3 - 7 Grosvenor Grange, Woolston
Warrington - Cheshire WA1 4SF

Warrington - Cheshire WA1 4SF Tel. (+44) 1925 852667 - Fax (+44) 1925 852668 www.bonfiglioli.co.uk mobilesales@bonfiglioli.co.uk

Bonfiglioli USA

3541 Hargrave Drive Hebron, Kentucky 41048 Tel. (+1) 859 334 3333 - Fax (+1) 859 334 8888 www.bonfiglioliusa.com industrialsales@bonfiglioliusa.com mobilesales@bonfiglioliusa.com

Bonfiglioli Vietnam

Lot C-9D-CN My Phuoc Industrial Park 3 Ben Cat - Binh Duong Province Tel. (+84) 650 3577411 - Fax (+84) 650 3577422 www.bonfiglioli.vn - salesvn@bonfiglioli.com

Dal 1956 Bonfiglioli progetta e realizza soluzioni innovative e affidabili per il controllo e la trasmissione di potenza nell'industria, nelle macchine operatrici semoventi e per le energie rinnovabili.

VE_CAT_BTDBCR_STD_ITA_R00_0

