



### **Indice**

5 La serie BMD: servomotori sincroni a magneti permanenti

#### Riferimenti utili

- 6 Norme e direttive
- 7 Simboli e unità di misura
- 8 Termini e definizioni
- 10 Targhette identificative
- 11 La selezione del servomotore
- 14 Grado di protezione

#### La Serie BMD

- 15 La gamma dei motori sincroni a magneti permanenti Bonfiglioli
- 16 Designazione di prodotto

#### Specifiche meccaniche

- 18 Interfaccia meccanica
- 19 Tolleranze meccaniche
- 20 Carichi sull'albero

#### Prestazioni e dimensioni

- **22** BMD 65
- **24** BMD 82
- **26** BMD 102
- 28 BMD 118
- **30** BMD 145
- 32 BMD 145 con ventilazione forzata
- **34** BMD 170
- 36 BMD 170 con ventilazione forzata
- 38 Caratteristiche coppia/velocità

#### Opzioni

- 46 Dispositivi di feedback
- 50 Protettore termico
- 50 Freno di stazionamento
- 51 Inerzia aggiuntiva
- 51 Ventilazione forzata
- 53 Connessioni e collegamenti
- 62 Servoriduttori
- 68 Bonfiglioli nel mondo

# La serie BMD: servomotori sincroni a magneti permanenti

I servomotori sincroni a magneti permanenti della serie BMD sono ideali per qualsiasi tipo di macchina automatica ed in particolare per applicazioni che richiedono una dinamica elevata, tra cui quelle tipiche dell'industria della plastica e dei metalli, del confezionamento, del settore alimentare e tessile.

La serie BMD presenta dimensioni estremamente compatte unite a notevoli vantaggi in termini di densità di coppia e accelerazione.

Grazie all'elevata qualità dei magneti a terre rare quali Neodimio, Ferro, Boro, le prestazioni sono massimizzate in termini di accelerazione e resistenza a sovraccarichi, senza rischio di smagnetizzazione.

I motori sono disponibili in sei taglie che coprono un range di coppia di stallo compreso tra  $0.85 \div 45$  Nm che si estende fino a 60 Nm con ventilazione forzata.

Questi motori brushless sinusoidali sono progettati per un'alimentazione trifase, 230Vac e 400Vac.

I motori della serie BMD sono realizzati con materiali isolanti di classe F. Il metodo di raffreddamento standard è la convezione naturale IC410. Come opzione, la convezione forzata IC416 è disponibile per le taglie BMD 145 e BMD 170.

Al fine di monitorare costantemente la temperatura operativa e prevenire rischi di danni al motore, ogni servomotore è dotato di un sensore di temperatura (PTC, KTY o PT1000) integrato nei suoi avvolgimenti. Per garantire una migliore integrazione nel sistema è disponibile un'opzione per aumentare l'inerzia del motore.

I motori BMD sono disponibili con grado di protezione IP65 (standard) e IP67 (opzionale).

La serie BMD dispone dei seguenti dispositivi di feedback:

- Resolver con frequenza di eccitazione di 8 e 10 kHz
- · Interfaccia SinCos assoluta monogiro
- · Monogiro e multigiro: sono supportati i protocolli Hiperface ed EnDAT
- Versioni sensorless (con servoazionamenti sensorless sono necessari specifici algoritmi di controllo).

La velocità e/o la coppia dei servomotori serie BMD sono controllate mediante un idoneo servoazionamento elettronico.

La serie BMD è ottimizzata per la combinazione con i servoazionamenti Bonfiglioli per un perfetto controllo del motore e l'ottimizzazione delle prestazioni in base ai requisiti della macchina.



Le foto del motore BMD utilizzate all'interno di questo catalogo non rappresentano il colore del prodotto reale. Il colore effettivo è nero (RAL 9005). La verniciatura argento deve essere intesa solo per scopi di marketing e promozionali.

### Norme e direttive

I motori BMD sono prodotti in conformità alle norme e alle direttive applicabili elencate nelle seguenti tabelle.

#### **STANDARD**

#### IEC 60034-1, EN 60034-1

Macchine elettriche rotanti

Parte 1: Caratteristiche nominali e di funzionamento

#### IEC 60034-2-3

Macchine elettriche rotanti

Parte 2-3: Metodi normalizzati per la determinazione, mediante prove, delle perdite e del rendimento.

#### IEC 60034-5, EN 60034-5

Macchine elettriche rotanti

Parte 5: Classificazione dei gradi di protezione delle macchine elettriche rotanti.

#### IEC 60034-6, EN 60034-6

Macchine elettriche rotanti

Parte 6: Metodi di raffreddamento delle macchine elettriche.

#### IEC 60034-8, EN 60034-8

Macchine elettriche rotanti

Parte 8: Marcatura dei terminali e senso di rotazione per macchine elettriche rotanti.

#### IEC 60034-14, IEC 60034-14

Macchine elettriche rotanti

Parte 14: Grado di vibrazione delle macchine elettriche

#### IEC TS 60034-25

Macchine elettriche rotanti

Parte 25: Guida per la progettazione e le prestazioni dei motori in corrente alternata specificamente progettati per l'alimentazione da convertitori

#### IEC 60072-1

Dimensioni e potenze nominali per macchine elettriche rotanti.

#### **DIRETTIVE**

Direttiva bassa tensione: 2014/35/CE

I servomotori della serie BMD sono conformi alle norme UL/CSA per il mercato del Nord America (numero prot. UL E358266).

#### UL 1004-1

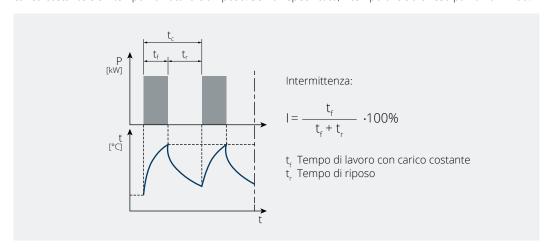
Macchine elettriche rotanti Requisiti generali

#### UL 1004-6

Servomotori e motori passo passo

### CSA C22.2 No. 100

Motori e generatori


## Simboli e unità di misura

| SIMBOLO              | UNITÀ DI MISURA            | DESCRIZIONE                                                |
|----------------------|----------------------------|------------------------------------------------------------|
|                      |                            |                                                            |
| 2p                   | [-]                        | Numero di poli                                             |
| dT                   | [K]                        | Aumento della temperatura degli avvolgimenti               |
| f <sub>H</sub>       | [-]                        | Fattore di aggiustamento in base all'altitudine            |
| f <sub>n</sub>       | [Hz]                       | Frequenza nominale                                         |
| $f_{T}$              | [-]                        | Fattore di aggiustamento in base alla temperatura ambiente |
| Io                   | [A]                        | Corrente di Stallo RMS                                     |
| l <sub>b</sub>       | [A]                        | Corrente DC del freno                                      |
| I <sub>max</sub>     | [A]                        | Corrente massima RMS                                       |
| In                   | [A]                        | Corrente nominale RMS                                      |
| J <sub>b</sub>       | [kgm² · 10-4]              | Momento di inerzia del freno                               |
| $J_{M}$              | [kgm² · 10-4]              | Momento di inerzia del motore                              |
| K <sub>e</sub>       | [mV min <sup>-1</sup> ]    | Costante tensione fase-fase                                |
| K <sub>T</sub>       | [Nm/A]                     | Costante di coppia                                         |
| L <sub>pp</sub>      | [mH]                       | Induttanza fase-fase statore                               |
| $M_0$                | [Nm]                       | Coppia di stallo                                           |
| $M_b$                | [Nm]                       | Coppia frenante                                            |
| m <sub>b</sub>       | [kg]                       | Massa del motore con freno                                 |
| $M_{EQU}$            | [Nm]                       | Coppia equivalente                                         |
| M <sub>max</sub>     | [Nm]                       | Coppia massima                                             |
| m <sub>M</sub>       | [kg]                       | Massa del motore senza freno/volano                        |
| n <sub>n</sub>       | [min <sup>-1</sup> ]       | Velocità nominale                                          |
| P <sub>b</sub>       | [W]                        | Potenza elettrica del freno a 20°C                         |
| $P_n$                | [kW]                       | Potenza nominale                                           |
| R <sub>pp</sub>      | [Ω]                        | Resistenza fase-fase statore a 20°C                        |
| t <sub>1</sub>       | [ms]                       | Tempo di innesto freno                                     |
| t <sub>2</sub>       | [ms]                       | Tempo di rilascio freno                                    |
| $V_b$                | [V]                        | Tensione DC di frenatura                                   |
| V <sub>n</sub>       | [V]                        | Tensione nominale                                          |
| m <sub>MB</sub>      | [kg]                       | Massa del motore con freno                                 |
| ΔͿ                   | [kgm² · 10 <sup>-4</sup> ] | Aumento dell'inerzia con freno/volano                      |
| $\Delta m_{_{ m M}}$ | [kg]                       | Aumento della massa con freno/volano                       |
| $	au_{el}$           | [ms]                       | Costante di tempo elettrica                                |
| $	au_{therm}$        | [min]                      | Costante di tempo termica                                  |

**La costante di tensione**  $[K_e]$ : è la relazione tra la tensione indotta del motore RMS fase-fase  $(V_{AC})$  e la velocità di rotazione dell'albero corrispondente. Viene tipicamente calcolata come il valore RMS della tensione alla velocità di 1min<sup>-1</sup> con una temperatura di avvolgimento di 20 °C.

**Tipo di servizio S1:** Funzionamento a carico costante mantenuto per un tempo sufficiente a consentire alla macchina di raggiungere l'equilibrio termico

**Tipo di servizio S3:** sequenza di cicli di lavoro identici, ciascuno comprendente un tempo di funzionamento a carico costante e un tempo non attivo e a riposo. Se non specificato, il tempo di ciclo è fisso pari a 10 minuti.



Costante di tempo elettrica  $[\tau_{e}]$ : è il tempo impiegato dalla corrente per raggiungere il 63,2% del suo valore di regime quando viene applicata una tensione di ingresso a gradino mentre il rotore è fermo. Viene calcolata dividendo l'induttanza fase-fase dell'avvolgimento ( $R_{pp}$ ) per la resistenza fase-fase dell'avvolgimento ( $R_{pp}$ ) a 20 °C.

$$\tau_{\rm el}^{}\equiv L_{\rm pp}^{} \ / \ R_{\rm pp}^{}$$

**Corrente massima [I\_{max}]:** è la corrente utilizzata per produrre la coppia massima ( $M_{max}$ ). È il limite della macchina e se superato, anche per un breve periodo, può causare un danno irreversibile.

**Coppia massima [M\_{max}]:** è la coppia massima assoluta che può essere prodotta da un servomotore per un breve periodo.

**Corrente nominale [In]:** è la corrente RMS per produrre la coppia nominale (Mn).

Frequenza nominale  $[f_n]$ : è la frequenza della componente fondamentale della tensione di uscita corrispondente alla velocità nominale  $(n_n)$  secondo la seguente equazione in cui p è il numero delle coppie polari.

$$f_n = p \cdot n_n / 60$$

### Termini e definizioni

Potenza nominale [P\_]: è la potenza meccanica disponibile sull'albero alla velocità nominale n..

$$P_{n} = 2\pi \cdot M_{n} \cdot n_{n} / 60$$

**Velocità nominale**  $[n_n]$ : è la velocità alla quale il motore è stato progettato per funzionare con un ragionevole livello di controllo, in termini di sovraccarico e velocità eccessiva.

**Coppia nominale** [ $M_n$ ]: è la coppia continua termicamente ammissibile per il servizio S1 alla velocità nominale del motore ( $n_n$ ). È normalmente inferiore alla coppia di stallo ( $M_0$ ) dovuta a perdite di rotazione (perdite di ferro, perdite per attrito ...).

Corrente di stallo [I]: è la corrente RMS per produrre la coppia di stallo (M<sub>o</sub>).

**Coppia di stallo [M<sub>0</sub>]:** è la coppia di limite termico per il carico S1 prodotta quando il motore funziona a velocità zero.

**Equilibrio termico:** è lo stato raggiunto quando l'aumento di temperatura delle varie parti della macchina non varia di più di 2K all'ora.

Costante di tempo termica  $[\tau_{therm}]$ : è il tempo necessarrio alla temperatura per raggiungere il 63,2% del suo valore finale.

Costante di coppia [K-]: è definita come il rapporto tra la coppia di stallo e la corrispettiva corrente RMS una volta raggiunto l'equilibrio termico.

**Aumento della temperatura dell'avvolgimento [dT]:** è l'aumento di temperatura, nelle condizioni di servizio specificate, degli avvolgimenti del motore rispetto la temperatura massima di riferimento ambientale.

### Targhette identificative

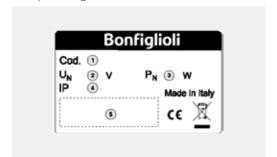
Conformemente alla norma IEC 60034-1, la targhetta del motore riepiloga la potenza del motore includendo il peso totale approssimativo. Un esempio di targhetta e descrizione dei campi sono riportati qui di seguito.

#### Campi

- 1) Designazione del prodotto
- 2) Codice prodotto
- 3) Coppia di stallo
- 4) Coppia nominale
- 5) Tensione nominale
- 6) Corrente di stallo
- 7) Corrente nominale
- 8) Velocità nominale
- 9) Classe di isolamento
- 10) Grado di protezione
- 11) Peso totale
- 12) Montaggio del motore
- 13) Numero di poli
- 14) Tensione nominale del freno (1)
- 15) Coppia nominale del freno (1)
- 16) Corrente nominale del freno (1)
- 17) Logo certificazione UL (2)
- 18) Numero di serie
- 19) Numero di serie come codice a barre

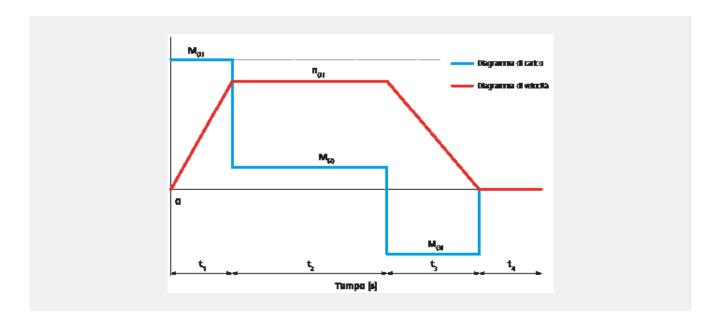
(1) Solo per motori autofrenanti (opzione F24)

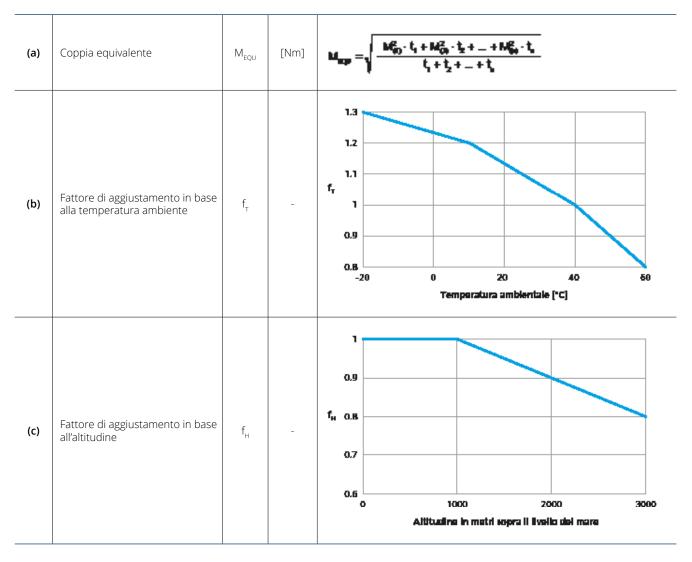
Esempi di targhetta BMD:



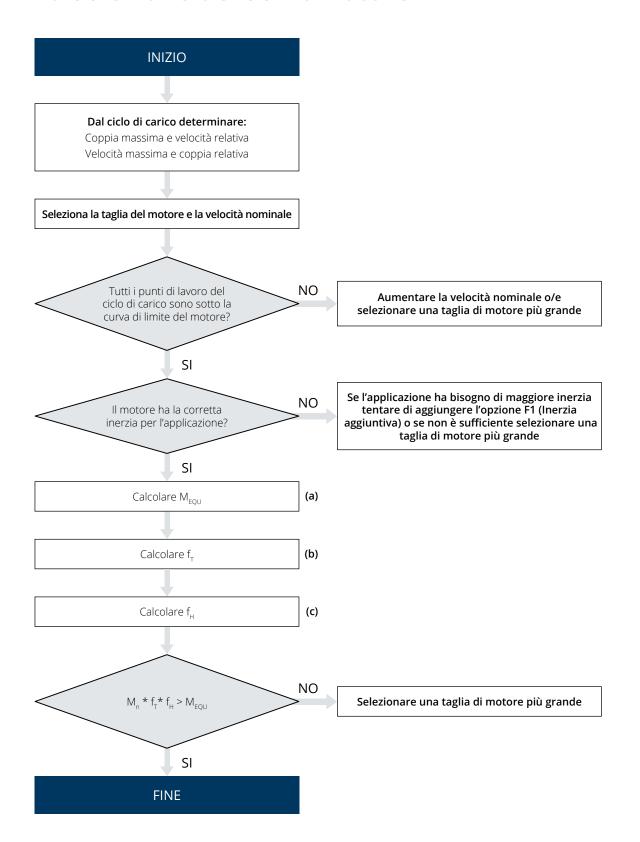

I dati dell'unità del ventilatore sono riepilogati in una targhetta di identificazione dedicata. Un esempio di targhetta e descrizione dei campi sono riportati qui di seguito.

#### Fields:


- 1) Codice prodotto
- 2) Tensione nominale
- 3) Potenza nominale
- 4) Grado di protezione
- 5) Codice prodotto come codice a barre


Esempio di targhetta del ventilatore:




<sup>&</sup>lt;sup>(2)</sup> Solo per motori con opzione CUS

### La Selezione del servomotore






### La selezione del servomotore



### La selezione dei feedback

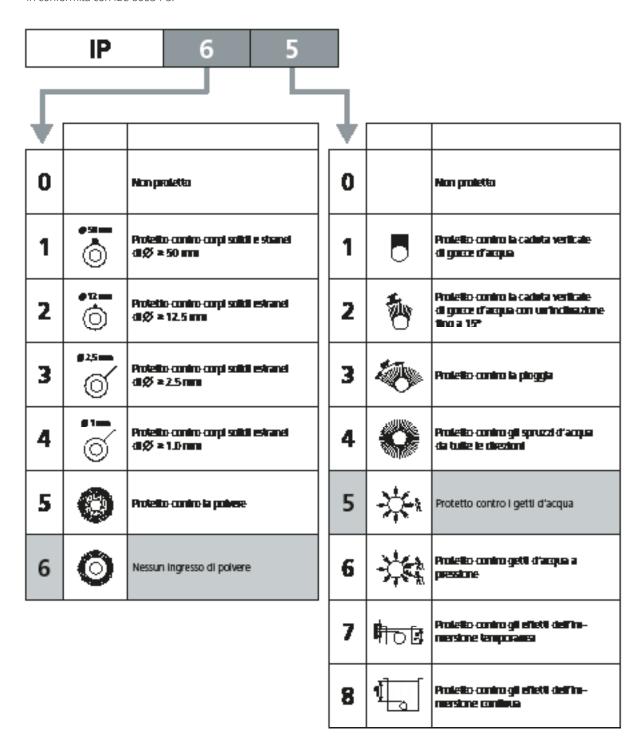


<sup>1)</sup> Solo per taglia BMD 65

<sup>2)</sup> Per le taglie dalla BMD 82 alla BMD 170

<sup>3)</sup> Le informazioni sono fornite dal produttore del dispositivo di feedback. I valori possono cambiare quando montati sul motore e collegati a un azionamento.

<sup>4)</sup> L'uscita dal resolver è analogica. La risoluzione del sistema è determinata anche dal convertitore analogico-digitale utilizzato. Questa risoluzione è ottenuta se utilizzata con il modulo di acquisizione EM-RES-01/02.

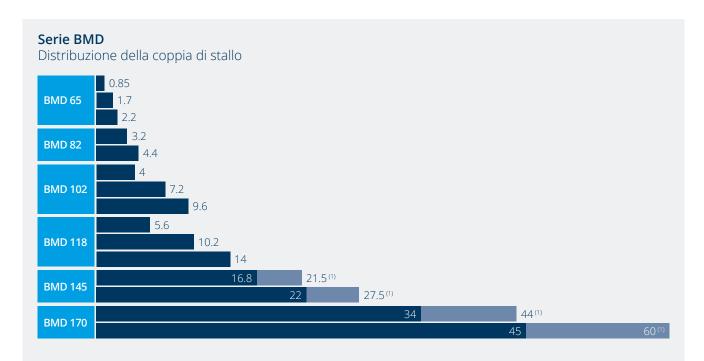

<sup>5)</sup> L'uscita è analogica e la risoluzione del sistema è determinata anche dal convertitore analogico-digitale utilizzato. Questa risoluzione è ottenuta quando usata con modulo di acquisizione EM-ABS-01.

Si prega di verificare la compatibilità con il nostro Motion Control con il nostro team tecnico o consultando il catalogo Motion Control.

### Grado di protezione

I motori BMD sono prodotti in classe di protezione IP65 o IP67 selezionando la variante di base "grado di protezione" nella designazione.

In conformità con IEC 60034-5:




### La gamma dei motori sincroni a magneti permanenti Bonfiglioli

I motori sincroni a magneti permanenti Bonfiglioli sono disponibili in sei taglie con coppie di stallo nel range 0,85 ÷ 60 Nm.

#### Gamma di prodotti

- Tecnologia competitiva
- · Bassa inerzia
- · Elevata dinamica
- · Elevata densità di coppia
- Precisione
- · Design compatto



Una breve panoramica delle combinazioni disponibili delle varianti di base come la dtaglia del motore, la coppia di stallo, la tensione nominale e la velocità nominale sono riportate nella seguente tabella.

|     |          | В    | MD 6 | 5   | вмі | D 82 | В | MD 10 | )2  | В   | MD 11 | 8  | В    | MD 14   | 5  |         | В  | MD 17 | 0  |       |
|-----|----------|------|------|-----|-----|------|---|-------|-----|-----|-------|----|------|---------|----|---------|----|-------|----|-------|
|     |          | 0.85 | 1.7  | 2.2 | 3.2 | 4.4  | 4 | 7.2   | 9.6 | 5.6 | 10.2  | 14 | 16.8 | 21.5(1) | 22 | 27.5(1) | 34 | 44(1) | 45 | 60(1) |
|     | 1600 rpm |      | Χ    | Х   | Х   | Х    | Χ | Χ     | Х   | Х   | Х     | Х  | X    | Х       | Χ  | X       | Χ  | Х     | Χ  | X     |
| >   | 3000 rpm | Χ    | Χ    | Х   | Х   | Х    | Χ | Χ     | Х   | Х   | Х     | Χ  | Х    | Х       | Χ  | X       | Χ  | X     | Χ  | X     |
| 400 | 4500 rpm | Χ    | Χ    | Χ   | Χ   | Χ    | Χ | Χ     | Х   | Х   | X     | Χ  | Х    | Х       | Χ  | X       |    |       |    |       |
| 4   | 5500 rpm | Χ    | Χ    | Х   | Х   | Х    | Χ | Х     | Х   | Х   | Х     | Х  | Х    | X       | Χ  |         |    |       |    |       |
|     | 6000 rpm | Χ    | Χ    | X   | Х   | Х    | Χ | Χ     | Х   | Х   | Х     | Х  | X    |         |    |         |    |       |    |       |
|     | 1600 rpm | Χ    | Χ    | Х   | Х   | Х    | Χ | Х     | Х   | Х   | Х     | Х  | X    | Х       | Χ  | Х       | Χ  | Х     |    |       |
| >   | 3000 rpm | Χ    | Χ    | Х   | X   | X    | Χ | Χ     | X   | Х   | Х     | Х  | X    | Х       | Χ  |         | Χ  | Х     |    |       |
| 230 | 4500 rpm | Χ    | Χ    | Х   | Х   | Х    | Χ | Х     | Х   | Х   | Х     |    |      |         |    |         |    |       |    |       |
| 7   | 5500 rpm | Χ    | Х    | Х   | Х   | Х    | Χ | Х     | Х   | Х   | Х     |    |      |         |    |         |    |       |    |       |
|     | 6000 rpm | Χ    | Χ    | Х   | Χ   | Χ    | Χ | Χ     | Х   | Χ   |       |    |      |         |    |         |    |       |    |       |

(1) Motore con opzione di ventilazione forzata

Serie BMD

### Designazione di prodotto dei servomotori Bonfiglioli

#### **VARIANTI BASE** BMD 145 22 3000 400 165 24 K 65 Grado di protezione IP65 IP67 Chiavetta albero con chiavetta NK senza chiavetta Diametro albero 9 taglia 65 11 taglia 65, 82 14 taglia 82 19 taglia 82, 102, 118, 145 taglia 102, 118, 145, 170 24 28 taglia 118, 145, 170 taglia 170 Interfaccia meccanica (1) 63 taglia 65 75 taglia 65 100 taglia 82, 102 115 taglia 82, 102 130 taglia 118 1305 taglia 118 165 taglia 118, 145, 170 Tensione AC motore (2) 230 400 Velocità nominale motore (2) 1600 (min-1) 3000 (min<sup>-1</sup>) 4500 (min-1) 5500 (min-1) 6000 (min<sup>-1</sup>) Coppia di stallo motore 0.85 (Nm) taglia 65 5.6 (Nm) taglia 118 1.7 (Nm) taglia 65 10.2 (Nm) taglia 118 2.2 (Nm) taglia 65 14 (Nm) taglia 118 3.2 (Nm) taglia 82 16.8 (Nm) taglia 145 4.4 (Nm) taglia 82 22 (Nm) taglia 145 4 34 (Nm) taglia 102 (Nm) taglia 170 7.2 (Nm) taglia 102 45 (Nm) taglia 170 9.6 (Nm) taglia 102 Taglia motore 65, 82, 102, 118, 145, 170

#### VARIANTI OPZIONALI

| PTC RES1 | V1R  Ventilazione forzata (4) (vuoto) nessuna ventilazione forzata (default) V1R 24V DC IP 54 Connettore maschio angolare rota V1S 24V DC IP 54 Connettore maschio diritto V2R 230V AC IP 54 Connettore maschio angolare rota V2S 230V AC IP 54 Connettore maschio diritto                                                                                                                                              |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Esecuzione certificata (vuoto) CE CUS UL                                                                                                                                                                                                                                                                                                                                                                                |
|          | Freno/Volano (vuoto) nessun freno/volano (default) F24 freno 24Vdc F1 volano                                                                                                                                                                                                                                                                                                                                            |
|          | Connettore di segnale (vuoto) versione sensorless, nessun dispositivo di feedback S1 Connettore maschio angolare rotante, con connettore femmina S1N Connettore maschio angolare rotante, senza connettore femmina S2 <sup>(5)</sup> Cavo con terminali liberi S2C <sup>(5)</sup> Cavo con connettore SubD S3 Connettore maschio dritto, con connettore femmina S3N Connettore maschio dritto, senza connettore femmina |
|          | Connettore di alimentazione P1 Connettore maschio angolare rotante, con connettore femmina P1N Connettore maschio angolare rotante, senza connettore femmina P2 (3)(5) Cavo con terminali liberi P3 Connettore maschio dritto, con connettore femmina                                                                                                                                                                   |

ENB1 Encoder ottico assoluto monogiro interfaccia EnDatENB2 Encoder ottico assoluto multigiro interfaccia EnDat

ENB3 Encoder ottico assoluto monogiro interfaccia Hiperface ENB4 Encoder ottico assoluto multigiro interfaccia Hiperface

ENB5 Encoder capacitivo assoluto monogiro interfaccia Hiperface
ENB6 Encoder capacitivo assoluto multigiro interfaccia Hiperface

**ENB7**<sup>(3)</sup> Encoder ottico assoluto SinCos monogiro

**ENB8** Encoder induttivo assoluto multigiro interfaccia EnDat

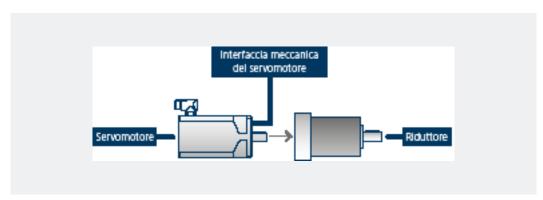
SEN Sensorless

#### Protettore termico

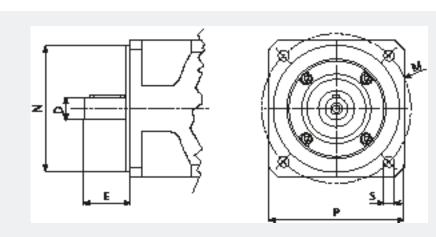
PTC Termistore PTC 150

KTY Sensore al silicio tipo KTY84-130TC1 Sensore in platino PT1000

#### Note:


- (1) Dimensione della flangia M, vedere pagina 16
- (2) Per le combinazioni di velocità e tensione AC del motore disponibili vedere la panoramica generale a pagina 15
- (3) Non disponibile per le dimensioni del motore BMD 65
- (4) Per le combinazioni di velocità e tensione AC del motore disponibili vedere la panoramica generale alla pagina 51. Non compatibile con la certificazione UL (opzione CUS).
- (5) Lunghezza standard 1 metro, per lunghezze diverse La preghiamo di contattarci

Si prega di verificare la compatibilità con il nostro Motion Control assieme al nostro team tecnico o consultando il nostro catalogo dedicato al Motion Control




### Interfaccia meccanica

L'interfaccia meccanica include sia la flangia sia l'albero, univocamente definiti dalle varianti di catalogo. Flange e alberi dei BMD sono descritti in conformità alla norma IEC 60072-1.



Secondo la IEC 60072-1, la geometria d'interfaccia è definita dalle misure D, E, P, M, N, S riportate nel disegno seguente, i cui valori numerici (in mm) dipendono dalla taglia del motore.



|                                       |     | SERVOMOTORI |                                       |     |                         |     |                         |                         |     |     |        |        |
|---------------------------------------|-----|-------------|---------------------------------------|-----|-------------------------|-----|-------------------------|-------------------------|-----|-----|--------|--------|
|                                       |     | ВМ          | BMD65 BMD82 BMD102 BMD118             |     |                         |     |                         |                         |     |     | BMD145 | BMD170 |
| Diametro albero x<br>lunghezza albero | DxE | _           | 9x20 11x23 19x40<br>11x23 19x40 24x50 |     | 19x40<br>24x50<br>28x60 |     | 19x40<br>24x50<br>28x60 | 24x50<br>28x60<br>32x60 |     |     |        |        |
| Flangia a base<br>quadrata            | Р   | 65          | 65                                    | 82  | 100                     | 102 | 102                     | 118                     | 118 | 145 | 145    | 170    |
| Diametro fori passo<br>flangia        | М   | 63          | 75                                    | 100 | 115                     | 100 | 115                     | 130(1)                  | 130 | 165 | 165    | 165    |
| Diametro raccordo                     | N   | 40          | 60                                    | 80  | 95                      | 80  | 95                      | 95                      | 110 | 130 | 130    | 130    |
| Diametri fori di<br>fissaggio         | S   | 5.8         | 5.8                                   | 6.5 | 9                       | 7   | 9                       | 9                       | 9   | 12  | 12     | 12     |

#### Note:

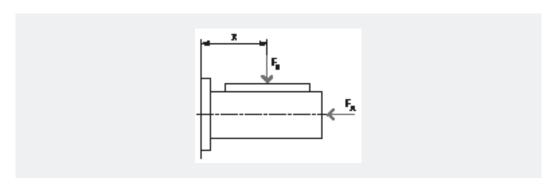
(1) Interfaccia meccanica 130S

### Tolleranze meccaniche

Dimensioni e tolleranze dell'estremità dell'albero, chiavetta e flangia sono conformi alla IEC 60072-1. L'estremità dell'albero presenta un foro assiale filettato in conformità alla UNI 3221, DIN 332. Le tolleranze delle diverse parti sono riportate nella tabella.

| COMPONENTE  | DIMENSIONI | TOLLERENZA |
|-------------|------------|------------|
| Estremità D | Ø 9 - 28   | ј6         |
| d'albero    | Ø 32       | k6         |
| Chiavetta F |            | h9         |
| Flangia N   | Ø < 250    | j6         |

### Cuscinetti


I motori BMD utilizzano cuscinetti radiali a sfere, lubrificati a vita con grasso e precaricati assialmente. I tipi di cuscinetti in l'uso è elencato nella seguente tabella.

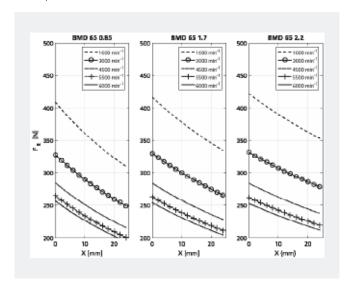
| TAGLIA  | IN USCITA | NON IN USCITA |
|---------|-----------|---------------|
| BMD 65  | 6201 2RS  | 6001 2RS      |
| BMD 82  | 6205 2RS  | 6203 2RS      |
| BMD 102 | 6205 2RS  | 6204 2RS      |
| BMD 118 | 6206 2RS  | 6205 2RS      |
| BMD 145 | 6206 2RS  | 6305 2RS      |
| BMD 170 | 6208 2RS  | 6305 2RS      |

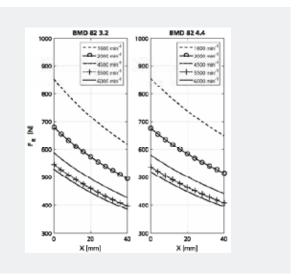
### Carichi sull'albero

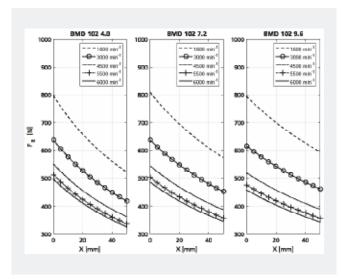
Il carico radiale massimo ( $F_R$ ) e il carico assiale massimo ( $F_A$ ) sono calcolati utilizzando il calcolo ISO 281  $L_{10h}$  assumendo una vita totale dei cuscinetti di 20.000 ore. Si presuppone che il carico e la velocità siano costanti per tutta la durata del cuscinetto.

Il carico radiale massimo è riportato in funzione della distanza (X) tra il piano della flangia e il punto in cui viene applicata la forza. Il limite di sforzo per il carico radiale viene calcolato per ogni taglia considerando il diametro dell'albero di dimensioni più piccole riportato a catalogo (ad esempio, 11 mm per BMD 82). I carichi radiali massimi  $F_R$  sono validi solo per l'installazione orizzontale del motore senza carico assiale aggiuntivo.

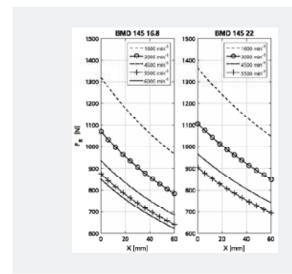


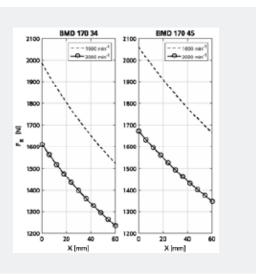

### Carico radiale massimo (F<sub>R</sub>=0)


| TAGLIA    |      |      | V    | /ELOCITÀ [min <sup>-</sup> | ני   |      |
|-----------|------|------|------|----------------------------|------|------|
|           | [Nm] | 1600 | 3000 | 4500                       | 5500 | 6000 |
|           | 0.85 | 59   | 48   | 42                         | 39   | 38   |
| BMD 65    | 1.7  | 65   | 53   | 46                         | 43   | 42   |
|           | 2.2  | 69   | 56   | 49                         | 46   | 44   |
| BMD 82    | 3.2  | 115  | 94   | 82                         | 77   | 75   |
| DIVID 62  | 4.4  | 120  | 100  | 85                         | 81   | 79   |
|           | 4    | 140  | 110  | 100                        | 95   | 90   |
| BMD 102   | 7.2  | 150  | 120  | 105                        | 100  | 95   |
|           | 9.6  | 160  | 130  | 110                        | 105  | 100  |
|           | 5.6  | 150  | 132  | 114                        | 109  | 104  |
| BMD 118   | 10.2 | 170  | 139  | 121                        | 115  | 110  |
|           | 14   | 180  | 145  | 130                        | 120  | 115  |
| DNAD 4.45 | 16.8 | 280  | 230  | 200                        | 185  | 180  |
| BMD 145   | 22   | 295  | 240  | 210                        | 195  |      |
| BMD 170   | 34   | 300  | 270  |                            |      | -    |
| DIVID 170 | 45   | 320  | 290  |                            |      |      |


### Carichi sull'albero

### Carico radiale massimo (F<sub>A</sub>=0)

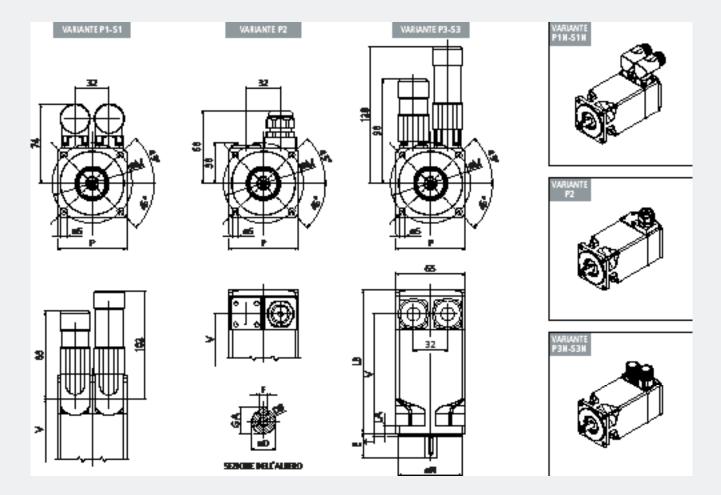

Curve parametrizzate in base alla velocità nominale del motore.












### BMD 65 · Prestazioni

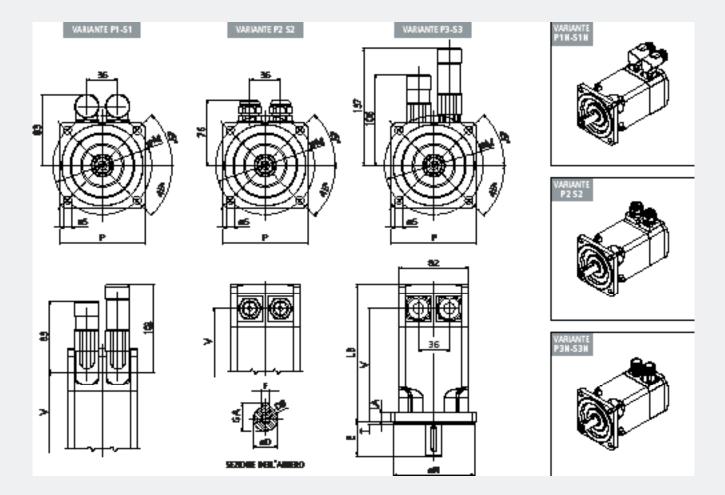
|         |                                 |                            |      | BMD  | 65 0.85 | 5 Nm |      |      | ВМГ  | 65 1.7 | Nm   |      | BMD 65 2.2 Nm |      |      |      |      |
|---------|---------------------------------|----------------------------|------|------|---------|------|------|------|------|--------|------|------|---------------|------|------|------|------|
|         | M <sub>o</sub>                  | [Nm]                       |      |      | 0.85    |      |      |      |      | 1.70   |      |      |               |      | 2.20 |      |      |
|         | M                               | [Nm]                       | 0.83 | 0.80 | 0.76    | 0.74 | 0.73 | 1.65 | 1.60 | 1.52   | 1.48 | 1.45 | 2.12          | 2.05 | 1.95 | 1.85 | 1.80 |
|         | n                               | [min <sup>-1</sup> ]       | 1600 | 3000 | 4500    | 5500 | 6000 | 1600 | 3000 | 4500   | 5500 | 6000 | 1600          | 3000 | 4500 | 5500 | 6000 |
|         | f <sub>n</sub>                  | [Hz]                       | 107  | 200  | 300     | 367  | 400  | 107  | 200  | 300    | 367  | 400  | 107           | 200  | 300  | 367  | 400  |
|         | P <sub>n</sub>                  | [kW]                       | 0.14 | 0.25 | 0.36    | 0.43 | 0.46 | 0.28 | 0.50 | 0.72   | 0.85 | 0.91 | 0.36          | 0.64 | 0.92 | 1.07 | 1.13 |
|         | $M_{max}$                       | [Nm]                       |      |      | 2.55    |      |      |      |      | 4.90   |      |      |               |      | 6.20 |      |      |
|         | 2р                              | [-]                        |      |      | 8       |      |      |      |      | 8      |      |      |               |      | 8    |      |      |
|         | J                               | [kgm²·10 <sup>-4</sup> ]   |      |      | 0.2     |      |      |      |      | 0.4    |      |      |               |      | 0.6  |      |      |
|         | $\boldsymbol{\tau}_{\text{el}}$ | [ms]                       |      |      | 3       |      |      |      |      | 3      |      |      |               |      | 3    |      |      |
|         | $	au_{\text{therm}}$            | [min]                      |      |      | 14      |      |      |      |      | 20     |      |      |               |      | 26   |      |      |
|         | m <sub>M</sub>                  | [kg]                       |      |      | 1.3     |      |      |      |      | 1.9    |      |      |               |      | 2.6  |      |      |
|         | V <sub>n</sub>                  | [V <sub>AC</sub> ]         | 168  | 181  | 172     | 179  | 177  | 193  | 180  | 180    | 174  | 171  | 179           | 180  | 191  | 192  | 190  |
|         | I <sub>0</sub>                  | [A]                        | 0.77 | 1.23 | 1.93    | 2.18 | 2.39 | 1.26 | 2.34 | 3.40   | 4.20 | 4.70 | 1.70          | 2.96 | 4.10 | 4.90 | 5.40 |
|         | l <sub>n</sub>                  | [A]                        | 0.74 | 1.16 | 1.74    | 1.92 | 2.09 | 1.25 | 2.30 | 3.20   | 3.90 | 4.20 | 1.65          | 2.78 | 3.60 | 4.10 | 4.40 |
| 230 Vac | l <sub>max</sub>                | [A]                        | 2.50 | 3.90 | 6.20    | 7.00 | 7.70 | 4.30 | 8.00 | 11.5   | 14.5 | 15.9 | 5.40          | 9.40 | 12.9 | 15.6 | 17.1 |
| 230     | $\rm K_e$                       | [mV/min <sup>-1</sup> ]    | 75   | 47   | 30      | 27   | 24   | 89   | 48   | 33     | 26   | 24   | 90            | 52   | 38   | 31   | 28   |
|         | $K_{T}$                         | [Nm/A]                     | 1.10 | 0.69 | 0.44    | 0.39 | 0.36 | 1.35 | 0.73 | 0.50   | 0.40 | 0.36 | 1.29          | 0.74 | 0.54 | 0.45 | 0.41 |
|         | $R_{pp}$                        | [Ω]                        | 48.4 | 19.2 | 7.75    | 6.10 | 5.04 | 30.4 | 8.79 | 4.19   | 2.66 | 2.20 | 18.8          | 6.21 | 3.27 | 2.26 | 1.86 |
|         | L <sub>pp</sub>                 | [mH]                       | 145  | 57.5 | 23.2    | 18.3 | 15.1 | 91.9 | 26.6 | 12.6   | 8.00 | 6.60 | 56.9          | 18.8 | 9.90 | 6.80 | 5.60 |
|         | V <sub>n</sub>                  | [V <sub>AC</sub> ]         | -    | 295  | 331     | 318  | 306  | 336  | 311  | 308    | 316  | 300  | 285           | 314  | 314  | 328  | 313  |
|         | I <sub>o</sub>                  | [A]                        | -    | 0.76 | 0.98    | 1.23 | 1.38 | 0.72 | 1.35 | 1.98   | 2.34 | 2.68 | 1.07          | 1.70 | 2.48 | 2.88 | 3.27 |
|         | l <sub>n</sub>                  | [A]                        | _    | 0.72 | 0.88    | 1.08 | 1.21 | 0.72 | 1.33 | 1.85   | 2.14 | 2.43 | 1.04          | 1.60 | 2.20 | 2.41 | 2.68 |
| 400 Vac | l <sub>max</sub>                | [A]                        |      | 2.43 | 3.10    | 3.90 | 4.40 | 2.46 | 4.60 | 6.70   | 8.00 | 9.10 | 3.40          | 5.40 | 7.90 | 9.10 | 10.4 |
| 400     | $\rm K_e$                       | [mV/min <sup>-1</sup> ]    | -    | 76   | 59      | 47   | 42   | 155  | 83   | 57     | 48   | 42   | 143           | 90   | 62   | 53   | 47   |
|         | K <sub>T</sub>                  | [Nm/A]                     |      | 1.12 | 0.87    | 0.69 | 0.62 | 2.36 | 1.26 | 0.86   | 0.73 | 0.63 | 2.06          | 1.29 | 0.89 | 0.76 | 0.67 |
|         | $R_{pp}$                        | [Ω]                        |      | 50.0 | 30.3    | 19.2 | 15.1 | 92.3 | 26.3 | 12.2   | 8.79 | 6.65 | 47.6          | 18.8 | 8.82 | 6.56 | 5.08 |
|         | L <sub>pp</sub>                 | [mH]                       |      | 150  | 90.7    | 57.5 | 45.2 | 279  | 79.5 | 37.0   | 26.6 | 20.1 | 144           | 56.9 | 26.7 | 19.8 | 15.4 |
|         | Mb                              | [Nm]                       |      |      | 2       |      |      |      |      | 2      |      |      |               |      | 2    |      |      |
| F24     | $\Delta \text{m}_{_{\text{M}}}$ | [kg]                       |      |      | 0.2     |      |      |      |      | 0.2    |      |      |               |      | 0.2  |      |      |
|         | ΔJ                              | [kgm²·10 <sup>-4</sup> ]   |      |      | 0.1     |      |      |      |      | 0.1    |      |      |               |      | 0.1  | ,    |      |
|         | Δm <sub>M</sub>                 | [kg]                       |      |      | 0.4     |      |      |      |      | 0.4    |      |      |               |      | 0.4  |      |      |
| 됴       | <b>Δ</b> J                      | [kgm² · 10 <sup>-4</sup> ] |      |      | 0.5     |      |      |      |      | 0.5    |      |      |               |      | 0.5  |      |      |

## BMD 65 · Dimensioni



| VARIANTE FLANGIA B5 |    |    |    |     |     |    |  |  |  |  |  |
|---------------------|----|----|----|-----|-----|----|--|--|--|--|--|
|                     | Р  | М  | N  | S   | Т   | LA |  |  |  |  |  |
| 63                  | 65 | 63 | 40 | 5.8 | 2.5 | 7  |  |  |  |  |  |
| 75                  | 65 | 75 | 60 | 5.8 | 2.5 | 7  |  |  |  |  |  |

| VARIANTE DIAMETRO ALBERO |    |    |    |                   |                  |  |  |  |  |  |
|--------------------------|----|----|----|-------------------|------------------|--|--|--|--|--|
|                          | D  | Е  | DB | GA <sup>(1)</sup> | F <sup>(1)</sup> |  |  |  |  |  |
| 9                        | 9  | 20 | М3 | 10.2              | 3                |  |  |  |  |  |
| 11                       | 11 | 23 | M4 | 12.5              | 4                |  |  |  |  |  |


|                | LUNGHEZZA MOTORE A SECONDA DELL'OPZIONE |                      |                                     |          |           |               |  |  |  |  |  |
|----------------|-----------------------------------------|----------------------|-------------------------------------|----------|-----------|---------------|--|--|--|--|--|
| DIMENSIONE V   |                                         |                      |                                     |          |           |               |  |  |  |  |  |
| Coppia         |                                         | Senza freno o volano | Con freno o volano - opzione F24/F1 |          |           |               |  |  |  |  |  |
| Сорріа         |                                         | Varianti di feedback | Varianti di feedback                |          |           |               |  |  |  |  |  |
| M <sub>o</sub> | RES2/SEN                                | ENB1/ENB2            | ENB3ENB6/ENB8                       | RES2/SEN | ENB1/ENB2 | ENB3ENB6/ENB8 |  |  |  |  |  |
| 0,85           | 89                                      | 89                   | 89                                  | 89       | 138       | 138           |  |  |  |  |  |
| 1,7            | 112                                     | 112                  | 112                                 | 112      | 161       | 161           |  |  |  |  |  |
| 2,2            | 138                                     | 138                  | 138                                 | 138      | 187       | 187           |  |  |  |  |  |

| DIMENSIONE LB  |          |                      |               |                                     |          |      |  |  |  |  |
|----------------|----------|----------------------|---------------|-------------------------------------|----------|------|--|--|--|--|
| Connia         |          | Senza freno o volano |               | Con freno o volano - opzione F24/F1 |          |      |  |  |  |  |
| Coppia         |          | Varianti di feedback |               | Varianti di feedback                |          |      |  |  |  |  |
| M <sub>o</sub> | RES2/SEN | ENB1/ENB2            | ENB3ENB6/ENB8 | RES2/SEN                            | ENB1ENB6 | ENB8 |  |  |  |  |
| 0,85           | 112      | 130                  | 130           | 143                                 | 179      | 161  |  |  |  |  |
| 1,7            | 135      | 153                  | 153           | 166                                 | 202      | 184  |  |  |  |  |
| 2,2            | 161      | 179                  | 179           | 192                                 | 228      | 210  |  |  |  |  |

### BMD 82 · Prestazioni

|         |                                    |                          |      | ВМ   | /ID 82 3.2 N | m    |      |      | ВМ   | /ID 82 4.4 N | lm   |      |
|---------|------------------------------------|--------------------------|------|------|--------------|------|------|------|------|--------------|------|------|
|         | M <sub>o</sub>                     | [Nm]                     |      |      | 3.20         |      |      |      |      | 4.40         |      |      |
|         | M                                  | [Nm]                     | 3.15 | 3.00 | 2.80         | 2.60 | 2.50 | 4.20 | 3.80 | 3.55         | 3.30 | 3.15 |
|         | n                                  | [min-1]                  | 1600 | 3000 | 4500         | 5500 | 6000 | 1600 | 3000 | 4500         | 5500 | 6000 |
|         | f <sub>n</sub>                     | [Hz]                     | 107  | 200  | 300          | 367  | 400  | 107  | 200  | 300          | 367  | 400  |
|         | P <sub>n</sub>                     | [kW]                     | 0.53 | 0.94 | 1.32         | 1.50 | 1.57 | 0.70 | 1.19 | 1.67         | 1.90 | 2.00 |
|         | ${\sf M}_{\sf max}$                | [Nm]                     |      |      | 8.50         |      |      |      |      | 11.5         |      |      |
|         | 2р                                 | [-]                      |      |      | 8            |      |      |      |      | 8            |      |      |
|         | J                                  | [kgm²·10 <sup>-4</sup> ] |      |      | 1.4          |      |      |      |      | 1.7          |      |      |
|         | $\boldsymbol{\tau}_{\text{el}}$    | [ms]                     |      |      | 5.7          |      |      |      |      | 5.7          |      |      |
|         | $\boldsymbol{\tau}_{\text{therm}}$ | [min]                    |      |      | 26           |      |      |      |      | 33           |      |      |
|         | m <sub>M</sub>                     | [kg]                     |      |      | 3.5          |      |      |      |      | 4.6          |      |      |
|         | V <sub>n</sub>                     | [V <sub>AC</sub> ]       | 191  | 181  | 200          | 176  | 176  | 181  | 184  | 188          | 196  | 197  |
|         | $I_0$                              | [A]                      | 2.51 | 4.50 | 6.00         | 8.30 | 9.00 | 3.30 | 5.80 | 8.40         | 9.70 | 10.6 |
|         | l <sub>n</sub>                     | [A]                      | 2.37 | 4.30 | 5.30         | 7.00 | 7.60 | 3.10 | 5.10 | 6.80         | 7.30 | 7.60 |
| 230 Vac | l <sub>max</sub>                   | [A]                      | 8.30 | 15.5 | 20.6         | 15.5 | 8.30 | 9.80 | 17.4 | 25.1         | 29.2 | 32.0 |
| 230     | K <sub>e</sub>                     | [mV/min <sup>-1</sup> ]  | 92   | 49   | 37           | 27   | 24   | 93   | 52   | 36           | 31   | 29   |
|         | K <sub>T</sub>                     | [Nm/A]                   | 1.33 | 0.71 | 0.53         | 0.39 | 0.35 | 1.35 | 0.76 | 0.53         | 0.45 | 0.42 |
|         | $R_{pp}$                           | [Ω]                      | 11.3 | 3.23 | 1.81         | 0.96 | 0.81 | 6.89 | 2.19 | 1.05         | 0.78 | 0.66 |
|         | L <sub>pp</sub>                    | [mH]                     | 64.2 | 18.3 | 10.3         | 5.40 | 4.60 | 39.0 | 12.4 | 6.00         | 4.40 | 3.70 |
|         | V <sub>n</sub>                     | [V <sub>AC</sub> ]       | 332  | 315  | 312          | 323  | 308  | 315  | 323  | 328          | 335  | 335  |
|         | I <sub>o</sub>                     | [A]                      | 1.39 | 2.60 | 3.90         | 4.50 | 5.20 | 1.88 | 3.30 | 4.80         | 5.70 | 6.20 |
|         | In                                 | [A]                      | 1.36 | 2.50 | 3.40         | 3.80 | 4.30 | 1.76 | 2.90 | 3.90         | 4.30 | 4.50 |
| 400 Vac | <br>max                            | [A]                      | 4.70 | 8.90 | 13.2         | 15.5 | 17.7 | 5.60 | 9.90 | 14.4         | 17.1 | 18.6 |
| 400     | K <sub>e</sub>                     | [mV/min <sup>-1</sup> ]  | 159  | 85   | 57           | 49   | 43   | 161  | 92   | 63           | 53   | 49   |
|         | K <sub>T</sub>                     | [Nm/A]                   | 2.31 | 1.23 | 0.83         | 0.71 | 0.62 | 2.34 | 1.33 | 0.92         | 0.77 | 0.71 |
|         | R <sub>pp</sub>                    | [Ω]                      | 34.3 | 9.75 | 4.42         | 3.23 | 2.47 | 20.8 | 6.77 | 3.21         | 2.26 | 1.92 |
|         | L <sub>pp</sub>                    | [mH]                     | 194  | 55.2 | 25.0         | 18.3 | 14.0 | 118  | 38.3 | 18.1         | 12.8 | 10.8 |
|         | Mb                                 | [Nm]                     |      |      | 4.5          |      |      |      |      | 4.5          |      |      |
| F24     | $\Delta \text{m}_{_{\text{M}}}$    | [kg]                     |      |      | 0.6          |      |      |      |      | 0.6          |      |      |
|         | ΔJ                                 | [kgm²·10 <sup>-4</sup> ] |      |      | 0.2          |      |      | 0.2  |      |              |      |      |
| 됴       | Δm <sub>M</sub>                    | [kg]                     |      |      | 1            |      |      |      |      | 1            |      |      |
|         | ΔJ                                 | [kgm²·10 <sup>-4</sup> ] |      |      | 3            |      |      |      |      | 3            |      |      |

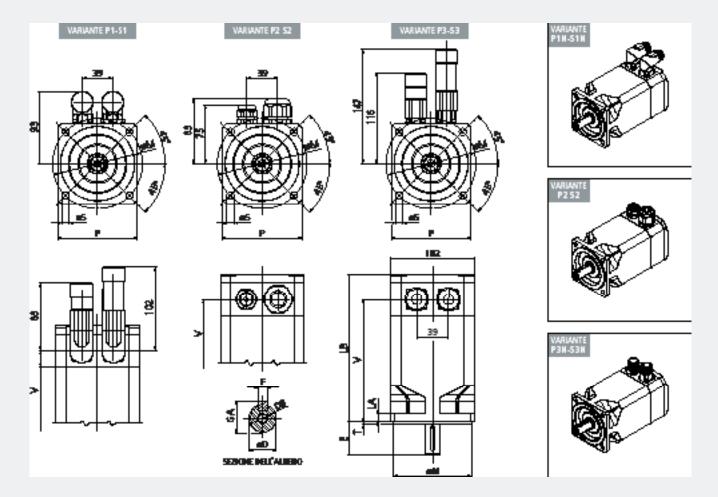
### BMD 82 · Dimensioni



| VARIANTE FLANGIA B5          |              |     |    |     |   |    |  |  |  |  |  |  |
|------------------------------|--------------|-----|----|-----|---|----|--|--|--|--|--|--|
|                              | P M N S T LA |     |    |     |   |    |  |  |  |  |  |  |
| 100                          | 82           | 100 | 80 | 6.5 | 3 | 10 |  |  |  |  |  |  |
| <b>115</b> 100 115 95 9 3 10 |              |     |    |     |   |    |  |  |  |  |  |  |

| VARIANTE DIAMETRO ALBERO                  |                           |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------|---------------------------|--|--|--|--|--|--|--|--|--|--|
| D E DB GA <sup>(1)</sup> F <sup>(1)</sup> |                           |  |  |  |  |  |  |  |  |  |  |
| 11                                        | <b>11</b> 11 23 M4 12.5 4 |  |  |  |  |  |  |  |  |  |  |
| 14                                        | <b>14</b> 14 30 M5 16 5   |  |  |  |  |  |  |  |  |  |  |
| 19                                        | <b>19</b> 19 40 M6 21.5 6 |  |  |  |  |  |  |  |  |  |  |

#### LUNGHEZZA MOTORE A SECONDA DELL'OPZIONE DIMENSIONE V Senza freno o volano Con freno o volano - opzione F24/F1 Coppia Varianti di feedback Varianti di feedback $\boldsymbol{\mathsf{M}_0}$ RES1/RES2/SEN ENB1/ENB2/ENB7 ENB3...ENB6/ENB8 RES1/RES2/SEN ENB1/ENB2/ENB7/ENB8 ENB3...ENB6 3.2 132 132 132 132 195 218 4.4 152 152 152 152 215 238


|                | DIMENSIONE LB |                      |               |                                     |          |      |  |  |  |  |  |
|----------------|---------------|----------------------|---------------|-------------------------------------|----------|------|--|--|--|--|--|
| Connia         |               | Senza freno o volano |               | Con freno o volano - opzione F24/F1 |          |      |  |  |  |  |  |
| Coppia         |               | Varianti di feedback |               | Varianti di feedback                |          |      |  |  |  |  |  |
| M <sub>0</sub> | RES1/RES2/SEN | ENB1/ENB2/ENB7       | ENB3ENB6/ENB8 | RES1/RES2/SEN                       | ENB1ENB7 | ENB8 |  |  |  |  |  |
| 3.2            | 160           | 183                  | 160           | 200                                 | 223      | 200  |  |  |  |  |  |
| 4.4            | 180           | 203                  | 180           | 220                                 | 243      | 220  |  |  |  |  |  |

#### Nota

### BMD 102 · Prestazioni

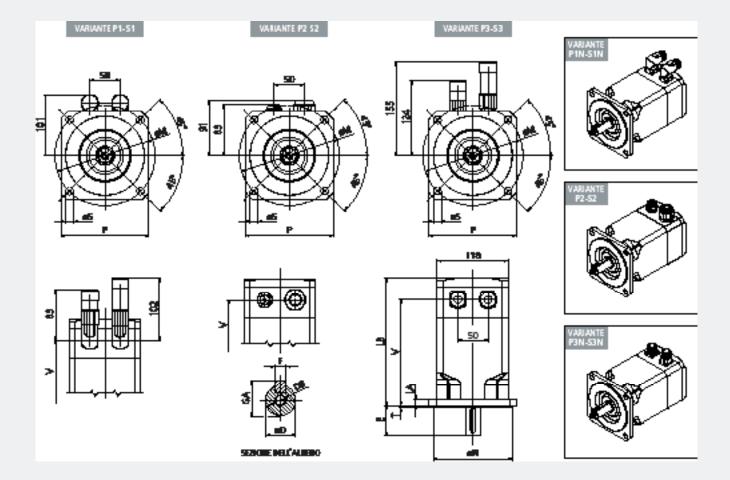
|         |                                 |                          | BMD 102 4 Nm |      |      |      |      |      | BMD  | 102 7.2 | 2 Nm |      | BMD 102 9.6 Nm |      |      |      |      |
|---------|---------------------------------|--------------------------|--------------|------|------|------|------|------|------|---------|------|------|----------------|------|------|------|------|
|         | M <sub>o</sub>                  | [Nm]                     |              |      | 4.00 |      |      |      |      | 7.20    |      |      |                |      | 9.60 |      |      |
| •       | M                               | [Nm]                     | 3.70         | 3.40 | 3.10 | 2.90 | 2.80 | 7.00 | 6.70 | 6.00    | 5.80 | 5.60 | 9.20           | 8.50 | 7.70 | 6.90 | 6.50 |
|         | n                               | [min-1]                  | 1600         | 3000 | 4500 | 5500 | 6000 | 1600 | 3000 | 4500    | 5500 | 6000 | 1600           | 3000 | 4500 | 5500 | 6000 |
|         | f <sub>n</sub>                  | [Hz]                     | 107          | 200  | 300  | 367  | 400  | 107  | 200  | 300     | 367  | 400  | 107            | 200  | 300  | 367  | 400  |
|         | $P_n$                           | [kW]                     | 0.62         | 1.01 | 1.46 | 1.67 | 1.76 | 1.17 | 2.10 | 2.83    | 3.30 | 3.50 | 1.54           | 2.70 | 3.60 | 4.00 | 4.10 |
|         | ${\rm M}_{\rm max}$             | [Nm]                     |              |      | 11.0 |      |      |      |      | 21.0    |      |      |                |      | 28.0 |      |      |
|         | 2р                              | [-]                      |              |      | 8    |      |      |      |      | 8       |      |      |                |      | 8    |      |      |
|         | J                               | [kgm²·10 <sup>-4</sup> ] |              |      | 1.9  |      |      |      |      | 3.4     |      |      |                |      | 4.7  |      |      |
|         | $\boldsymbol{\tau}_{\text{el}}$ | [ms]                     |              |      | 8.4  |      |      |      |      | 8.4     |      |      |                |      | 8.4  |      |      |
|         | $	au_{\text{therm}}$            | [min]                    |              |      | 25   |      |      |      |      | 31      |      |      |                |      | 38   |      |      |
|         | m <sub>M</sub>                  | [kg]                     |              |      | 4.2  |      |      |      |      | 5.8     |      |      |                |      | 7.4  |      |      |
|         | V <sub>n</sub>                  | [V <sub>AC</sub> ]       | 184          | 177  | 177  | 181  | 174  | 187  | 177  | 182     | 183  | 185  | 183            | 184  | 187  | 192  | 190  |
|         | I <sub>o</sub>                  | [A]                      | 3.03         | 5.73 | 8.82 | 10.0 | 11.4 | 5.00 | 9.70 | 13.9    | 16.9 | 18.2 | 6.30           | 11.5 | 16.8 | 19.8 | 21.8 |
|         | l <sub>n</sub>                  | [A]                      | 2.60         | 4.86 | 6.88 | 7.40 | 8.29 | 4.90 | 9.50 | 12.6    | 14.4 | 15.4 | 6.00           | 10.2 | 13.5 | 14.3 | 14.8 |
| 230 Vac | l <sub>max</sub>                | [A]                      | 9.30         | 17.6 | 27.3 | 30.7 | 35.1 | 18.3 | 35.0 | 51.0    | 61.0 | 66.0 | 20.4           | 37.0 | 54.0 | 64.0 | 70.0 |
| 230     | $\rm K_e$                       | [mV/min <sup>-1</sup> ]  | 94           | 50   | 32   | 28   | 25   | 94   | 49   | 34      | 28   | 26   | 102            | 56   | 38   | 33   | 30   |
|         | $K_{T}$                         | [Nm/A]                   | 1.32         | 0.70 | 0.45 | 0.40 | 0.35 | 1.43 | 0.75 | 0.52    | 0.43 | 0.40 | 1.52           | 0.84 | 0.57 | 0.48 | 0.44 |
|         | $R_{pp}$                        | [Ω]                      | 8.38         | 2.39 | 1.02 | 0.76 | 0.59 | 3.02 | 0.82 | 0.40    | 0.27 | 0.23 | 2.24           | 0.68 | 0.32 | 0.23 | 0.19 |
|         | L <sub>pp</sub>                 | [mH]                     | 70.5         | 20.1 | 8.58 | 6.40 | 4.96 | 25.4 | 6.90 | 3.30    | 2.30 | 1.90 | 18.8           | 5.70 | 2.70 | 1.90 | 1.60 |
|         | V <sub>n</sub>                  | [V <sub>AC</sub> ]       | 314          | 305  | 303  | 319  | 314  | 320  | 311  | 305     | 320  | 305  | 318            | 324  | 323  | 332  | 333  |
|         | I <sub>o</sub>                  | [A]                      | 1.77         | 3.30 | 4.90 | 5.68 | 6.30 | 2.94 | 5.50 | 8.30    | 9.70 | 11.0 | 3.60           | 6.50 | 9.70 | 11.5 | 12.4 |
|         | I <sub>n</sub>                  | [A]                      | 1.52         | 2.83 | 3.80 | 4.20 | 4.60 | 2.92 | 5.40 | 7.50    | 8.20 | 9.30 | 3.40           | 5.80 | 7.80 | 8.30 | 8.40 |
| 400 Vac | l <sub>max</sub>                | [A]                      | 5.48         | 10.2 | 15.0 | 17.6 | 19.0 | 10.7 | 20.0 | 30.0    | 35.0 | 40.0 | 11.7           | 21.0 | 31.0 | 37.0 | 40.0 |
| 400     | $\rm K_e$                       | [mV/min <sup>-1</sup> ]  | 160          | 86   | 57   | 49   | 43   | 161  | 86   | 57      | 49   | 43   | 177            | 99   | 66   | 56   | 52   |
|         | K <sub>T</sub>                  | [Nm/A]                   | 2.26         | 1.21 | 0.82 | 0.70 | 0.63 | 2.45 | 1.31 | 0.87    | 0.75 | 0.65 | 2.65           | 1.48 | 0.99 | 0.84 | 0.77 |
|         | $R_{pp}$                        | [Ω]                      | 24.0         | 7.05 | 3.27 | 2.39 | 2.00 | 8.87 | 2.53 | 1.11    | 0.82 | 0.63 | 6.77           | 2.11 | 0.95 | 0.68 | 0.58 |
|         | L <sub>pp</sub>                 | [mH]                     | 202          | 59.3 | 27.5 | 20.1 | 16.8 | 74.7 | 21.3 | 9.40    | 6.90 | 5.30 | 56.8           | 17.7 | 8.00 | 5.70 | 4.80 |
|         | Mb                              | [Nm]                     |              |      | 9    |      |      |      |      | 9       |      |      |                |      | 9    |      |      |
| F24     | $\Delta \text{m}_{_{\text{M}}}$ | [kg]                     |              |      | 1.1  |      |      |      |      | 1.1     |      |      |                |      | 1.1  |      |      |
|         | ΔJ                              | [kgm²·10 <sup>-4</sup> ] |              |      | 0.5  |      |      |      |      | 0.5     |      |      |                |      | 0.5  |      |      |
|         | Δm <sub>M</sub>                 | [kg]                     |              |      | 1.7  |      |      |      |      | 1.7     |      |      | 1.7            |      |      |      |      |
| 五       | ΔJ                              | [kgm²·10 <sup>-4</sup> ] |              |      | 7.5  |      |      |      |      | 7.5     |      |      |                |      | 7.5  |      |      |

### BMD 102 · Dimensioni



|                     | VARIANTE FLANGIA B5 |     |    |   |   |    |  |  |  |  |  |  |
|---------------------|---------------------|-----|----|---|---|----|--|--|--|--|--|--|
| VARIANTE FLANGIA DO |                     |     |    |   |   |    |  |  |  |  |  |  |
|                     | Р                   | M   | N  | S | T | LA |  |  |  |  |  |  |
| 100                 | 102                 | 100 | 80 | 7 | 3 | 10 |  |  |  |  |  |  |
| 115                 | 102                 | 115 | 95 | 9 | 3 | 10 |  |  |  |  |  |  |

| VARIANTE DIAMETRO ALBERO |   |   |    |                   |                  |  |  |  |  |  |
|--------------------------|---|---|----|-------------------|------------------|--|--|--|--|--|
|                          | D | Е | DB | GA <sup>(1)</sup> | F <sup>(1)</sup> |  |  |  |  |  |
| <b>19</b> 19 40 M6 21.5  |   |   |    |                   |                  |  |  |  |  |  |
| <b>24</b> 24 50 M8 27 8  |   |   |    |                   |                  |  |  |  |  |  |


|                                                          | LUNGHEZZA MOTORE A SECONDA DELL'OPZIONE |                      |               |                      |                |               |  |  |  |  |  |
|----------------------------------------------------------|-----------------------------------------|----------------------|---------------|----------------------|----------------|---------------|--|--|--|--|--|
| DIMENSIONE V                                             |                                         |                      |               |                      |                |               |  |  |  |  |  |
| Senza freno o volano Con freno o volano - opzione F24/F1 |                                         |                      |               |                      |                |               |  |  |  |  |  |
| Coppia                                                   |                                         | Varianti di feedback |               | Varianti di feedback |                |               |  |  |  |  |  |
| M <sub>0</sub>                                           | RES1/RES2/SEN                           | ENB1/ENB2/ENB7       | ENB3ENB6/ENB8 | RES1/RES2/SEN        | ENB1/ENB2/ENB7 | ENB3ENB6/ENB8 |  |  |  |  |  |
| 4                                                        | 123                                     | 123                  | 123           | 123                  | 163            | 163           |  |  |  |  |  |
| 16                                                       | 150                                     | 150                  | 150           | 150                  | 190            | 190           |  |  |  |  |  |
| 9.6                                                      | 177                                     | 177                  | 177           | 177                  | 217            | 217           |  |  |  |  |  |

|        | DIMENSIONE LB |                      |               |                                     |                |               |  |  |  |  |  |
|--------|---------------|----------------------|---------------|-------------------------------------|----------------|---------------|--|--|--|--|--|
| Connia |               | Senza freno o volano |               | Con freno o volano - opzione F24/F1 |                |               |  |  |  |  |  |
| Coppia |               | Varianti di feedback |               | Varianti di feedback                |                |               |  |  |  |  |  |
| Mo     | RES1/RES2/SEN | ENB1/ENB2/ENB7       | ENB3ENB6/ENB8 | RES1/RES2/SEN                       | ENB1/ENB2/ENB7 | ENB3ENB6/ENB8 |  |  |  |  |  |
| 4      | 153           | 176                  | 153           | 193                                 | 216            | 193           |  |  |  |  |  |
| 7.2    | 180           | 203                  | 180           | 220                                 | 243            | 220           |  |  |  |  |  |
| 9.6    | 207           | 230                  | 207           | 247                                 | 297            | 247           |  |  |  |  |  |

## BMD 118 · Prestazioni

|         |                      |                                       |      | BMD 118 5.6 Nm |      |      |      |      | BMD  | 118 10. | .2 Nm |      |      | ВМС  | 118 14 | Nm   |      |
|---------|----------------------|---------------------------------------|------|----------------|------|------|------|------|------|---------|-------|------|------|------|--------|------|------|
|         | M <sub>0</sub>       | [Nm]                                  |      |                | 5.60 |      |      |      |      | 10.2    |       |      |      |      | 14.0   |      |      |
|         | M                    | [Nm]                                  | 5.50 | 5.10           | 4.60 | 4.10 | 3.90 | 10.0 | 9.50 | 8.50    | 8.00  | 7.50 | 13.3 | 12.2 | 10.9   | 9.70 | 9.00 |
|         | n                    | [min <sup>-1</sup> ]                  | 1600 | 3000           | 4500 | 5500 | 6000 | 1600 | 3000 | 4500    | 5500  | 6000 | 1600 | 3000 | 4500   | 5500 | 6000 |
|         | f <sub>n</sub>       | [Hz]                                  | 107  | 200            | 300  | 367  | 400  | 107  | 200  | 300     | 367   | 400  | 107  | 200  | 300    | 367  | 400  |
|         | P <sub>n</sub>       | [kW]                                  | 0.92 | 1.60           | 2.18 | 2.36 | 2.45 | 1.68 | 3.00 | 4.00    | 4.60  | 4.70 | 2.20 | 3.80 | 5.00   | 5.30 | 5.30 |
|         | $M_{\text{max}}$     | [Nm]                                  |      |                | 15.0 |      |      |      |      | 30.0    |       |      |      |      | 39.0   |      |      |
|         | 2p                   | [-]                                   |      |                | 8    |      |      |      |      | 8       |       |      |      |      | 8      |      |      |
|         | J                    | [kgm²·10 <sup>-4</sup> ]              |      |                | 4.5  |      |      |      |      | 7.8     |       |      |      |      | 9.9    |      |      |
|         | $	au_{\text{el}}$    | [ms]                                  |      |                | 13   |      |      |      |      | 13      |       |      |      |      | 13     |      |      |
|         | $	au_{\text{therm}}$ | [min]                                 |      |                | 28   |      |      |      |      | 34      |       |      |      |      | 42     |      |      |
|         | m <sub>M</sub>       | [kg]                                  |      |                | 7.7  |      |      |      |      | 9.7     |       |      |      |      | 11.7   |      |      |
|         | V <sub>n</sub>       | [V <sub>AC</sub> ]                    | 179  | 185            | 180  | 186  | 171  | 184  | 178  | 174     | 196   | -    | 184  | 192  | -      | -    | -    |
|         | I <sub>o</sub>       | [A]                                   | 4.20 | 7.30           | 11.2 | 13.2 | 15.6 | 7.20 | 13.7 | 20.8    | 22.6  | -    | 9.20 | 16.3 | -      | -    | -    |
|         | l <sub>n</sub>       | [A]                                   | 38.0 | 6.60           | 9.00 | 9.30 | 10.3 | 7.20 | 13.5 | 18.3    | 17.4  | -    | 8.60 | 14.0 | -      | -    | -    |
| Vac     | l <sub>max</sub>     | [A]                                   | 13.8 | 23.9           | 36.5 | 43.0 | 50.8 | 25.3 | 48.0 | 73.0    | 79.0  | -    | 30.0 | 53.0 | -      | -    | -    |
| 230 Va  | K <sub>e</sub>       | [mV/min <sup>-1</sup> ]               | 92   | 52             | 34   | 28   | 24   | 95   | 50   | 33.1    | 30.4  | -    | 104  | 59   | -      | -    | -    |
|         | K <sub>T</sub>       | [Nm/A]                                | 1.33 | 0.76           | 0.50 | 0.42 | 0.36 | 1.41 | 0.75 | 0.49    | 0.45  | -    | 1.51 | 0.86 | -      | -    | -    |
|         | $R_{pp}$             | [Ω]                                   | 3.94 | 1.29           | 0.56 | 0.39 | 0.28 | 1.56 | 0.43 | 0.19    | 0.16  | -    | 1.17 | 0.37 | -      | -    | -    |
|         | L <sub>pp</sub>      | [mH]                                  | 52.3 | 17.1           | 7.40 | 5.18 | 3.72 | 20.5 | 5.70 | 2.50    | 2.10  | -    | 15.4 | 4.90 | -      | -    | -    |
|         | V <sub>n</sub>       | [V <sub>AC</sub> ]                    | 322  | 315            | 316  | 335  | 324  | 312  | 305  | 314     | 323   | 306  | 323  | 320  | 325    | 335  | 329  |
|         | I <sub>o</sub>       | [A]                                   | 2.30 | 4.30           | 6.40 | 7.30 | 8.20 | 4.30 | 8.00 | 11.6    | 13.7  | 15.8 | 5.30 | 9.80 | 14.4   | 16.9 | 18.9 |
|         | l <sub>n</sub>       | [A]                                   | 2.1  | 3.90           | 5.20 | 5.20 | 5.50 | 4.20 | 7.90 | 10.2    | 10.5  | 11.4 | 4.90 | 8.40 | 10.9   | 11.4 | 11.8 |
| 400 Vac | <br>max              | [A]                                   | 7.49 | 14.0           | 21.0 | 24.0 | 27.0 | 14.9 | 28.0 | 40.0    | 48.0  | 55.0 | 17.2 | 32.0 | 47.0   | 55.0 | 62.0 |
| 400     | K <sub>e</sub>       | [mV/min <sup>-1</sup> ]               | 165  | 88             | 59   | 52   | 46   | 161  | 86   | 60      | 50    | 44   | 182  | 98   | 67     | 57   | 51   |
|         | K <sub>T</sub>       | [Nm/A]                                | 2.43 | 1.30           | 0.88 | 0.77 | 0.68 | 2.39 | 1.28 | 0.88    | 0.75  | 0.65 | 2.66 | 1.43 | 0.97   | 0.83 | 0.74 |
|         | $R_{pp}$             | [Ω]                                   | 13.1 | 3.76           | 1.76 | 1.29 | 1.04 | 4.47 | 1.27 | 0.61    | 0.43  | 0.33 | 3.60 | 1.04 | 0.48   | 0.35 | 0.28 |
|         | L <sub>pp</sub>      | [mH]                                  | 174  | 50.5           | 23.4 | 17.1 | 13.8 | 58.8 | 16.7 | 8.00    | 5.70  | 4.30 | 47.4 | 13.7 | 6.30   | 4.60 | 3.70 |
|         | Mb                   | [Nm]                                  |      |                | 18   |      |      |      |      | 18      |       |      |      |      | 18     |      |      |
| F24     | $\Delta m_{_{ m M}}$ | [kg]                                  |      |                | 2.2  |      |      |      |      | 2.2     |       |      |      |      | 2.2    |      |      |
|         | ΔJ                   | [kgm²·10 <sup>-4</sup> ]              |      |                | 1.7  |      |      | 1.7  |      |         |       |      |      | 1.7  |        |      |      |
|         | Δm <sub>M</sub>      | [kg]                                  |      |                | 3.5  |      |      | 3.5  |      |         |       | 3.5  |      |      |        |      |      |
| 됴       | ΔJ                   | [kgm <sup>2</sup> ·10 <sup>-4</sup> ] |      |                | 16   |      |      |      |      | 16      |       |      |      |      | 16     |      |      |

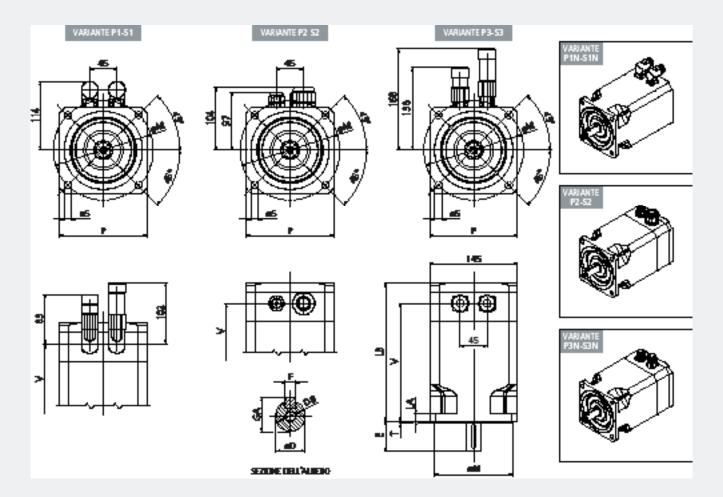
### BMD 118 · Dimensioni



| VARIANTE FLANGIA B5             |     |     |     |   |     |    |  |  |  |  |  |  |
|---------------------------------|-----|-----|-----|---|-----|----|--|--|--|--|--|--|
| P M N S T LA                    |     |     |     |   |     |    |  |  |  |  |  |  |
| 130S                            | 118 | 130 | 95  | 9 | 3.5 | 10 |  |  |  |  |  |  |
| 130                             | 118 | 130 | 110 | 9 | 3.5 | 10 |  |  |  |  |  |  |
| <b>165</b> 145 165 130 11.5 3.5 |     |     |     |   |     |    |  |  |  |  |  |  |

| VARIANTE DIAMETRO ALBERO                  |    |    |     |      |   |  |  |  |  |  |
|-------------------------------------------|----|----|-----|------|---|--|--|--|--|--|
| D E DB GA <sup>(1)</sup> F <sup>(1)</sup> |    |    |     |      |   |  |  |  |  |  |
| 19                                        | 19 | 40 | M6  | 21.5 | 6 |  |  |  |  |  |
| 24                                        | 24 | 50 | M8  | 27   | 8 |  |  |  |  |  |
| 28                                        | 28 | 60 | M10 | 31   | 8 |  |  |  |  |  |

### LUNGHEZZA MOTORE A SECONDA DELL'OPZIONE


| DIMENSIONE V |               |                      |                      |                                     |                |               |  |  |  |
|--------------|---------------|----------------------|----------------------|-------------------------------------|----------------|---------------|--|--|--|
| Coppia       |               | Senza freno o volano |                      | Con freno o volano - opzione F24/F1 |                |               |  |  |  |
| Сорріа       |               | Varianti di feedback | Varianti di feedback |                                     |                |               |  |  |  |
| Mo           | RES1/RES2/SEN | ENB1/ENB2/ENB7       | ENB3ENB6/ENB8        | RES1/RES2/SEN                       | ENB1/ENB2/ENB7 | ENB3ENB6/ENB8 |  |  |  |
| 5.6          | 144           | 144                  | 144                  | 194                                 | 194            | 194           |  |  |  |
| 10.2         | 175           | 175                  | 175                  | 225                                 | 225            | 225           |  |  |  |
| 14           | 208           | 208                  | 208                  | 258                                 | 258            | 258           |  |  |  |

|                | DIMENSIONE LB |                      |               |                                     |                      |               |  |  |  |  |
|----------------|---------------|----------------------|---------------|-------------------------------------|----------------------|---------------|--|--|--|--|
| Connia         |               | Senza freno o volano |               | Con freno o volano - opzione F24/F1 |                      |               |  |  |  |  |
| Coppia         |               | Varianti di feedback |               |                                     | Varianti di feedback |               |  |  |  |  |
| M <sub>0</sub> | RES1/RES2/SEN | ENB1/ENB2/ENB7       | ENB3ENB6/ENB8 | RES1/RES2/SEN                       | ENB1/ENB2/ENB7       | ENB3ENB6/ENB8 |  |  |  |  |
| 5.6            | 179           | 204                  | 179           | 229                                 | 254                  | 229           |  |  |  |  |
| 10.2           | 210           | 235                  | 210           | 260                                 | 258                  | 260           |  |  |  |  |
| 14             | 243           | 268                  | 243           | 293                                 | 318                  | 293           |  |  |  |  |

## BMD 145 · Prestazioni

|         |                                    |                          |         | ВМ   | D 145 16.8 | Nm   |      |      | ВМ   | /ID145 22 N | lm   |   |
|---------|------------------------------------|--------------------------|---------|------|------------|------|------|------|------|-------------|------|---|
|         | M <sub>o</sub>                     | [Nm]                     |         |      | 16.8       |      |      |      |      | 22.0        |      |   |
|         | M                                  | [Nm]                     | 16.5    | 16.0 | 14.0       | 13.0 | 12.5 | 20.7 | 19.2 | 17.0        | 15.0 | - |
|         | n                                  | [min <sup>-1</sup> ]     | 1600    | 3000 | 4500       | 5500 | 6000 | 1600 | 3000 | 4500        | 5500 | - |
|         | f <sub>n</sub>                     | [Hz]                     | 107     | 200  | 300        | 367  | 400  | 107  | 200  | 300         | 367  | - |
|         | P <sub>n</sub>                     | [kW]                     | 2.76    | 5.00 | 6.60       | 7.50 | 7.90 | 3.50 | 6.00 | 8.00        | 8.60 | - |
|         | M <sub>max</sub>                   | [Nm]                     |         |      | 46.0       |      |      |      |      | 59.0        |      |   |
|         | 2р                                 | [-]                      |         |      | 8          |      |      |      |      | 8           |      |   |
|         | J                                  | [kgm²·10 <sup>-4</sup> ] |         |      | 12.8       |      |      |      |      | 17.6        |      |   |
|         | $\boldsymbol{\tau}_{\text{el}}$    | [ms]                     |         |      | 16         |      |      |      |      | 16          |      |   |
|         | $\boldsymbol{\tau}_{\text{therm}}$ | [min]                    |         |      | 36         |      |      |      |      | 47          |      |   |
|         | m <sub>M</sub>                     | [kg]                     |         |      | 15.2       |      |      |      |      | 18.2        |      |   |
|         | V <sub>n</sub>                     | [V <sub>AC</sub> ]       | 180     | 176  | -          | -    | -    | 185  | 202  | -           | -    | - |
|         | I <sub>o</sub>                     | [A]                      | 12.1    | 22.8 | -          | -    | -    | 15.4 | 26.5 | -           | -    | - |
|         | l <sub>n</sub>                     | [A]                      | 11.9    | 21.9 | -          | -    | -    | 14.5 | 22.9 | -           | -    | - |
| 230 Vac | <br>max                            | [A]                      | 46.0    | 88.0 | -          | -    | -    | 51.0 | 87.0 | -           | -    | - |
| 230     | K <sub>e</sub>                     | [mV/min <sup>-1</sup> ]  | 89      | 47   | -          | -    | -    | 102  | 60   | -           | -    | - |
|         | $K_{_{\mathrm{T}}}$                | [Nm/A]                   | 1.39    | 0.74 | -          | -    | -    | 1.42 | 0.83 | -           | -    | - |
|         | $R_{pp}$                           | [Ω]                      | 0.84    | 0.24 | -          | -    | -    | 0.67 | 0.23 | -           | -    | - |
|         | L <sub>pp</sub>                    | [mH]                     | 13.3    | 3.80 | -          | -    | -    | 10.6 | 3.60 | -           | -    | - |
|         | V <sub>n</sub>                     | [V <sub>AC</sub> ]       | 314     | 308  | 314        | 319  | 305  | 319  | 321  | 323         | 357  | - |
|         | I <sub>o</sub>                     | [A]                      | 6.90    | 13.0 | 19.0       | 22.8 | 26.0 | 9.00 | 16.4 | 24.3        | 26.5 | - |
|         | l <sub>n</sub>                     | [A]                      | 6.80    | 12.5 | 16.4       | 17.5 | 19.0 | 8.40 | 14.2 | 18.3        | 17.6 | - |
| 400 Vac | l <sub>max</sub>                   | [A]                      | 26.7    | 50.0 | 73.0       | 88.0 | 100  | 29.5 | 54.0 | 80.0        | 87.0 | - |
| 400     | K <sub>e</sub>                     | [mV/min <sup>-1</sup> ]  | 156     | 83   | 57         | 47   | 42   | 176  | 96   | 65          | 59   | - |
|         | $K_{_{\mathrm{T}}}$                | [Nm/A]                   | 2.42    | 1.29 | 0.88       | 0.74 | 0.65 | 2.45 | 1.34 | 0.90        | 0.83 | - |
|         | $R_{pp}$                           | [Ω]                      | 2.53    | 0.72 | 0.34       | 0.24 | 0.18 | 1.97 | 0.59 | 0.27        | 0.23 | - |
|         | L <sub>pp</sub>                    | [mH]                     | 40.4    | 11.5 | 5.40       | 3.80 | 2.90 | 31.5 | 9.40 | 4.30        | 3.60 | - |
|         | Mb                                 | [Nm]                     |         |      | 18         |      |      |      |      | 18          |      |   |
| F24     | $\Delta \text{m}_{_{\text{M}}}$    | [kg]                     |         |      | 2.6        |      |      |      |      | 2.6         |      |   |
|         | ΔJ                                 | [kgm²·10 <sup>-4</sup> ] |         |      | 1.7        |      |      | 1.7  |      |             |      |   |
| _       | Δm <sub>M</sub>                    | [kg]                     | 5.0 5.0 |      |            |      |      |      |      |             |      |   |
| 표       | ΔJ                                 | [kgm²·10 <sup>-4</sup> ] |         |      | 36         |      |      |      |      | 36          |      |   |

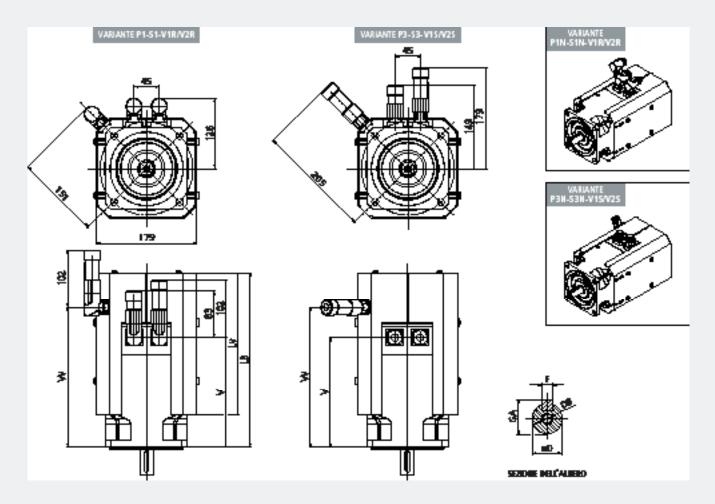
### BMD 145 · Dimensioni



| VARIANTE FLANGIA B5 |     |     |     |    |     |    |  |  |  |
|---------------------|-----|-----|-----|----|-----|----|--|--|--|
| P M N S T LA        |     |     |     |    |     |    |  |  |  |
| 165                 | 145 | 165 | 130 | 12 | 3.5 | 12 |  |  |  |

| VARIANTE DIAMETRO ALBERO    |    |    |     |      |   |  |  |  |  |  |
|-----------------------------|----|----|-----|------|---|--|--|--|--|--|
| D E DB $GA^{(1)}$ $F^{(1)}$ |    |    |     |      |   |  |  |  |  |  |
| 19                          | 19 | 40 | M6  | 21.5 | 6 |  |  |  |  |  |
| 24                          | 24 | 50 | M8  | 27   | 8 |  |  |  |  |  |
| 28                          | 28 | 60 | M10 | 31   | 8 |  |  |  |  |  |

### LUNGHEZZA MOTORE A SECONDA DELL'OPZIONE


|                                                       | DIMENSIONE V  |                      |               |                      |                |               |  |  |  |  |
|-------------------------------------------------------|---------------|----------------------|---------------|----------------------|----------------|---------------|--|--|--|--|
| Senza freno o volano Con freno o volano - opzione F24 |               |                      |               |                      |                |               |  |  |  |  |
| Coppia                                                |               | Varianti di feedback |               | Varianti di feedback |                |               |  |  |  |  |
| Mo                                                    | RES1/RES2/SEN | ENB1/ENB2/ENB7       | ENB3ENB6/ENB8 | RES1/RES2/SEN        | ENB1/ENB2/ENB7 | ENB3ENB6/ENB8 |  |  |  |  |
| 16.8                                                  | 195           | 195                  | 195           | 245                  | 245            | 245           |  |  |  |  |
| 22                                                    | 230           | 230                  | 230           | 280                  | 280            | 280           |  |  |  |  |

|                | DIMENSIONE LB |                      |                                     |                      |                |               |  |  |  |  |
|----------------|---------------|----------------------|-------------------------------------|----------------------|----------------|---------------|--|--|--|--|
| Connia         |               | Senza freno o volano | Con freno o volano - opzione F24/F1 |                      |                |               |  |  |  |  |
| Coppia         |               | Varianti di feedback |                                     | Varianti di feedback |                |               |  |  |  |  |
| M <sub>0</sub> | RES1/RES2/SEN | ENB1/ENB2/ENB7       | ENB3ENB6/ENB8                       | RES1/RES2/SEN        | ENB1/ENB2/ENB7 | ENB3ENB6/ENB8 |  |  |  |  |
| 16.8           | 230           | 255                  | 230                                 | 280                  | 305            | 280           |  |  |  |  |
| 22             | 265           | 290                  | 265                                 | 315                  | 375            | 315           |  |  |  |  |

## BMD 145 con ventilazione forzata · Prestazioni

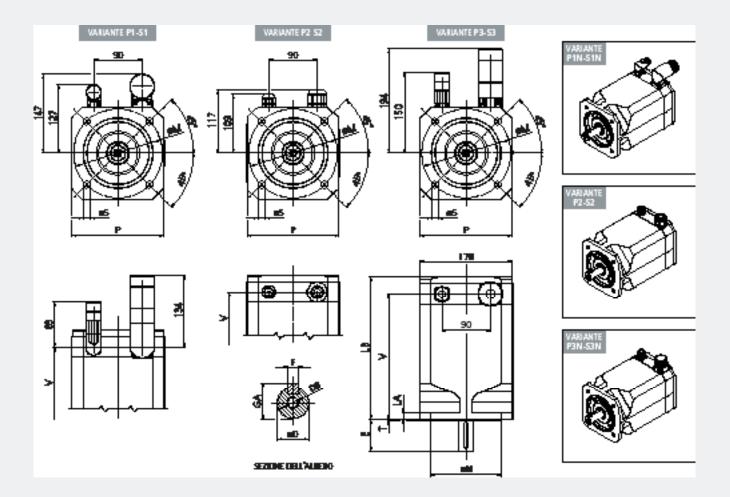
|         |                      |                          | BMD  | 145 16.8 N | m con vent | ilazione fo | rzata | ВМІ  | D145 22 Nn | n con venti | lazione for | zata |
|---------|----------------------|--------------------------|------|------------|------------|-------------|-------|------|------------|-------------|-------------|------|
|         | M <sub>0</sub>       | [Nm]                     |      |            | 21.5       |             |       |      |            | 27.5        |             |      |
|         | M                    | [Nm]                     | 20.5 | 19.2       | 17.2       | 15.7        | -     | 27.4 | 26.1       | 24.3        | -           | -    |
|         | n                    | [min-1]                  | 1600 | 3000       | 4500       | 5500        | -     | 1600 | 3000       | 4500        | -           | -    |
|         | f <sub>n</sub>       | [Hz]                     | 107  | 200        | 300        | 367         | -     | 107  | 200        | 300         | -           | -    |
|         | P <sub>n</sub>       | [kW]                     | 3.43 | 6.00       | 8.10       | 9.00        | -     | 4.60 | 8.20       | 11.5        | -           | -    |
|         | M <sub>max</sub>     | [Nm]                     |      |            | 46.0       |             |       |      |            | 59.0        |             |      |
|         | 2р                   | [-]                      |      |            | 8          |             |       |      |            | 8           |             |      |
|         | J                    | [kgm² · 10-4]            |      |            | 12.8       |             |       |      |            | 17.6        |             |      |
|         | $	au_{\text{el}}$    | [ms]                     |      | 16 16      |            |             |       |      |            |             |             |      |
|         | $	au_{\text{therm}}$ | [min]                    |      |            | 17         |             |       |      |            | 22          |             |      |
|         | m <sub>M</sub>       | [kg]                     |      |            | 18.7       |             |       |      |            | 21.7        |             |      |
|         | V <sub>n</sub>       | [V <sub>AC</sub> ]       | 203  | 195        | -          | -           | -     | 214  | -          | -           | -           | -    |
|         | I <sub>o</sub>       | [A]                      | 16.3 | 30.0       | -          | -           | -     | 19.8 | -          | -           | -           | -    |
|         | I <sub>n</sub>       | [A]                      | 15.5 | 26.6       | -          | -           | -     | 19.6 | -          | -           | -           | -    |
| 230 Vac | l <sub>max</sub>     | [A]                      | 46.0 | 88.0       | -          | -           | -     | 51.0 | -          | -           | -           | -    |
| 230     | K <sub>e</sub>       | [mV/min <sup>-1</sup> ]  | 89   | 47         | -          | -           | -     | 102  | -          | -           | -           | -    |
|         | K <sub>T</sub>       | [Nm/A]                   | 1.32 | 0.72       | -          | -           | -     | 1.39 | -          | -           | -           | -    |
|         | R <sub>pp</sub>      | [Ω]                      | 0.84 | 0.24       | -          | -           | -     | 0.67 | -          | -           | -           | -    |
|         | L <sub>pp</sub>      | [mH]                     | 13.3 | 3.80       | -          | -           | -     | 10.6 | -          | -           | -           | -    |
|         | V <sub>n</sub>       | [V <sub>AC</sub> ]       | 345  | 331        | 322        | 323         | -     | 363  | 352        | 348         | -           | -    |
|         | I <sub>o</sub>       | [A]                      | 9.45 | 17.6       | 25.8       | 30.0        | -     | 11.5 | 21.1       | 30.0        | -           | -    |
|         | l <sub>n</sub>       | [A]                      | 8.90 | 15.2       | 20.0       | 21.6        | -     | 11.4 | 19.8       | 27.1        | -           | -    |
| 400 Vac | l <sub>max</sub>     | [A]                      | 26.7 | 50.0       | 73.0       | 88.0        | -     | 29.5 | 54.0       | 80.0        | -           | -    |
| 400     | K <sub>e</sub>       | [mV/min <sup>-1</sup> ]  | 156  | 83         | 57         | 47          | -     | 176  | 96         | 65          | -           | -    |
|         | K <sub>T</sub>       | [Nm/A]                   | 2.28 | 1.23       | 0.83       | 0.72        | -     | 2.39 | 1.31       | 0.92        | -           | -    |
|         | R <sub>pp</sub>      | [Ω]                      | 2.53 | 0.72       | 0.34       | 0.24        | -     | 1.97 | 0.59       | 0.27        | -           | -    |
|         | L <sub>pp</sub>      | [mH]                     | 40.4 | 11.5       | 5.40       | 3.80        | -     | 31.5 | 9.40       | 4.30        | -           | -    |
|         | Mb                   | [Nm]                     |      |            | 18         |             |       |      |            | 18          |             |      |
| F24     | Δm <sub>M</sub>      | [kg]                     |      |            | 2.6        |             |       |      |            | 2.6         |             |      |
|         | ΔJ                   | [kgm²·10 <sup>-4</sup> ] |      |            | 1.7        |             |       | 1.7  |            |             |             |      |
| -       | Δm <sub>M</sub>      | [kg]                     |      |            | 5.0        |             |       |      |            | 5.0         |             |      |
| 五       | ΔJ                   | [kgm²·10 <sup>-4</sup> ] |      |            | 36         |             |       |      |            | 36          |             |      |

### BMD 145 con ventilazione forzata · Dimensioni



| VARIANTE FLANGIA B5 |              |     |     |    |     |    |  |  |  |
|---------------------|--------------|-----|-----|----|-----|----|--|--|--|
|                     | P M N S T LA |     |     |    |     |    |  |  |  |
| 165                 | 145          | 165 | 130 | 12 | 3.5 | 12 |  |  |  |

| VARIANTE DIAMETRO ALBERO                  |    |    |     |      |   |  |  |  |  |  |
|-------------------------------------------|----|----|-----|------|---|--|--|--|--|--|
| D E DB GA <sup>(1)</sup> F <sup>(1)</sup> |    |    |     |      |   |  |  |  |  |  |
| 19                                        | 19 | 40 | M6  | 21.5 | 6 |  |  |  |  |  |
| 24                                        | 24 | 50 | M8  | 27   | 8 |  |  |  |  |  |
| 28                                        | 28 | 60 | M10 | 31   | 8 |  |  |  |  |  |


|                     | LUNGHEZZA MOTORE A SECONDA DELL'OPZIONE |                      |               |                                     |                |               |  |  |  |  |
|---------------------|-----------------------------------------|----------------------|---------------|-------------------------------------|----------------|---------------|--|--|--|--|
| DIMENSIONE V - (Vv) |                                         |                      |               |                                     |                |               |  |  |  |  |
| Coppia              |                                         | Senza freno o volano |               | Con freno o volano - opzione F24/F1 |                |               |  |  |  |  |
| Сорріа              |                                         | Varianti di feedback |               | Varianti di feedback                |                |               |  |  |  |  |
| $M_0$               | RES1/RES2/SEN                           | ENB1/ENB2/ENB7       | ENB3ENB6/ENB8 | RES1/RES2/SEN                       | ENB1/ENB2/ENB7 | ENB3ENB6/ENB8 |  |  |  |  |
| 16.8                | 195 - (249)                             | 195 - (274)          | 195 - (249)   | 245 - (299)                         | 245 - (324)    | 245 - (299)   |  |  |  |  |
| 22                  | 230 - (284)                             | 230 - (309)          | 230 - (284)   | 280 - (334)                         | 280 - (394)    | 280 - (334)   |  |  |  |  |

| DIMENSIONE LB - (Lv) |               |                      |               |                                     |                |               |  |  |  |  |
|----------------------|---------------|----------------------|---------------|-------------------------------------|----------------|---------------|--|--|--|--|
| Connia               |               | Senza freno o volano |               | Con freno o volano - opzione F24/F1 |                |               |  |  |  |  |
| Coppia               |               | Varianti di feedback |               | Varianti di feedback                |                |               |  |  |  |  |
| M <sub>0</sub>       | RES1/RES2/SEN | ENB1/ENB2/ENB7       | ENB3ENB6/ENB8 | RES1/RES2/SEN                       | ENB1/ENB2/ENB7 | ENB3ENB6/ENB8 |  |  |  |  |
| 16.8                 | 310- (252)    | 335 - (252)          | 310 - (252)   | 360 - (252)                         | 385 - (312)    | 360 - (252)   |  |  |  |  |
| 22                   | 345 - (252)   | 370 - (312)          | 345 - (252)   | 395 - (312)                         | 455 - (312)    | 395 - (312)   |  |  |  |  |

## BMD 170 · Prestazioni

|         |                                 |                          |      | BM   | 1D 170 34 N | <b>l</b> m |   |      | BN   | /ID170 45 N | lm |   |  |
|---------|---------------------------------|--------------------------|------|------|-------------|------------|---|------|------|-------------|----|---|--|
|         | M <sub>o</sub>                  | [Nm]                     |      |      | 34.0        |            |   |      |      | 45.0        |    |   |  |
|         | M <sub>n</sub>                  | [Nm]                     | 31.0 | 27.5 | -           | -          | - | 42.0 | 36.0 | -           | -  | - |  |
|         | n                               | [min-1]                  | 1600 | 3000 | -           | -          | - | 1600 | 3000 | -           | -  | - |  |
|         | f <sub>n</sub>                  | [Hz]                     | 107  | 200  | -           | -          | - | 107  | 200  | -           | -  | - |  |
|         | P <sub>n</sub>                  | [kW]                     | 5.20 | 8.60 | -           | -          | - | 7.00 | 11.3 | -           | -  | - |  |
|         | $M_{\text{max}}$                | [Nm]                     |      |      | 90.0        |            |   |      |      | 125         |    |   |  |
|         | 2р                              | [-]                      |      |      | 8           |            |   |      |      | 8           |    |   |  |
|         | J                               | [kgm² · 10-4]            |      |      | 33.8        |            |   |      |      | 47.5        |    |   |  |
|         | $\boldsymbol{\tau}_{\text{el}}$ | [ms]                     |      |      | 20          |            |   |      |      | 19          |    |   |  |
|         | $\tau_{\text{therm}}$           | [min]                    |      |      | 50          |            |   |      |      | 65          |    |   |  |
|         | m <sub>M</sub>                  | [kg]                     |      |      | 25          |            |   |      |      | 30          |    |   |  |
|         | V <sub>n</sub>                  | [V <sub>AC</sub> ]       | 181  | 182  | -           | -          | - | -    | -    | -           | -  | - |  |
|         | I <sub>o</sub>                  | [A]                      | 21.8 | 40.4 | -           | -          | - | -    | -    | -           | -  | - |  |
|         | l <sub>n</sub>                  | [A]                      | 19.7 | 32.2 | -           | -          | - | -    | -    | -           | -  | - |  |
| 230 Vac | l<br>max                        | [A]                      | 66.0 | 121  | -           | -          | - | -    | -    | -           | -  | - |  |
| 230     | K <sub>e</sub>                  | [mV/min <sup>-1</sup> ]  | 99   | 54   | -           | -          | - | _    | -    | -           | -  | - |  |
|         | K <sub>T</sub>                  | [Nm/A]                   | 1.56 | 0.84 | -           | -          | - |      | -    | -           | -  | - |  |
|         | $R_{pp}$                        | [Ω]                      | 0.30 | 0.09 | -           | -          | - | -    | -    | -           | -  | - |  |
|         | L <sub>pp</sub>                 | [mH]                     | 5.80 | 1.70 | -           | -          | - | -    | -    | -           | -  | - |  |
|         | V <sub>n</sub>                  | [V <sub>AC</sub> ]       | 319  | 315  | -           | -          | - | 310  | 314  | -           | -  | - |  |
|         | I <sub>o</sub>                  | [A]                      | 12.4 | 23.3 | -           | -          | - | 17.1 | 31.0 | -           | -  | - |  |
|         | l <sub>n</sub>                  | [A]                      | 11.2 | 18.6 | -           | -          | - | 15.9 | 24.9 | -           | -  | - |  |
| 400 Vac | l <sub>max</sub>                | [A]                      | 37.0 | 70.0 | -           | -          | - | 52.0 | 96.0 | -           | -  | - |  |
| 400     | K <sub>e</sub>                  | [mV/min <sup>-1</sup> ]  | 174  | 93   | -           | -          | - | 185  | 101  | -           | -  | - |  |
|         | K <sub>T</sub>                  | [Nm/A]                   | 2.74 | 1.46 | -           | -          | - | 2.64 | 1.50 | -           | -  | - |  |
|         | $R_{pp}$                        | [Ω]                      | 0.91 | 0.26 | -           | -          | - | 0.57 | 0.17 | -           | -  | - |  |
|         | L <sub>pp</sub>                 | [mH]                     | 17.9 | 5.10 | -           | -          | - | 11.1 | 3.30 | -           | -  | - |  |
|         | Mb                              | [Nm]                     |      | 36   |             |            |   |      | 36   |             |    |   |  |
| F24     | $\Delta m_{_{M}}$               | [kg]                     | 4.5  |      |             |            |   | 4.5  |      |             |    |   |  |
|         | ΔJ                              | [kgm²·10 <sup>-4</sup> ] |      |      | 5.6         |            |   | 5.6  |      |             |    |   |  |
| _       | Δm <sub>M</sub>                 | [kg]                     |      |      | 8.2         |            |   |      |      | 8.2         |    |   |  |
| 됴       | ΔJ                              | [kgm²·10 <sup>-4</sup> ] |      |      | 70          |            |   |      |      | 70          |    |   |  |

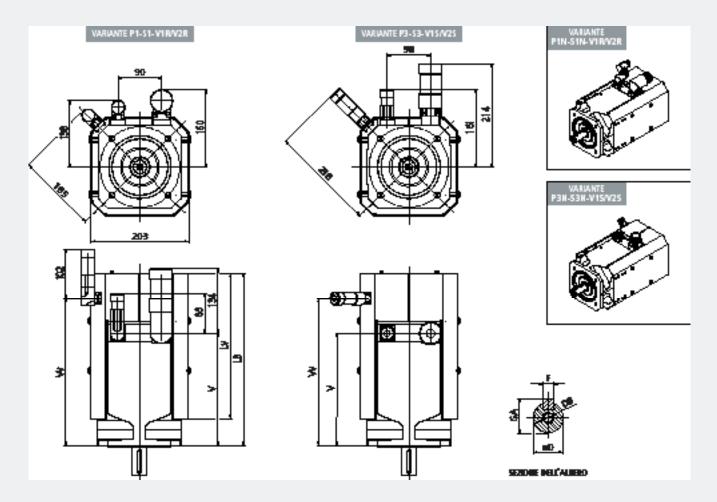
### BMD 170 · Dimensioni



| VARIANTE FLANGIA B5 |     |     |     |    |     |    |  |  |  |  |
|---------------------|-----|-----|-----|----|-----|----|--|--|--|--|
|                     | Р   | М   | N   | S  | Т   | LA |  |  |  |  |
| 165                 | 170 | 165 | 130 | 12 | 3.5 | 12 |  |  |  |  |
|                     |     |     |     |    |     |    |  |  |  |  |

| VARIANTE DIAMETRO ALBERO                  |    |    |     |    |    |  |  |  |  |  |
|-------------------------------------------|----|----|-----|----|----|--|--|--|--|--|
| D E DB GA <sup>(1)</sup> F <sup>(1)</sup> |    |    |     |    |    |  |  |  |  |  |
| 24                                        | 24 | 50 | M8  | 27 | 8  |  |  |  |  |  |
| 28                                        | 28 | 60 | M10 | 31 | 8  |  |  |  |  |  |
| 32                                        | 32 | 60 | M12 | 35 | 10 |  |  |  |  |  |

### LUNGHEZZA MOTORE A SECONDA DELL'OPZIONE


| DIMENSIONE V   |               |                      |               |                                     |                |               |  |  |  |  |
|----------------|---------------|----------------------|---------------|-------------------------------------|----------------|---------------|--|--|--|--|
| Connia         |               | Senza freno o volano |               | Con freno o volano - opzione F24/F1 |                |               |  |  |  |  |
| Coppia         |               | Varianti di feedback |               | Varianti di feedback                |                |               |  |  |  |  |
| M <sub>0</sub> | RES1/RES2/SEN | ENB1/ENB2/ENB7       | ENB3ENB6/ENB8 | RES1/RES2/SEN                       | ENB1/ENB2/ENB7 | ENB3ENB6/ENB8 |  |  |  |  |
| 34             | 233           | 233                  | 233           | 308                                 | 308            | 308           |  |  |  |  |
| 45             | 287           | 287                  | 287           | 362                                 | 362            | 362           |  |  |  |  |

| DIMENSIONE LB  |               |                      |               |                                     |                |               |  |  |  |  |
|----------------|---------------|----------------------|---------------|-------------------------------------|----------------|---------------|--|--|--|--|
| Connia         |               | Senza freno o volano |               | Con freno o volano - opzione F24/F1 |                |               |  |  |  |  |
| Coppia         |               | Varianti di feedback |               | Varianti di feedback                |                |               |  |  |  |  |
| M <sub>0</sub> | RES1/RES2/SEN | ENB1/ENB2/ENB7       | ENB3ENB6/ENB8 | RES1/RES2/SEN                       | ENB1/ENB2/ENB7 | ENB3ENB6/ENB8 |  |  |  |  |
| 34             | 265           | 303                  | 265           | 340                                 | 378            | 340           |  |  |  |  |
| 45             | 319           | 357                  | 319           | 394                                 | 432            | 394           |  |  |  |  |

## BMD 170 con ventilazione forzata · Prestazioni

|         |                      |                                       | ВМІ  | 0 170 34 Nn | n con venti | lazione for | zata | ВМ   | D170 45 Nn | n con venti | lazione for | zata |  |
|---------|----------------------|---------------------------------------|------|-------------|-------------|-------------|------|------|------------|-------------|-------------|------|--|
|         | M <sub>o</sub>       | [Nm]                                  |      |             | 44.0        |             |      |      |            | 60.0        |             |      |  |
| •       | M                    | [Nm]                                  | 42.0 | 39.0        | -           | -           | -    | 57.0 | 53.0       | -           | -           | -    |  |
|         | n                    | [min-1]                               | 1600 | 3000        | -           | -           | -    | 1600 | 3000       | -           | -           | -    |  |
|         | f <sub>n</sub>       | [Hz]                                  | 107  | 200         | -           | -           | -    | 107  | 200        | -           | -           | -    |  |
|         | P <sub>n</sub>       | [kW]                                  | 7.00 | 12.2        | -           | -           | -    | 9.50 | 16.6       | -           | -           | -    |  |
|         | M <sub>max</sub>     | [Nm]                                  |      |             | 90.0        |             |      |      |            | 125         |             |      |  |
|         | 2р                   | [-]                                   |      |             | 8           |             |      |      |            | 8           |             |      |  |
|         | J                    | [kgm² · 10 <sup>-4</sup> ]            |      |             | 33.8        |             |      |      |            | 47.5        |             |      |  |
|         | $	au_{\text{el}}$    | [ms]                                  |      |             | 20          |             |      |      |            | 19          |             |      |  |
|         | $	au_{\text{therm}}$ | [min]                                 |      |             | 23          |             |      |      |            | 29          |             |      |  |
|         | m <sub>M</sub>       | [kg]                                  |      |             | 29          |             |      |      |            | 34          |             |      |  |
|         | V <sub>n</sub>       | [V <sub>AC</sub> ]                    | 207  | 205         | -           | -           | -    | -    | -          | -           | -           | -    |  |
|         | I <sub>o</sub>       | [A]                                   | 29.8 | 55.1        | -           | -           | -    | -    | -          | -           | -           | -    |  |
|         | I <sub>n</sub>       | [A]                                   | 28.7 | 48.9        | -           | -           | -    | -    | -          | -           | -           | -    |  |
| 230 Vac | l <sub>max</sub>     | [A]                                   | 66.0 | 121         | -           | -           | -    | -    | -          | -           | -           | -    |  |
| 230     | K <sub>e</sub>       | [mV/min-1]                            | 99   | 54          | -           | -           | -    | -    | -          | -           | -           | -    |  |
|         | K <sub>T</sub>       | [Nm/A]                                | 1.48 | 0.80        | -           | -           | -    | -    | -          | -           | -           | -    |  |
|         | $R_{pp}$             | [Ω]                                   | 0.3  | 0.09        | -           | -           | -    | -    | -          | -           | -           | -    |  |
|         | L <sub>pp</sub>      | [mH]                                  | 5.8  | 1.7         | -           | -           | -    | -    | -          | -           | -           | -    |  |
|         | V <sub>n</sub>       | [V <sub>AC</sub> ]                    | 350  | 342         | -           | -           | -    | 361  | 351        | -           | -           | -    |  |
|         | I <sub>o</sub>       | [A]                                   | 17.0 | 31.8        | -           | -           | -    | 23.0 | 42.0       | -           | -           | -    |  |
|         | l <sub>n</sub>       | [A]                                   | 16.3 | 28.2        | -           | -           | -    | 21.5 | 36.3       | -           | -           | -    |  |
| 400 Vac | l <sub>max</sub>     | [A]                                   | 37.0 | 70.0        | -           | -           | -    | 52.0 | 96.0       | -           | -           | -    |  |
| 400     | K <sub>e</sub>       | [mV/min <sup>-1</sup> ]               | 174  | 93          | -           | -           | -    | 185  | 101        | -           | -           | -    |  |
|         | K <sub>T</sub>       | [Nm/A]                                | 2.59 | 1.39        | -           | -           | -    | 2.62 | 1.43       | -           | -           | -    |  |
|         | $R_{pp}$             | [Ω]                                   | 0.91 | 0.26        | -           | -           | -    | 0.57 | 0.17       | -           | -           | -    |  |
|         | L <sub>pp</sub>      | [mH]                                  | 17.9 | 5.10        | -           | -           | -    | 11.1 | 3.30       | -           | -           | -    |  |
|         | Mb                   | [Nm]                                  |      |             | 36          |             |      |      |            | 36          |             |      |  |
| F24     | Δm <sub>M</sub>      | [kg]                                  |      | 4.5         |             |             |      |      | 4.5        |             |             |      |  |
|         | ΔJ                   | [kgm²·10 <sup>-4</sup> ]              | 5.6  |             |             |             |      | 5.6  |            |             |             |      |  |
|         | Δm <sub>M</sub>      | [kg]                                  |      |             | 8.2         |             |      |      |            | 8.2         |             |      |  |
| 표       | ΔJ                   | [kgm <sup>2</sup> ·10 <sup>-4</sup> ] |      |             | 70          |             |      |      |            | 70          |             |      |  |

## BMD 170 con ventilazione forzata · Dimensioni



| VARIANTE FLANGIA B5 |     |     |     |    |     |    |
|---------------------|-----|-----|-----|----|-----|----|
|                     | Р   | М   | N   | S  | Т   | LA |
| 165                 | 170 | 165 | 130 | 12 | 3.5 | 12 |

287 - (360)

287 - (398)

| VARIANTE DIAMETRO ALBERO |    |    |     |                   |                  |
|--------------------------|----|----|-----|-------------------|------------------|
|                          | D  | Е  | DB  | GA <sup>(1)</sup> | F <sup>(1)</sup> |
| 24                       | 24 | 50 | M8  | 27                | 8                |
| 28                       | 28 | 60 | M10 | 31                | 8                |
| 32                       | 32 | 60 | M12 | 35                | 10               |

362 - (473)

362 - (435)

#### LUNGHEZZA MOTORE A SECONDA DELL'OPZIONE DIMENSIONE V - (Vv) Senza freno o volano Con freno o volano - opzione F24/F1 Coppia Varianti di feedback Varianti di feedback $M_{\scriptscriptstyle 0}$ RES1/RES2/SEN ENB1/ENB2/ENB7 ENB3...ENB6/ENB8 RES1/RES2/SEN ENB1/ENB2/ENB7 ENB3...ENB6/ENB8 34 233 - (306) 233 - (344) 233 - (306) 308 - (381) 308 - (427) 308 - (381)

287 - (360)

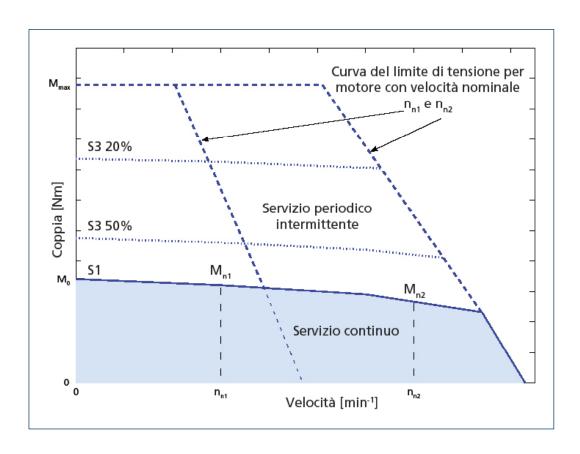
362 - (435)

|                | DIMENSIONE LB - (Lv)        |                |               |                      |                        |               |
|----------------|-----------------------------|----------------|---------------|----------------------|------------------------|---------------|
| Connia         | Senza freno o volano        |                |               |                      | eno o volano - opzione | F24/F1        |
| Сорріа         | Coppia Varianti di feedback |                |               | Varianti di feedback |                        |               |
| M <sub>0</sub> | RES1/RES2/SEN               | ENB1/ENB2/ENB7 | ENB3ENB6/ENB8 | RES1/RES2/SEN        | ENB1/ENB2/ENB7         | ENB3ENB6/ENB8 |
| 34             | 357 - (302)                 | 395 - (302)    | 357 - (302)   | 432 - (302)          | 478 - (377)            | 432 - (302)   |
| 45             | 411 - (302)                 | 449 - (302)    | 411 - (302)   | 486 - (377)          | 524 - (377)            | 486 - (377)   |

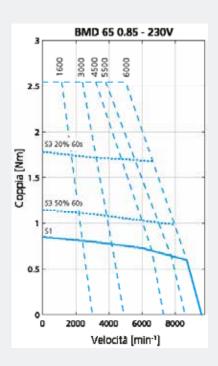
### Nota:

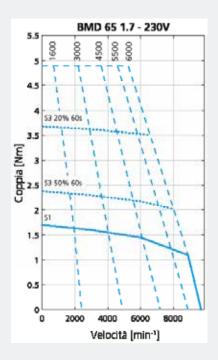


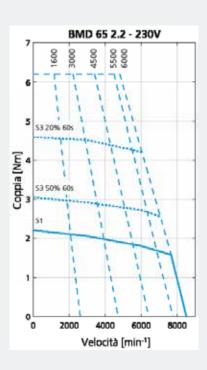
## Caratteristiche di coppia/velocità

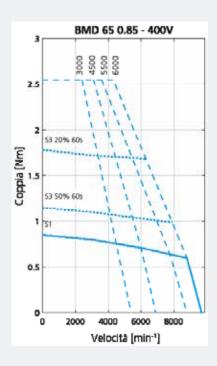

I punti di lavoro di un servomotore brushless sono vincolati da limiti termici, meccanici ed elettromagnetici.

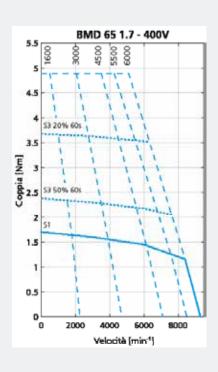
Il limite termico dipende dalla classe termica del sistema isolante (F). Partendo dalla coppia di stallo  $M_{o'}$  la coppia deve essere ridotta all'aumentare della velocità, per rispettare i limiti di temperatura. La coppia massima ammessa dipende quindi dalla modalità di funzionamento. Le curve caratteristiche sono assegnate per il servizio continuo S1 e per il servizio periodico intermittente S3 con cicli di 10 minuti, ad eccezione dei motori di piccola taglia, per i quali viene definito un tempo ciclo inferiore specificato e annotato nelle curve caratteristiche. È prevista una capacità di sovraccarico transitorio fino a  $M_{max}$ .

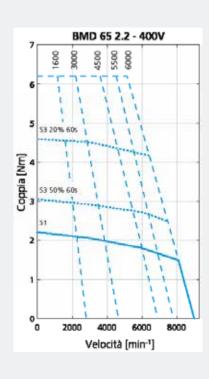

Il range di velocità è limitato dalla massima velocità meccanica e dal limite di tensione. Il limite di tensione è solitamente più stringente del limite meccanico. La curva caratteristica del limite di tensione è determinata dalla velocità nominale del motore. Le curve caratteristiche di ciascuna velocità nominale sono riportate nello stesso diagramma. Per agevolare il dimensionamento dell'azionamento, è preferibile selezionare un motore la cui curva del limite di tensione non sia troppo superiore alla velocità massima richiesta dall'applicazione.


Pertanto le caratteristiche prestazionali di un motore brushless sono descritte dall'area operativa di coppia e velocità, come illustrato nel grafico sottostante.

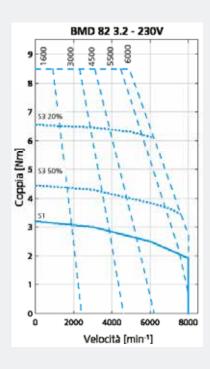

La zona del servizio continuo è delimitata dalla curva di massima coppia continua fino all'intersezione con la curva del limite di tensione. Il servizio continuo del motore nell'area sopra la curva caratteristica S1 non è consentito per limiti termici. La zona del servizio periodico intermittente è delimitata dalla linea della coppia di picco e la curva del limite di tensione.

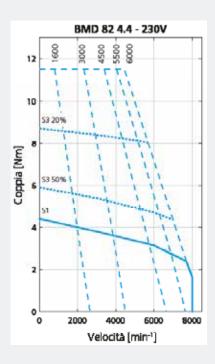


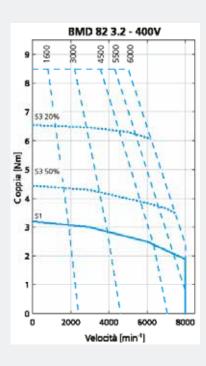


# BMD 65 · Caratteristica coppia/velocità

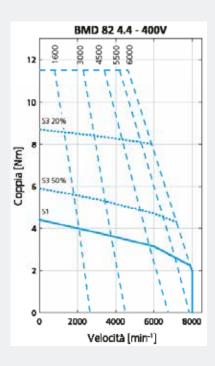




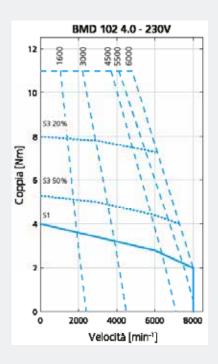



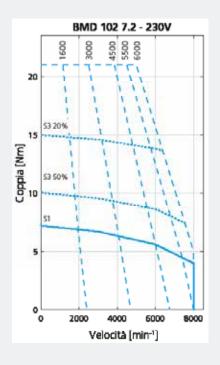



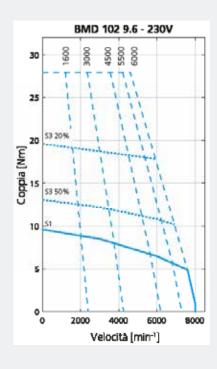



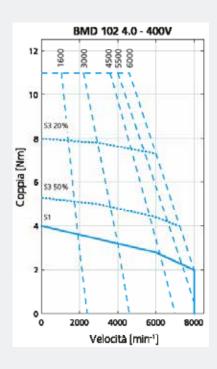



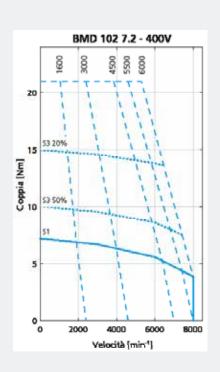

# BMD 82 · Caratteristica coppia/velocità

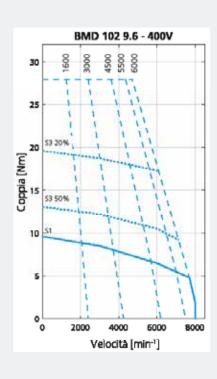


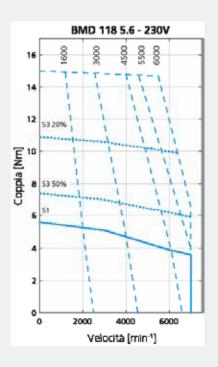



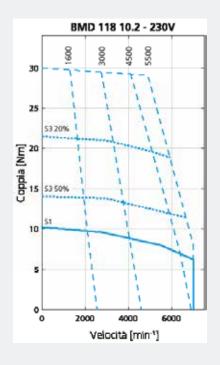



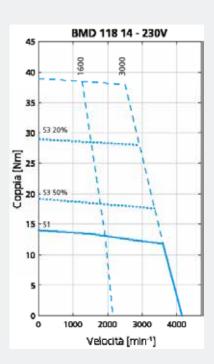


# BMD 102 · Caratteristica coppia/velocità

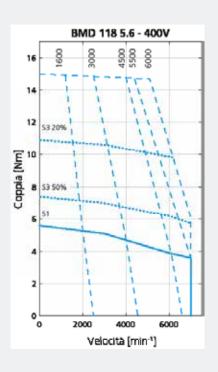


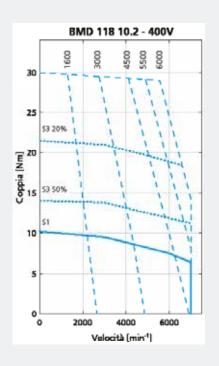


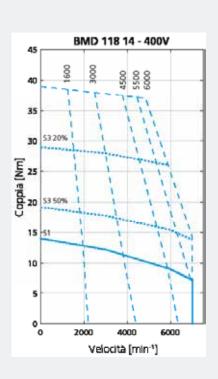



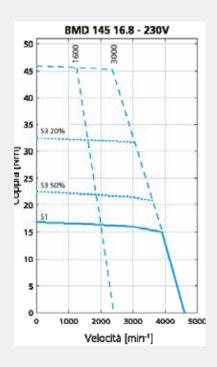



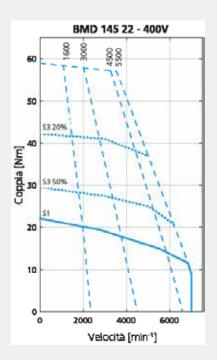



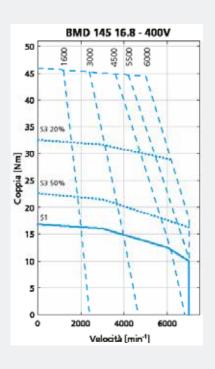


# BMD 118 · Caratteristica coppia/velocità

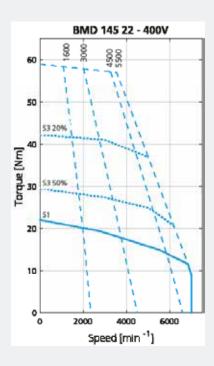




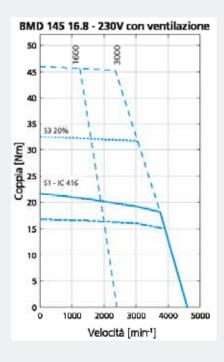



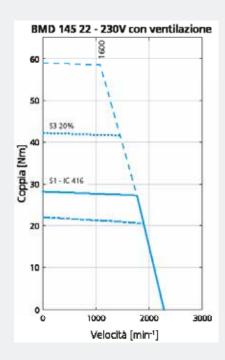



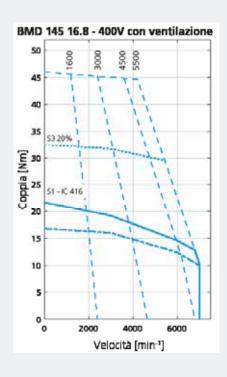



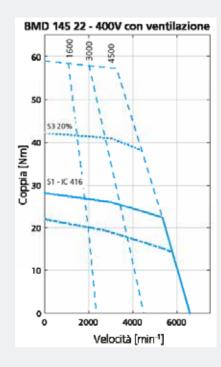

# BMD 145 · Caratteristica coppia/velocità



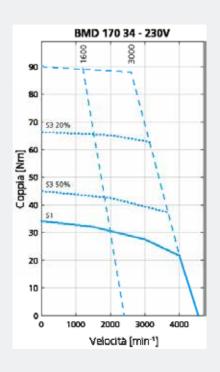


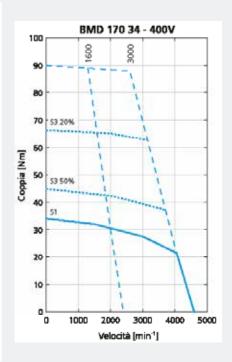



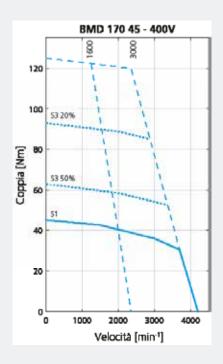





## BMD 145 con ventilazione forzata

# Caratteristica coppia/velocità

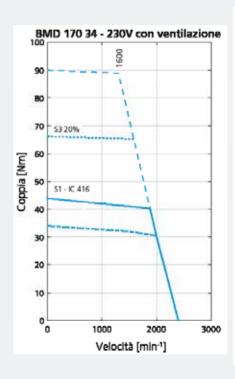


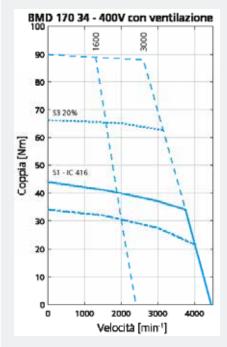



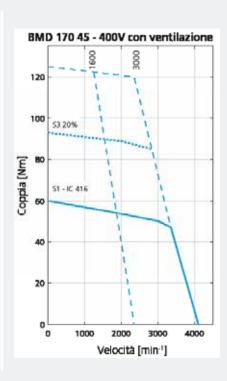






# BMD 170 · Caratteristica coppia/velocità



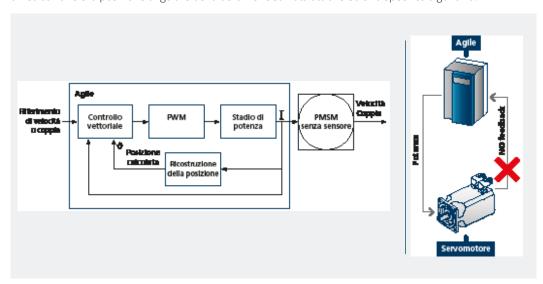



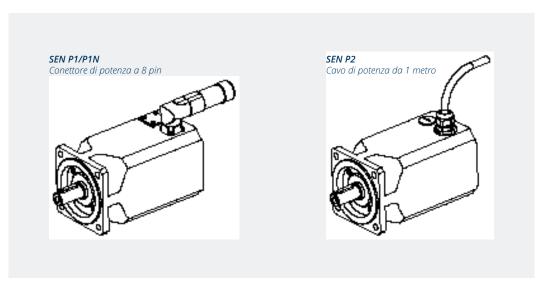

## BMD 170 con ventilazione forzata

## Caratteristica coppia/velocità





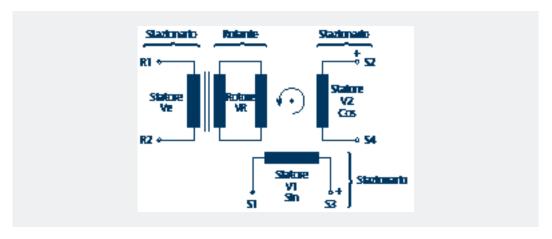



# Dispositivi di feedback

### SENSORLESS: [SEN]

Grazie ad un algoritmo efficiente, gli azionamenti Bonfiglioli Agile possono controllare i servomotori brushless senza necessità di alcun sensore di posizione. Con questa opzione il servomotore BMD non ha alcun dispositivo di retroazione e la posizione angolare dell'albero viene stimata attraverso uno specifico algoritmo.






## Dispositivi di feedback

### RESOLVER: [RES1,RES2]

Il resolver è un dispositivo passivo che consiste di uno statore e un rotore eccitati da una fonte esterna. Esso produce due segnali di uscita che corrispondono all'angolo del seno e del coseno dell'albero del motore. Questo è un dispositivo robusto di buona precisione, in grado di sopportare alte temperature e alti livelli di vibrazione. Le informazioni sulla posizione sono assolute in un unico giro.



| COMPONENTE                               | BMD 65        | BMD82 -                            | BMD170        |
|------------------------------------------|---------------|------------------------------------|---------------|
|                                          | RES2          | RES1                               | RES2          |
| Numero di poli                           | 2             | 2                                  | 2             |
| Rapporto di trasformazione               | 0.5 ±5%       | 0.5 <sup>+15%</sup> <sub>-5%</sub> | 0.5 ±5%       |
| Tensione d'ingresso [Vac <sub>ms</sub> ] | 7             | 11                                 | 5.5           |
| Corrente d'ingresso [mA]                 | 65            | 57                                 | 61            |
| Frequenza d'ingresso [kHz]               | 10            | 8                                  | 10            |
| Spostamento di fase                      | 0°            | -11°                               | -12°          |
| Impedenza d'ingresso Z <sub>ro</sub>     | 70 + j100     | 75 + j185                          | 43 + j79      |
| Impedenza d'uscita $Z_{ss}(\Omega)$      | 175 +j275     | 135 + j265                         | 62 + j112     |
| Errore elettrico                         | ±10′          | ±10′                               | ±10′          |
| Accuratezza di ondulazione               | 1' max        | 1' max                             | 1' max        |
| Temperatura operativa                    | -55°C + 155°C | -55°C + 155°C                      | -55°C + 155°C |
| Velocità max [min <sup>-1</sup> ]        | 10000         | 20000                              | 10000         |
| Massa [kg]                               | 0.065         | 0.28                               | 0.28          |
| Interzia del rorote [kgm² x 10-6]        | 3.0           | 5.0                                | 5.0           |

Si prega di verificare la compatibilità con il nostro Motion Control assieme al nostro team tecnico o consultando il nostro catalogo dedicato al Motion Control.



## **Encoder ottici**

Gli encoder ottici assoluti per misurare la posizione angolare utilizzano un disco ottico ad alta precisione.

Gli encoder assoluti monogiro misurano in maniera univoca la posizione angolare all'interno di un singolo giro dell'albero.

Gli encoder assoluti multigiro permettono di ricostruire in maniera univoca la posizione mantenendo anche il conteggio del numero di giri dell'albero.

### **HEIDENHAIN ENCODERS**

| ITEM                         | BN             | 1D65           |                             | BMD82 - BMD17  | 0                              |
|------------------------------|----------------|----------------|-----------------------------|----------------|--------------------------------|
|                              | ENB1           | ENB2           | ENB1                        | ENB2           | ENB7                           |
| Produttore                   |                | Dr. J          | OHANNES HEIDENHA            | JIN GmbH       |                                |
| Interfaccia dati             | Enl            | Dat            | En                          | Dat            | SinCos                         |
| Modello                      | ECN1113        | EQN1125        | ECN1313                     | EQN1325        | ERN 1387                       |
| Tipo                         | Monogiro       | Multigiro      | Monogiro                    | Multigiro      | Monogiro                       |
| Principio di misurazione     | Ott            | tico           | Ott                         | tico           | Ottico                         |
| Alimentazione                | 3.6VDC .       | 14VDC          | 3.6VDC 14VDC                |                | 5 VDC ±0.5V                    |
| Assorbimento di corrente     | 85mA (5V)      | 105mA (5V)     | 85mA (5V)                   | 105mA (5V)     | <120 mA                        |
| Periodi per rivoluzione      | 512            | 512            | 2048                        | 2048           | 2048                           |
| Posizione per rivoluzione    | 8192 (13 bits) | 8192 (13 bits) | 8192 (13 bits)              | 8192 (13 bits) | 65536 (16 bits) <sup>(1)</sup> |
| Rivoluzioni                  | -              | 4096 (12 bits) | -                           | 4096 (12 bits) | -                              |
| Temperatura operativa        | -40°C          | +115°C         | -40°C                       | +115°C         | -40°+120°C                     |
| Velocità max [min⁻¹]         | 120            | 000            | 120                         | 000            | 15000                          |
| Resistenza allo shock        | 1000 m/        | 's² - 6ms      | 2000 m/s <sup>2</sup> - 6ms |                | 2000 m/s <sup>2</sup> - 6ms    |
| Resistenza alle vibrazioni   | 200m/s² - 5    | 5 2000Hz       | 300m/s² - 55 2000Hz         |                | 300m/s² - 55 2000Hz            |
| Massa [kg]                   | 0.             | 10             | 0.                          | 25             | 0.25                           |
| Inerzia rotore [kgm² x 10-6] | 0.4            | 40             | 2.                          | 60             | 2.6                            |

<sup>(1)</sup> Questa risoluzione è ottenuta quando utilizzato con il modulo di acquisizione EM-ABS-01.

### SICK ENCODERS

| ITEM                         | BM                | 1D65           | BMD82 -           | BMD170         |
|------------------------------|-------------------|----------------|-------------------|----------------|
|                              | ENB3              | ENB4           | ENB3              | ENB4           |
| Produttore                   |                   | SICH           | ( AG              |                |
| Interfaccia dati             | Hipe              | rface          | Hiper             | rface          |
| Modello                      | SKS36             | SKM36          | SRS50             | SRM50          |
| Tipo                         | Monogiro          | Multigiro      | Monogiro          | Multigiro      |
| Principio di misurazione     | Ott               | tico           | Ott               | ico            |
| Alimentazione                | 7VDC              | 7VDC 12VDC     |                   | 12VDC          |
| Assorbimento di corrente     | 60mA              | 60mA           | 80mA              | 80mA           |
| Periodi per rivoluzione      | 128               | 128            | 1024              | 1024           |
| Posizione per rivoluzione    | 4096 (12 bits)    | 4096 (12 bits) | 32768 (15 bit)    | 32768 (15 bit) |
| Rivoluzioni                  | -                 | 4096 (12 bits) | -                 | 4096 (12 bits) |
| Temperatura operativa        | -20°C             | +110°C         | -30°C +115°C      |                |
| Velocità max [min⁻¹]         | 100               | 000            | 12000             |                |
| Resistenza allo shock        | 100 g / 6 ms      |                | 100 g / 6 ms      |                |
| Resistenza alle vibrazioni   | 50 g / 10 2000 Hz |                | 20 g / 10 2000 Hz |                |
| Massa [kg]                   | 0.                | 07             | 0.20              |                |
| Inerzia rotore [kgm² x 10-6] | 0.                | 45             | 1.0               | 00             |

Si prega di verificare la compatibilità con il nostro Motion Control assieme al nostro team tecnico o consultando il nostro catalogo dedicato al Motion Control.

# Encoder induttivi e capacitivi

Gli encoder assoluti induttivi e capacitivi disponibili nella serie BMD non hanno cuscinetti integrati. La posizione angolare viene ottenuta misurando segnali ad alta frequenza per encoder che sfruttano il principio di misura induttivo o con un sistema di scansione olistico per encoder che sfrutta il principio di misura capacitivo.

### **HEIDENHAIN ENCODER**

| ITEM                              | BMD65 - BMD170               |
|-----------------------------------|------------------------------|
|                                   | ENB8                         |
| Produttore                        | Dr. JOHANNES HEIDENHAIN GmbH |
| Interfaccia dati                  | EnDat                        |
| Modello                           | EQI1131                      |
| Tipo                              | Multigiro                    |
| Principio di misurazione          | Induttivo                    |
| Alimentazione                     | 3.6VDC 14VDC                 |
| Assorbimento di corrente          | 115mA (5V)                   |
| Periodi per rivoluzione           | -                            |
| Posizione per rivoluzione         | 524288 (19 bits)             |
| Rivoluzioni                       | 4096 (12 bits)               |
| Temperatura operativa             | -40°C +115°C                 |
| Velocità max [min <sup>-1</sup> ] | 12000                        |
| Resistenza allo shock             | 2000 m/s² - 6ms              |
| Resistenza alle vibrazioni        | 400m/s² - 55 2000Hz          |
| Masas [kg]                        | 0.04                         |
| Inerzia rotore [kgm² x 10-6]      | 0.30                         |

### SICK ENCODERS

| ITEM                                      | BMD65 -           | BMD170         |  |  |
|-------------------------------------------|-------------------|----------------|--|--|
|                                           | ENB5              | ENB6           |  |  |
| Produttore                                | SICk              | K AG           |  |  |
| Interfaccia dati                          | Hipe              | rface          |  |  |
| Modello                                   | SEK37             | SEL37          |  |  |
| Tipo                                      | Monogiro          | Multigiro      |  |  |
| Principio di misurazione                  | Сара              | citivo         |  |  |
| Alimentazione                             | 7VDC 12VDC        |                |  |  |
| Assorbimento di corrente                  | 50mA              | 50mA           |  |  |
| Periodi per rivoluzione                   | 16                | 16             |  |  |
| Posizione per rivoluzione                 | 512 (9 bits)      | 512 (9 bits)   |  |  |
| Rivoluzioni                               | -                 | 4096 (12 bits) |  |  |
| Temperatura operativa                     | -40°C +115°C      | -20°C +115°C   |  |  |
| Velocità max [min⁻¹]                      | 120               | 000            |  |  |
| Resistenza allo shock                     | 100 g / 10 ms     |                |  |  |
| Resistenza alle vibrazioni                | 50 g / 10 2000 Hz |                |  |  |
| Massa [kg]                                | 0.04              |                |  |  |
| Inerzia rotore [kgm² x 10 <sup>-6</sup> ] | 0.1               | 10             |  |  |

Si prega di verificare la compatibilità con il nostro Motion Control assieme al nostro team tecnico o consultando il nostro catalogo dedicato al Motion Control.

### Protettore termico

Tutti i motori delle serie BMD sono dotati di serie di sensore di temperatura PTC integrato per proteggere gli avvolgimenti da sovratemperature che superano il limite dell'isolamento di classe F del motore. Opzionalmente sono disponibili sensori KTY o PT1000, per adattarsi a qualsiasi esigenza di feedback della temperatura.

| OPZIONI | PROTETTORE TERMICO                      | NOTE                                                                                                                                                                                                                         |
|---------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PTC     | 1x PTC BMD 65-102<br>3x PTC BMD 118-170 | I termistori PTC sono posti a contatto con l'avvolgimento del motore.<br>La temperatura di intervento del termistore è conforme alla classe di isolamento F del motore.                                                      |
| KTY     | Tipo KTY 84-130                         | Un sensore di resistenza a semiconduttore in silicio KTY viene posto a contatto con l'avvolgimento del motore. La gamma di temperatura di esercizio va da 0 ° C a 170 °C.                                                    |
| TC1     | PT1000                                  | Un sensore di temperatura a resistenza in platino è posto a contatto con l'avvolgimento del motore. PT1000 è conforme alla norma IEC 60751: 2008, classe di tolleranza B. La temperatura di esercizio è da -40 ° C a 250 °C. |

## Freno di stazionamento - Opzione F24

È disponibile un freno di arresto elettromeccanico. La variante del freno può essere ordinata selezionando il valore F24 nel campo delle opzioni freno.

Il freno elettromeccanico viene usato come freno di stazionamento e non è utilizzabile per eseguire frenature dinamiche se non in casi di emergenza.

I dati del freno disponibile per ciascuna taglia motore sono riepilogati nella tabella seguente. Quando il motore è fornito senza freno non è possibile installarne uno.

La bobina del freno deve essere alimentata con tensione 24 V DC.

L'opzione freno determina un incremento della lunghezza del motore.

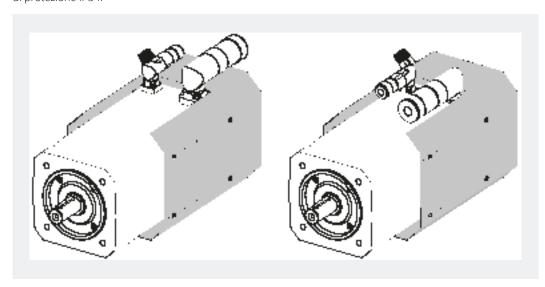
I conduttori del freno sono cablati nel connettore di alimentazione insieme ai conduttori del motore.

Notare che l'opzione freno non è disponibile quando è selezionata l'opzione "inerzia aggiuntiva".

| Motore | Coppia freno<br>nominale a 20°C<br>M <sub>b</sub> | Coppia freno<br>nominale a 100°C<br>M <sub>b</sub> | Tensione<br>freno<br>V <sub>b</sub> | Corrente<br>freno<br>I <sub>b</sub> | Potenza<br>freno a 20°C<br>P <sub>b</sub> | Inerzia<br>freno<br>ΔJ | Massa<br>∆m <sub>м</sub> | Tempo di<br>innesto<br>t <sub>1</sub> | Tempo di<br>rilascio<br>t <sub>2</sub> |
|--------|---------------------------------------------------|----------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------------|------------------------|--------------------------|---------------------------------------|----------------------------------------|
|        | Nm                                                | Nm                                                 | Vdc                                 | Α                                   | W                                         | $Kgm^2 \cdot 10^{-4}$  | kg                       | ms                                    | ms                                     |
| 65     | 2                                                 | 1.8                                                |                                     | 0.46                                | 11                                        | 0.068                  | 0.2                      | 6                                     | 25                                     |
| 82     | 4.5                                               | 4                                                  |                                     | 0.5                                 | 12                                        | 0.18                   | 0.6                      | 7                                     | 35                                     |
| 102    | 9                                                 | 8                                                  | 24                                  | 0.75                                | 18                                        | 0.54                   | 1.1                      | 7                                     | 40                                     |
| 118    | 18                                                | 15                                                 | 24                                  | 1.0                                 | 24                                        | 1.66                   | 2.2                      | 10                                    | 50                                     |
| 145    | 18                                                | 15                                                 |                                     | 1.0                                 | 24                                        | 1.66                   | 2.6                      | 10                                    | 50                                     |
| 170    | 36                                                | 32                                                 |                                     | 1.1                                 | 26                                        | 5.56                   | 4.5                      | 22                                    | 90                                     |

### Note

- t, Tempo dalla disconnessione della corrente fino al raggiungimento della coppia nominale
- t', Tempo dalla connessione della corrente fino alla diminuzione della coppia


# Inerzia aggiuntiva - Opzione F1

I motori della serie BMD sono provvisti dell'opzione inerzia aggiuntiva. I motori BMD con inerzia aggiuntiva hanno un momento di inerzia del rotore superiore rispetto alla versione base. L'inerzia aggiuntiva è progettata per essere impiegata in applicazioni con un'elevata inerzia del carico.

| MOTORE | INERZIA AGGIUNTIVA<br>ΔJ | PESO AGGIUNTIVA<br>Δm <sub>M</sub> |
|--------|--------------------------|------------------------------------|
|        | Kgm² · 10⁻⁴              | kg                                 |
| 65     | 0.5                      | 0.4                                |
| 82     | 3                        | 1                                  |
| 102    | 7.5                      | 1.7                                |
| 118    | 16                       | 3.5                                |
| 145    | 36                       | 5                                  |
| 170    | 70                       | 8.2                                |

## Ventilazione forzata

I motori BMD taglia 145 e 170 possono essere ordinati completi di unità ventilazione aggiuntiva (ventilazione forzata IC 416) selezionando le varianti di designazione corrette (V1R, V1S, V2R, V2S). I motori originariamente dotati di un'unità di ventilazione hanno connettori di potenza e di segnale orientabili come i motori BMD standard (180° x 90°). In alternativa, le unità di ventilazione sono disponibili come kit adatto per il retrofit di motori standard. In questo caso il cliente deve modificare il motore esistente per il montaggio dell'unità ventilatore. Il cappuccio del ventilatore è verniciato in nero RAL 9005. I ventilatori sono dotati di custodia metallica e grado di protezione IP54.





## Ventilazione forzata

### CODICI DI ORDINE DEL KIT PER RETROFIT

Per installare la ventilazione forzata come kit di retrofit, è necessario modificare l'alloggiamento del motore BMD standard aggiungendo 8 fori filettati. In questa configurazione i connettori del motore devono essere orientati verso la flangia e non possono ruotare.

Le istruzioni per le modifiche dell'alloggiamento sono riportate nel manuale fornito con il kit.

Per selezionare il kit di ventilazione adatto fare riferimento alle seguenti tabelle.

|                    | VARIANTI MOTORE                        |                                   |
|--------------------|----------------------------------------|-----------------------------------|
|                    | Coperchio della ventola di tipo S      | Coperchio della ventola di tipo L |
| BMD 145 16.8       | SEN / RES1 / RES2 / ENB1ENB8           | -                                 |
| BMD 145 16.8F24/F1 | SEN / RES1 / RES2 / ENB3ENB6 /<br>ENB8 | ENB1 / ENB2 / ENB7                |
| BMD 145 22         | SEN / RES1 / RES2 / ENB3ENB6 /<br>ENB8 | ENB1 / ENB2 / ENB7                |
| BMD 145 22F24/F1   | -                                      | SEN / RES1 / RES2 / ENB1ENB8      |
| BMD 170 34         | SEN / RES1 / RES2 / ENB1ENB8           | -                                 |
| BMD 170 34F24/F1   | SEN / RES1 / RES2 / ENB3ENB6 /<br>ENB8 | ENB1 / ENB2 / ENB7                |
| BMD 170 45         | SEN / RES1 / RES2 / ENB1ENB8           | -                                 |
| BMD 170 45F24/F1   | -                                      | SEN / RES1 / RES2 / ENB1ENB8      |

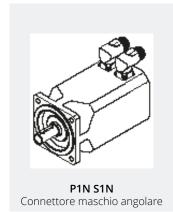
| VAI        | RIANTI DELLE UNIT | À DI VENTILAZIONE E    | CODICI PER L'ORDINE I   | DEL KIT                 |
|------------|-------------------|------------------------|-------------------------|-------------------------|
| Codice KIT | Taglia BMD        | Tensione della ventola | Coperchio della ventola | Tipologia di connettore |
| 19MOT0001  | BMD 170           | 24V DC                 | S                       | Diritto                 |
| 19MOT0002  | BMD 170           | 24V DC                 | L                       | Diritto                 |
| 19MOT0003  | BMD 170           | 230V AC                | S                       | Diritto                 |
| 19MOT0004  | BMD 170           | 230V AC                | L                       | Diritto                 |
| 19MOT0005  | BMD 170           | 24V DC                 | S                       | Ruotabile               |
| 19MOT0006  | BMD 170           | 24V DC                 | L                       | Ruotabile               |
| 19MOT0007  | BMD 170           | 230V AC                | S                       | Ruotabile               |
| 19MOT0008  | BMD 170           | 230V AC                | L                       | Ruotabile               |
| 19MOT0009  | BMD 145           | 24V DC                 | S                       | Diritto                 |
| 19MOT0010  | BMD 145           | 24V DC                 | L                       | Diritto                 |
| 19MOT0011  | BMD 145           | 230V AC                | S                       | Diritto                 |
| 19MOT0012  | BMD 145           | 230V AC                | L                       | Diritto                 |
| 19MOT0013  | BMD 145           | 24V DC                 | S                       | Ruotabile               |
| 19MOT0014  | BMD 145           | 24V DC                 | L                       | Ruotabile               |
| 19MOT0015  | BMD 145           | 230V AC                | S                       | Ruotabile               |
| 19MOT0016  | BMD 145           | 230V AC                | L                       | Ruotabile               |

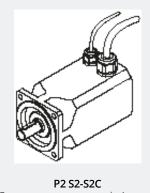
### Nota

## Ventilazione forzata

### DATI ELETTRICI E DI CONNESSIONE DELLA VENTOLA

| DATI ELETTRICI DELLA VENTOLA |                                                                  |          |           |           |
|------------------------------|------------------------------------------------------------------|----------|-----------|-----------|
| Taglia BMD                   | Tensione della ventola Intervallo di voltaggio Potenza Frequenza |          |           |           |
| BMD 170                      | 24V DC                                                           | 1230V DC | 12 W      | -         |
|                              | 230V AC                                                          | -        | 45 / 39 W | 50/ 60 Hz |
| DMD 14E                      | 24V DC                                                           | 1230V DC | 12 W      | -         |
| BMD 145                      | 230V AC                                                          | -        | 30 / 28 W | 50/ 60 Hz |


| LAYOUT DEI CONNETTORI FORNITI VXS / VXR E DEI CAVI PRE-ASSEMBLATI |                |         |                |
|-------------------------------------------------------------------|----------------|---------|----------------|
| PIN                                                               | Descrizione    |         | ETICHETTA CAVO |
| 1                                                                 | Non connesso   |         | -              |
| 2                                                                 | Non connesso   |         | -              |
| ÷                                                                 | Terra          | (02 00) | Giallo-Verde   |
| 4                                                                 | +VDC / Fase    | \ 6 . / | 1              |
| 5                                                                 | - VDC / Neutro | 0 05    | 2              |
| 6                                                                 | Non connesso   |         | -              |


### **ACCESSORI DI CONNESSIONE**

| CODICE D'ORDINE | DESCRIZIONE                                                       |
|-----------------|-------------------------------------------------------------------|
| 712692054       | Connettore circolare con pin - intervallo di crimpatura: 7.512mm  |
| 712692108       | Connettore circolare con pin - intervallo di crimpatura: 4.26.6mm |
| 612580269       | Cavo assemblato con connettore MFC 03 C1 – Lunghezza: 3m          |
| 612580271       | Cavo assemblato con connettore MFC 05 C1 – Lunghezza: 5m          |
| 612580272       | Cavo assemblato con connettore MFC 10 C1 – Lunghezza: 10m         |

## Connessioni

Le connessioni di alimentazione e dei dispositivi di feedback possono essere realizzate mediante connettore maschio rotativo (P1N S1N o P1 S1) oppure tramite connettore diritto (P3N S3N o P3 S3) o cavo senza connettore da 1 metro (P2, S2 o S2C).





Cavo senza connettore da 1 metro



# Collegamenti di alimentazione

Il connettore di alimentazione a 6 pin del motore con feedback include i pin dell'alimentazione del motore e quelli per l'alimentazione del freno (se presente). Il motore sensorless ha un connettore di alimentazione a 8 pin e comprende anche i pin per il Protettore termico. Stessi schemi sono usati per il motore con cavo senza connettore.

|                              | MOTORE CON FEEDBACK / BMD65 - BMD145                                               |       |                             |  |  |
|------------------------------|------------------------------------------------------------------------------------|-------|-----------------------------|--|--|
| Layout connettore            | Layout connettore di segnale (opzioni P1N/P1/P3N/P3)  Cavo di segnale (opzione P2) |       |                             |  |  |
| Numero di PIN del connettore | Descrizione                                                                        |       | Etichetta o colore del cavo |  |  |
| 1                            | Fase U                                                                             | 500   | L1 / 1 / U                  |  |  |
| 2                            | Fase V                                                                             | 2 ÷ 4 | L2 / 2 / V                  |  |  |
| ÷                            | Terra - SL                                                                         | 0     | Giallo - Verde              |  |  |
| 4                            | Freno +                                                                            | 1 6 5 | Bianco                      |  |  |
| 5                            | Freno -                                                                            |       | Nero                        |  |  |
| 6                            | Fase W                                                                             |       | L3/3/W                      |  |  |

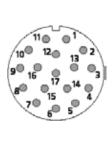
|                              | MOTORE CON I            | FEEDBACK / BMD170 |                              |
|------------------------------|-------------------------|-------------------|------------------------------|
| Layout connettore            | di segnale (opzioni P1N | /P1/P3N/P3)       | Cavo di segnale (opzione P2) |
| Numero di PIN del connettore | Descrizione             |                   | Etichetta o colore del cavo  |
| U                            | Fase U                  | O V ON            | L1/1/U                       |
| V                            | Fase V                  | / · · · · \       | L2/2/V                       |
| W                            | Fase W                  | (w⊕ ⊕u            | L3/3/W                       |
| ÷                            | Terra - SL              |                   | Giallo - Verde               |
| +                            | Freno +                 | Q.i               | Bianco                       |
| -                            | Freno -                 |                   | Nero                         |

| MOTORE SENZA FEEDBACK/ BMD65 - BMD145 |                                                      |        |                             |
|---------------------------------------|------------------------------------------------------|--------|-----------------------------|
| Layout connettore                     | Layout connettore di segnale (opzioni P1N/P1/P3N/P3) |        |                             |
| Numero di PIN del connettore          | Descrizione                                          |        | Etichetta o colore del cavo |
| 1                                     | Fase U                                               |        | L1/1/U                      |
| ÷                                     | Terra - SL                                           | 50     | Giallo - Verde              |
| 3                                     | Fase W                                               | L3/3/W |                             |
| 4                                     | Fase V                                               | 40     | L2/2/V                      |
| А                                     | Protettore termico +                                 |        | Bianco / 5                  |
| В                                     | Protettore termico -                                 | • 0    | Nero / 6                    |
| С                                     | Freno +                                              |        | 7                           |
| D                                     | Freno -                                              |        | 8                           |

| MOTORE SENZA FEEDBACK / BMD170 |                                                                                    |                   |                             |  |
|--------------------------------|------------------------------------------------------------------------------------|-------------------|-----------------------------|--|
| Layout connettore              | Layout connettore di segnale (opzioni P1N/P1/P3N/P3)  Cavo di segnale (opzione P2) |                   |                             |  |
| Numero di PIN del connettore   | Descrizione                                                                        |                   | Etichetta o colore del cavo |  |
| U                              | Fase U                                                                             |                   | L1/1/U                      |  |
| V                              | Fase V                                                                             | O V O             | L2/2/V                      |  |
| W                              | Fase W                                                                             | / · · · ·         | L3/3/W                      |  |
| ÷                              | Terra - SL                                                                         | w⊕ ⊕u             | Giallo - Verde              |  |
| 1                              | Protettore termico +                                                               | \ °2 \ \ 1° \( \) | Bianco / 5                  |  |
| 2                              | Protettore termico -                                                               | Q i               | Nero / 6                    |  |
| +                              | Freno +                                                                            |                   | 7                           |  |
| -                              | Freno -                                                                            |                   | 8                           |  |

## Connessioni di segnale

Il connettore di segnale raccoglie i segnali del dispositivo di retroazione e il terminale di protezione termica. Ogni dispositivo di feedback ha un layout dedicato al connettore del segnale. Le varianti con cavo senza connessione hanno una terminazione differente sul lato del modulo di feedback dell'inverter. La variante S2 dispone di conduttori con puntalini per la connessione a morsetti a vite. La variante S2C dispone di connettore maschio SUB-D standard con layout conforme al modulo interfaccia Bonfiglioli.


| MOTORE CON RESOLVER (RES1/RES2) / BMD65 - BMD170 |                                                      |        |                    |
|--------------------------------------------------|------------------------------------------------------|--------|--------------------|
| Layout connettore                                | Layout connettore di segnale (opzioni S1N/S1/S3N/S3) |        |                    |
| Numero di PIN del connettore                     | Descrizione                                          |        | Colore del cavo    |
| 1                                                | Sin -                                                |        | Marrone            |
| 2                                                | Sin +                                                |        | Verde              |
| 3                                                | Non collegato                                        |        | Non collegato      |
| 4                                                | Cavo schermato                                       | 19 8 7 | -                  |
| 5                                                | Non collegato                                        | 10 12  | Non collegato      |
| 6                                                | Non collegato                                        | 11 6   | Non collegato      |
| 7                                                | Exct -                                               | 3 0 5  | Nero               |
| 8                                                | Protettore termico -                                 | 40     | Bianco (0.50 mm²)  |
| 9                                                | Protettore termico +                                 |        | Marrone (0.50 mm²) |
| 10                                               | Exct +                                               |        | Rosso              |
| 11                                               | Cos +                                                |        | Grigio             |
| 12                                               | Cos -                                                |        | Rosa               |

| MOTORE CON ENCODER ENDAT (ENB1/ENB2/ENB8) / BMD65 - BMD170                         |                      |               |                   |
|------------------------------------------------------------------------------------|----------------------|---------------|-------------------|
| Layout connettore di segnale (opzioni S1N/S1/S3N/S3)  Cavo di segnale (opzione S2) |                      |               |                   |
| Numero di PIN del connettore                                                       | Descrizione          |               | Colore del cavo   |
| 1                                                                                  | SENSORE UP           |               | Viola             |
| 2                                                                                  | Non collegato        |               | Non collegato     |
| 3                                                                                  | Non collegato        |               | Non collegato     |
| 4                                                                                  | SENSORE 0V           |               | Giallo            |
| 5                                                                                  | Protettore termico - |               | Blu (0.50 mm²)    |
| 6                                                                                  | Protettore termico + | ~~            | Bianco (0.50 mm²) |
| 7                                                                                  | UP                   | 100 120 02    | Bianco - Verde    |
| 8                                                                                  | Clock +              | 13            | Blu               |
| 9                                                                                  | Clock -              | 16 17 14 1    | Nero              |
| 10                                                                                 | OV                   | Marrone - Ver |                   |
| 11                                                                                 | Cavo schermato       | 6-3           | -                 |
| 12                                                                                 | B + (1)              |               | Rosso - Nero (2)  |
| 13                                                                                 | B - <sup>(1)</sup>   |               | Verde - Nero (2)  |
| 14                                                                                 | DATA +               |               | Grigio            |
| 15                                                                                 | A + (1)              |               | Blu - Nero (2)    |
| 16                                                                                 | A - <sup>(1)</sup>   |               | Giallo - Nero (2) |
| 17                                                                                 | DATA -               |               | Rosa              |

### Note

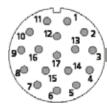
# Connessioni di segnale

| Layout connettore di segnale (opzioni S1N/S1/S3N/S3) |                      |       |
|------------------------------------------------------|----------------------|-------|
| Numero di PIN del connettore                         | Descrizione          |       |
| 1                                                    | Sin +                |       |
| 2                                                    | Sin -                |       |
| 3                                                    | RS485 +              |       |
| 4                                                    | Non collegato        |       |
| 5                                                    | Cavo schermato       |       |
| 6                                                    | Non collegato        |       |
| 7                                                    | GND (0V)             | 110   |
| 8                                                    | Protettore termico - | 00.0  |
| 9                                                    | Protettore termico + | 16 1  |
| 10                                                   | + Vdc                | 70 15 |
| 11                                                   | Cos +                | 6     |
| 12                                                   | Cos -                |       |
| 13                                                   | RS485 -              |       |
| 14                                                   | Non collegato        |       |
| 15                                                   | Non collegato        |       |
| 16                                                   | Non collegato        |       |
| 17                                                   | Non collegato        |       |



| Colore del cavo                 |
|---------------------------------|
| Verde                           |
| Marrone                         |
| Blu                             |
| Non collegato                   |
| -                               |
| Non collegato                   |
| Nero                            |
| Bianco (0.50 mm²)               |
| Marrone (0.50 mm <sup>2</sup> ) |
| Rosso                           |
| Grigio                          |
| Rosa                            |
| Viola                           |
| Non collegato                   |
| Non collegato                   |
| Non collegato                   |
| Non collegato                   |

Cavo di segnale (opzione S2)


### MOTORE CON ENCODER HYPERFACE (ENB7) / BMD82 - BMD170

MOTORE CON ENCODER HYPERFACE (ENB3/ENB4/ENB5/ENB6) / BMD65 - BMD170

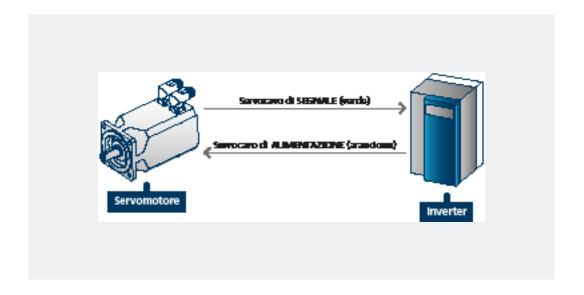
Layout connettore di segnale (opzioni S1N/S1/S3N/S3)

Cavo di segnale (opzione S2)

| Edyout connectore at segnale (opzioni s |                      |  |  |
|-----------------------------------------|----------------------|--|--|
| Numero di PIN del connettore            | Descrizione          |  |  |
| 1 Sin +                                 |                      |  |  |
| 2                                       | Sin -                |  |  |
| 3                                       | R+                   |  |  |
| 4                                       | D-                   |  |  |
| 5                                       | C+                   |  |  |
| 6                                       | C-                   |  |  |
| 7                                       | SENSORE 0VL          |  |  |
| 8                                       | Protettore termico + |  |  |
| 9                                       | Protettore termico - |  |  |
| 10                                      | Vencs                |  |  |
| 11                                      | Cos +                |  |  |
| 12                                      | Cos -                |  |  |
| 13                                      | R -                  |  |  |
| 14                                      | D +                  |  |  |
| 15 0VL                                  |                      |  |  |
| 16                                      | Venc                 |  |  |
| 17                                      | Cavo schermato       |  |  |



| Blu - Nero        |
|-------------------|
| Giallo - Nero     |
| Blu               |
| Marrone           |
| Grigio            |
| Rosa              |
| Giallo            |
| Bianco (0.50 mm²) |
| Blu (0.50 mm²)    |
| Bianco - Verde    |
| Rosso - Nero      |
| Verde - Nero      |
| Nero              |
| Verde             |
| Marrone - Verde   |
| Viola             |
| -                 |
|                   |


## Cavi

I cavi elettrici collegano il servomotore al rispettivo inverter. E' disponibile una selezione di cavi sia di alimentazione che di segnale.

Il cavo di alimentazione fornisce energia al motore, e alimenta anche il freno se presente.

I cavi di segnale servono invece a trasmettere i segnali elettrici generati dai dispositivi di feedback installati sul motore. Lo stesso cavo è usato anche per trasmettere i segnali del protettore termico.

Tutti i cavi sono disponibili in tre differenti lunghezze fisse (3 m, 5 m, 10 m), offrendo all'utente una gamma completa per numerose esigenze di configurazione. Altre lunghezze disponibili su richiesta.





## Cavi di alimentazione

I cavi di alimentazione si riconoscono per il colore arancione in conformità allo standard Desina. La sezione dei conduttori dipende dalla corrente nominale del motore. Per far fronte ai differenti livelli di corrente assorbita dalle diverse taglie del motore, i cavi di alimentazione sono realizzati con quattro sezioni dei conduttori (1,5 mm², 2,5 mm², 4,0 mm², 10,0 mm²). Sul lato dell'inverter, ogni cavo termina con capi conduttori volanti coperti con ghiere per l'inserimento nei morsetti a vite. Sul lato del motore il cavo è dotato di un connettore femmina circolare metallico con tecnologia Speed-Tech per una connessione facile e sicura con il corrispondente connettore maschio rotante del motore.

Come descritto a pagina 54, i connettori di alimentazione hanno 6 pin per il motore con feedback e 8 pin per le varianti motore sensorless.



I cavi di alimentazione soddisfano i seguenti requisiti tecnici:

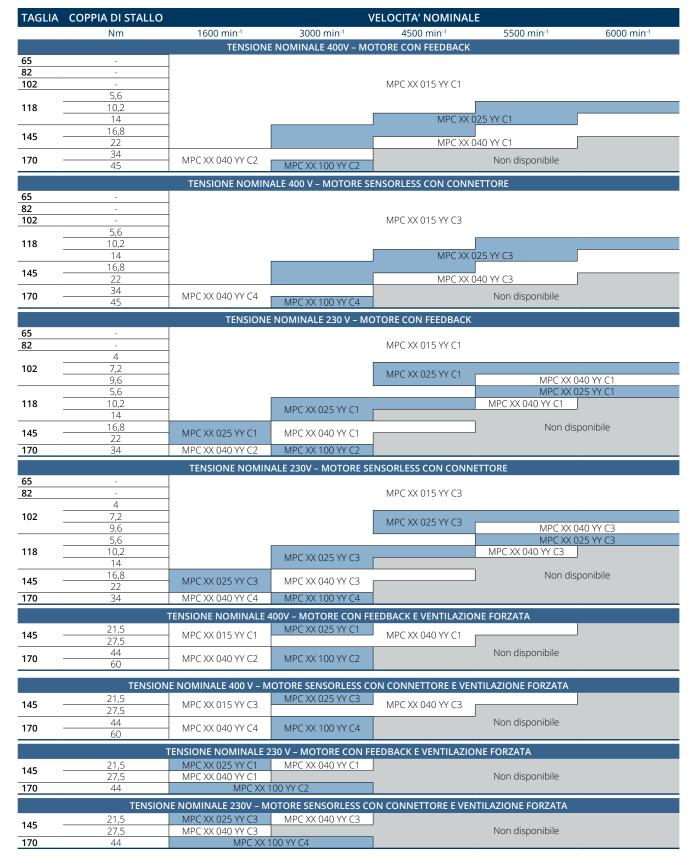
| DATI TECNICI                           |                                                                        |
|----------------------------------------|------------------------------------------------------------------------|
| Proprietà                              | Cavo schermato resistente all'olio per la posa dinamica                |
| Conduttore                             | Conduttore intrecciato in Cu stagnato conforme a IEC 60228 Cl 5 / 6    |
| Guaina esterna                         | PUR o materiale termoplastico equivalente - Colore: arancione RAL 2003 |
| Guaina interna                         | PP o TPE                                                               |
| Schermatura intrecciata in Cu stagnato | Copertura complessiva schermatura > 80%                                |

| DATI ELETTRICI                              |                             |
|---------------------------------------------|-----------------------------|
| Tens. nom. punti di alimentazione           | U <sub>0</sub> /U 600/1000V |
| Tens. nom. punti di controllo               | U <sub>0</sub> /U 300/500V  |
| Tensione di prova AC punti di alimentazione | 4 kV                        |
| Tensione di prova AC punti di controllo     | 1 kV                        |
| Resistenza isolamento                       | > 5 MOhm/km                 |

| DATI MECCANICI             |                       |
|----------------------------|-----------------------|
| Temperatura di servizio    | -15 / +80 °C          |
| Raggio di curvatura minimo | 10 x D                |
| N. di cicli di curvatura   | ≥ 106                 |
| Velocità max               | ≥ 180 m/min           |
| Accelerazione max          | ≥ 15 m/s <sup>2</sup> |

### **NORME E CERTIFICAZIONI**

**10** 10 m


UL/CSA, RoHS, DESINA

Il codice per ordinare i cavi è strutturato in cinque campi:



### Cavi di alimentazione

Per aiutare gli utenti durante la selezione del cavo per il servomotore, vengono proposte le seguenti tabelle di selezione. I campi XX si riferiscono alla lunghezza del cavo (03, 05, 10), mentre il campo YY è riferito alla variante del freno (NB, B): vedere la pagina precedente per la descrizione dei campi.



## Cavi di segnale

I cavi di segnale si riconoscono per il colore verde in conformità allo standard Desina. Il numero di conduttori, la sezione e il tipo di terminale dipendono dalla tipologia dei trasduttori supportata dal cavo.

I cavi possono essere utilizzati per la connessione di qualsiasi opzione di feedback, sia resolver sia encoder assoluti. Sul lato motore il cavo è dotato di un connettore femmina circolare metallico con tecnologia Speed-Tech per una connessione facile e sicura con il corrispondente connettore maschio presente sul motore.

Sul lato inverter l'estremità del cavo può essere realizzata con due terminazioni differenti:

- con connettore maschio SUB-D standard per la connessione facile e sicura con il corrispondente connettore femmina SUB-D del modulo di interfaccia.
- · con puntalini per la connessione ai morsetti a vite del modulo di interfaccia.

I layout di connessione sono dedicati ai moduli d'interfaccia Bonfiglioli Vectron Active Cube.

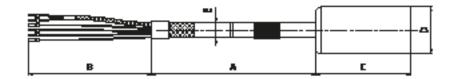


I cavi di segnale soddisfano i seguenti requisiti tecnici:

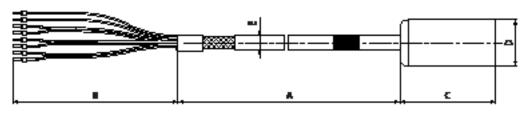
| DATI TECNICI                           |                                                                     |
|----------------------------------------|---------------------------------------------------------------------|
| Proprietà                              | Cavo schermato resistente all'olio per la posa dinamica             |
| Conduttore                             | Conduttore intrecciato in Cu stagnato conforme a IEC 60228 Cl 5 / 6 |
| Guaina esterna                         | PUR o materiale termoplastico equivalente - Colore: verde RAL 6018  |
| Guaina interna                         | PP o TPE                                                            |
| Schermatura intrecciata in Cu stagnato | Copertura complessiva schermatura > 80%                             |

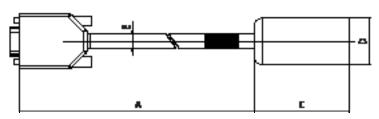
| DATI ELETTRICI        |              |
|-----------------------|--------------|
| Tensione nominale     | 30 V         |
| Tensione di prova AC  | 1500 V       |
| Resistenza isolamento | > 10 MOhm/km |
| Capacità cond./cond.  | < 150 pF/m   |

| DATI MECCANICI             |                       |
|----------------------------|-----------------------|
| Temperatura di servizio    | -20 / +80 °C          |
| Raggio di curvatura minimo | 10 x D                |
| N. di cicli di curvatura   | ≥ 106                 |
| Velocità max               | ≥ 180 m/min           |
| Accelerazione max          | ≥ 15 m/s <sup>2</sup> |


### NORME E CERTIFICAZIONI

UL/CSA, RoHS, DESINA


### I codici d'ordine dei cavi di segnale sono descritti nella tabella seguente:


| DISPOSITIVO DI<br>FEEDBACK | TERMINAZIONE<br>LATO INVERTER | MODULO FEEDBACK<br>INVERTER | LUNGHEZZA CAVO |               |               |
|----------------------------|-------------------------------|-----------------------------|----------------|---------------|---------------|
|                            |                               |                             | 3 m            | 5m            | 10 m          |
| RES1 / RES2                | Terminali liberi              | EM-RES-01/02 - EM-AUT-XX    | MSC 03 RES FW  | MSC 05 RES FW | MSC 10 RES FW |
| REST / RESZ                | SUB-D9                        | EM-RES-03                   | MSC 03 RES SC  | MSC 05 RES SC | MSC 10 RES SC |
| ENB1 / ENB2 / ENB8         | HD SUB-D15                    | EM-ABS-01 - EM-AUT-XX       | MSC 03 EN1 SC  | MSC 05 EN1 SC | MSC 10 EN1 SC |
| EIND I / EINDZ / EINDO     | Terminali liberi              | -                           | MSC 03 EN1 FW  | MSC 05 EN1 FW | MSC 10 EN1 FW |
| ENB3 ENB6                  | SUB-D15                       | EM-ABS-01 - EM-AUT-XX       | MSC 03 EN3 SC  | MSC 05 EN3 SC | MSC 10 EN3 SC |
| ENDS ENDO                  | Terminali liberi              | -                           | MSC 03 EN3 FW  | MSC 05 EN3 FW | MSC 10 EN3 FW |
| ENB7                       | SUB-D15                       | EM-ABS-01                   | MSC 03 EN7 SC  | MSC 05 EN7 SC | MSC 10 EN7 SC |
| EIND/                      | Terminali liberi              | -                           | MSC 03 EN7 FW  | MSC 05 EN7 FW | MSC 10 EN7 FW |

# Layout cavo di alimentazione



# Layout cavo di segnale





|                 | DIMENSIONI CONNETTORE | Α                                       | В    | С    | D    |
|-----------------|-----------------------|-----------------------------------------|------|------|------|
|                 |                       | [m]                                     | [mm] | [mm] | [mm] |
| Cavo di         | C1 / C3               | 3 - 5 - 10                              | 150  | 76   | 28   |
| alimentazione   | C2 / C4               | in base alla designazione               | 150  | 93   | 46   |
| Cavo di segnale | -                     | 3 - 5 - 10<br>in base alla designazione | 150  | 76   | 28   |

|               | SEZIONE<br>CONDUTTORI | OPZIONE<br>FRENO | E <sub>max</sub> |
|---------------|-----------------------|------------------|------------------|
|               | [mm²]                 |                  | [mm]             |
|               | 1.5                   | NB               | 11.6             |
|               | 1.5                   | В                | 12.8             |
| Cavo di       | 2.5                   | NB               | 13               |
|               |                       | В                | 14.2             |
| alimentazione |                       | NB               | 14.7             |
|               |                       | В                | 16.3             |
|               | 10                    | NB               | 19.7             |
|               |                       | В                | 21.8             |

|                 | RETRAZIONE |      |
|-----------------|------------|------|
|                 |            | [mm] |
|                 | RES        | 8.6  |
| Cavo di segnale | EN1 / EN7  | 8.7  |
|                 | EN3        | 8.6  |

l cavi di alimentazione e di segnale sono contrassegnati con le etichette e i colori dei conduttori riportati alle pagine 58, 59 e 60.



### Servoriduttori

Le applicazioni per il movimento necessitano di riduttori epicicloidali che permettano di adattare velocità e coppie e di assicurare al contempo la precisione richiesta dall'applicazione.

Bonfiglioli Riduttori ha scelto di utilizzare riduttori epicicloidali con la serie di servomotori BMD.

I riduttori epicicloidali di precisione Bonfiglioli (PPG) offrono combinazioni ottimali con i motori sincroni a magneti permanenti BMD e garantiscono un efficace controllo del movimento con moltiplicazione di coppia e corretta corrispondenza inerziale.

Questi riduttori sono progettati per le applicazioni servo che richiedono il massimo standard in termini di dinamica, precisione, robustezza, durata e funzionamento prolungato senza inconvenienti.

### Gioco ridotto ad un prezzo competitivo.

Le serie LC e SL di riduttori epicicloidali sono caratterizzate da gioco ridotto, funzionamento silenzioso e facile accoppiamento del motore.

### Alta precisione per risultati eccellenti.

La serie MP di riduttori epicicloidali a gioco ridotto è caratterizzata da un'ampia gamma di configurazioni di montaggio, funzionamento silenzioso e accoppiamento del motore estremamente facile.

### Massima precisione per applicazioni altamente dinamiche.

Le serie TQ e TQF di riduttori epicicloidali di precisione sono progettate per assicurare il massimo di livello di precisione della trasmissione. Il gioco ridotto combinato con un'elevata rigidità torsionale garantisce un prodotto dalle eccellenti prestazioni, per applicazioni altamente dinamiche e a ciclo alternato. Il design tecnico di questi riduttori consente anche elevati carichi assiali e radiali sull'albero di uscita.



# Combinazione servomotore BMD / riduttore epicicloidale di precisione serie LC

### **RAPPORTI DA 3:1 A 70:1**

| TIPO      | COPPIA DI<br>STALLO MOTORE |                  |                  |                  |                  | RAPP             | ORTI             |                  |                  |                  |                  |        | INERZIA<br>MOTORE       |
|-----------|----------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------|-------------------------|
|           | [Nm]                       | 3:1              | 4:1              | 5:1              | 7:1              | 10:1             | 16:1             | 20:1             | 25:1             | 40:1             | 50:1             | 70:1   | kgm² x 10 <sup>-3</sup> |
|           | 0.85                       |                  | LC 050           | LC 050           | LC 050           | LC 050<br>LC 070 | LC 090           | LC 090           | LC 090           | LC 090<br>LC 120 | LC 090<br>LC 120 | LC 120 | 0,02                    |
| BMD 65    | 1.7                        | LC 050<br>LC 070 | LC 050<br>LC 070 | LC 050<br>LC 070 | LC 070<br>LC 090 | LC 070<br>LC 090 | LC 090           | LC 090<br>LC 120 | LC 090<br>LC 120 | LC 120           | LC 120           |        | 0,04                    |
|           | 2.2                        | LC 050<br>LC 070 | LC 050<br>LC 070 | LC 050<br>LC 070 | LC 070<br>LC 090 | LC 090           | LC 090           | LC 090<br>LC 120 | LC 120           | LC 120           | LC 120           |        | 0,06                    |
| BMD 82    | 3.2                        | LC 050<br>LC 070 | LC 070<br>LC 090 | LC 070<br>LC 090 | LC 070<br>LC 090 | LC 090<br>LC 120 | LC 120           | LC 120           | LC 120<br>LC 155 | LC 155           | LC 155           | LC 155 | 0,14                    |
| BIVID 62  | 4.4                        | LC 070<br>LC 090 | LC 070<br>LC 090 | LC 070<br>LC 090 | LC 070<br>LC 090 | LC 120           | LC 120           | LC 120           | LC 120<br>LC 155 | LC 155           | LC 155           | LC 155 | 0,17                    |
|           | 4.0                        | LC 070<br>LC 090 | LC 070<br>LC 090 | LC 070<br>LC 090 | LC 070<br>LC 090 | LC 120           | LC 120           | LC 120           | LC 120<br>LC 155 | LC 155           | LC 155           | LC 155 | 0,19                    |
| BMD 102   | 7.2                        | LC 090           | LC 090           | LC 090<br>LC 120 | LC 120           | LC 120<br>LC 155 | LC 155           | LC 155           | LC 155           | LC 155           |                  |        | 0,34                    |
|           | 9.6                        | LC 090           | LC 090           | LC 090<br>LC 120 | LC 120           | LC 155           | LC 155           | LC 155           | LC 155           |                  |                  |        | 0,47                    |
|           | 5.6                        | LC 070<br>LC 090 | LC 070<br>LC 090 | LC 090           | LC 090<br>LC 120 | LC 120           | LC 120<br>LC 155 | LC 120<br>LC 155 | LC 155           | LC 155           | LC 155           |        | 0,45                    |
| BMD 118   | 10.2                       | LC 090<br>LC 120 | LC 120           | LC 120           | LC 120           | LC 155           | LC 155           | LC 155           | LC 155           |                  |                  |        | 0,78                    |
|           | 14.0                       | LC 120           | LC 120           | LC 120           | LC 120           | LC 155           | LC 155           | LC 155           |                  |                  |                  |        | 0,99                    |
| BMD 145   | 16.8                       | LC 120           | LC 120           | LC 120<br>LC 155 | LC 155           | LC 155           | LC 155           |                  |                  |                  |                  |        | 1,28                    |
| BIVID 145 | 22.0                       | LC 120           | LC 120           | LC 120<br>LC 155 | LC 155           | LC 155           |                  |                  |                  |                  |                  |        | 1,76                    |
| BMD 170   | 34.0                       | LC 155           | LC 155           | LC 155           | LC 155           |                  |                  |                  |                  |                  |                  |        | 3,38                    |
|           | 45.0                       | LC 155           | LC 155           | LC 155           |                  |                  |                  |                  |                  |                  |                  |        | 4,75                    |

| DISTRIBUZIONE DELLA COPPIA D'USCITA DEL RIDUTTORE [Nm] |     |     |     |     |     |     |     |     |     |     |     |  |  |  |
|--------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|--|
|                                                        | 3   | 4   | 5   | 7   | 10  | 16  | 20  | 25  | 40  | 50  | 70  |  |  |  |
| LC 050                                                 | 10  | 12  | 12  | 12  | -   | 12  | 12  | 12  | -   | -   | -   |  |  |  |
| LC 070                                                 | 18  | 25  | 25  | 25  | 18  | 25  | 25  | 25  | 25  | 25  | 25  |  |  |  |
| LC 090                                                 | 37  | 43  | 43  | 43  | 37  | 43  | 43  | 43  | 43  | 43  | 43  |  |  |  |
| LC 120                                                 | 95  | 110 | 110 | 110 | 95  | 110 | 110 | 110 | 110 | 110 | 110 |  |  |  |
| LC 155                                                 | 250 | 300 | 300 | 300 | 250 | 300 | 300 | 300 | 300 | 300 | 300 |  |  |  |



# Combinazione servomotore BMD / riduttore epicicloidale di precisione flangiato serie ${\sf SL}$

### **RAPPORTI FROM 3:1 TO 70:1**

| TIPO      | COPPIA DI<br>STALLO MOTORE |                  |                  |                  |                  | RAPF             | ORTI   |                  |                  |                  |                  |        | INERZIA<br>MOTORE       |
|-----------|----------------------------|------------------|------------------|------------------|------------------|------------------|--------|------------------|------------------|------------------|------------------|--------|-------------------------|
|           | [Nm]                       | 3:1              | 4:1              | 5:1              | 7:1              | 10:1             | 16:1   | 20:1             | 25:1             | 40:1             | 50:1             | 70:1   | kgm² x 10 <sup>-3</sup> |
|           | 0.85                       |                  |                  |                  |                  | SL 070           | SL 090 | SL 090           | SL 090           | SL 090<br>SL 120 | SL 090<br>SL 120 | SL 120 | 0,02                    |
| BMD 65    | 1.7                        | SL 070           | SL 070           | SL 070           | SL 070<br>SL 090 | SL 070<br>SL 090 | SL 090 | SL 090<br>SL 120 | SL 090<br>SL 120 | SL 120           | SL 120           |        | 0,04                    |
|           | 2.2                        | SL 070           | SL 070           | SL 070           | SL 070<br>SL 090 | SL 090           | SL 090 | SL 090<br>SL 120 | SL 120           | SL 120           | SL 120           |        | 0,06                    |
| BMD 82    | 3.2                        | SL 070           | SL 070<br>SL 090 | SL 070<br>SL 090 | SL 070<br>SL 090 | SL 090<br>SL 120 | SL 120 | SL 120           | SL 120           |                  |                  |        | 0,14                    |
| BIVID 62  | 4.4                        | SL 070<br>SL 090 | SL 070<br>SL 090 | SL 070<br>SL 090 | SL 070<br>SL 090 | SL 120           | SL 120 | SL 120           | SL 120           |                  |                  |        | 0,17                    |
|           | 4.0                        | SL 070<br>SL 090 | SL 070<br>SL 090 | SL 070<br>SL 090 | SL 070<br>SL 090 | SL 120           | SL 120 | SL 120           | SL 120           |                  |                  |        | 0,19                    |
| BMD 102   | 7.2                        | SL 090           | SL 090           | SL 090<br>SL 120 | SL 120           | SL 120           |        |                  |                  |                  |                  |        | 0,34                    |
|           | 9.6                        | SL 090           | SL 090           | SL 090<br>SL 120 | SL 120           |                  |        |                  |                  |                  |                  |        | 0,47                    |
|           | 5.6                        | SL 070<br>SL 090 | SL 070<br>SL 090 | SL 090           | SL 090<br>SL 120 | SL 120           | SL 120 | SL 120           |                  |                  |                  |        | 0,45                    |
| BMD 118   | 10.2                       | SL 090<br>SL 120 | SL 120           | SL 120           | SL 120           |                  |        |                  |                  |                  |                  |        | 0,78                    |
|           | 14.0                       | SL 120           | SL 120           | SL 120           | SL 120           |                  |        |                  |                  |                  |                  |        | 0,99                    |
| BMD 145   | 16.8                       | SL 120           | SL 120           | SL 120           |                  |                  |        |                  |                  |                  |                  |        | 1,28                    |
| DIVID 145 | 22.0                       | SL 120           | SL 120           | SL 120           |                  |                  |        |                  |                  |                  |                  |        | 1,76                    |

|        | DISTRIBUZIONE DELLA COPPIA D'USCITA DEL RIDUTTORE [Nm] |     |     |     |    |     |     |     |     |     |     |  |  |  |
|--------|--------------------------------------------------------|-----|-----|-----|----|-----|-----|-----|-----|-----|-----|--|--|--|
|        | 3 4 5 7 10 16 20 25 40 50 70                           |     |     |     |    |     |     |     |     |     |     |  |  |  |
| SL 070 | 18                                                     | 25  | 25  | 25  | 18 | 25  | 25  | 25  | 25  | 25  | 25  |  |  |  |
| SL 090 | 37                                                     | 43  | 43  | 43  | 37 | 43  | 43  | 43  | 43  | 43  | 43  |  |  |  |
| SL 120 | 95                                                     | 110 | 110 | 110 | 95 | 110 | 110 | 110 | 110 | 110 | 110 |  |  |  |

# Combinazione servomotore BMD / riduttore epicicloidale di precisione serie MP-TR

### **RAPPORTI FROM 3:1 TO 70:1**

| TIPO    | COPPIA DI<br>STALLO MOTORE |           |                        |           |                        |                        | RAPP                   | ORTI      |                                     |           |                        |           |                                     | INERZIA<br>MOTORE       |
|---------|----------------------------|-----------|------------------------|-----------|------------------------|------------------------|------------------------|-----------|-------------------------------------|-----------|------------------------|-----------|-------------------------------------|-------------------------|
|         | [Nm]                       | 3:1       | 4:1                    | 5:1       | 6:1                    | 7:1                    | 10:1                   | 16:1      | 20:1                                | 25:1      | 40:1                   | 50:1      | 70:1                                | kgm² x 10 <sup>-3</sup> |
|         | 0.85                       |           |                        | MP-TR 053 | MP-TR 053              | MP-TR 053              |                        |           | MP-TR 053<br>MP-TR 060              |           |                        | MP-TR 080 | MP-TR 080                           | 0.02                    |
| BMD 65  | 1.7                        | MP-TR 060 | MP-TR 060              | MP-TR 060 | MP-TR 060              | MP-TR 053<br>MP-TR 060 | MP-TR 080              | MP-TR 080 | MP-TR 080                           | MP-TR 080 | MP-TR 105              | MP-TR 105 | MP-TR 105                           | 0.04                    |
|         | 2.2                        | MP-TR 060 | MP-TR 060              | MP-TR 060 | MP-TR 060              | MP-TR 053<br>MP-TR 060 | MP-TR 080              |           | MP-TR 080                           | MP-TR 080 | MP-TR 105              | MP-TR 105 | MP-TR 105                           | 0.06                    |
| BMD 82  | 3.2                        | MP-TR 060 | MP-TR 060              | MP-TR 080 | MP-TR 080              | MP-TR 060<br>MP-TR 080 | MP-TR 105              | MP-TR 105 | MP-TR 105                           |           | MP-TR 130              | MP-TR 130 | MP-TR 160                           | 0.14                    |
|         | 4.4                        | MP-TR 080 | MP-TR 080              | MP-TR 080 | MP-TR 080              | MP-TR 060<br>MP-TR 080 | MP-TR 105              | MP-TR 105 | MP-TR 105                           |           | MP-TR 130              | MP-TR 130 | MP-TR 160                           | 0.17                    |
|         | 4.0                        | MP-TR 080 | MP-TR 080              | MP-TR 080 | MP-TR 080              | MP-TR 060<br>MP-TR 080 | MP-TR 105              | MP-TR 105 | MP-TR 105                           |           | MP-TR 130              | MP-TR 130 | MP-TR 160                           | 0.19                    |
| BMD 102 | 7.2                        | MP-TR 080 | MP-TR 080              |           |                        | MP-TR 080<br>MP-TR 105 |                        | MP-TR 105 | MP-TR 105<br>MP-TR 130              |           | MP-TR 130<br>MP-TR 160 |           |                                     | 0.34                    |
|         | 9.6                        | MP-TR 080 | MP-TR 080              | MP-TR 080 | MP-TR 105              | MP-TR 105              | MP-TR 105              | MP-TR 105 | MP-TR 105<br>MP-TR 130              |           | MP-TR 130<br>MP-TR 160 |           |                                     | 0.47                    |
|         | 5.6                        | MP-TR 105 | MP-TR 105              | MP-TR 105 | MP-TR 105              | MP-TR 105              | MP-TR 105              | MP-TR 105 |                                     |           |                        |           | MP-TR 130<br>MP-TR 160<br>MP-TR 190 | 0.45                    |
| BMD 118 | 10.2                       | MP-TR 105 | MP-TR 105              | MP-TR 105 | MP-TR 105              | MP-TR 105              | MP-TR 130<br>MP-TR 160 |           | MP-TR 130<br>MP-TR 160              |           |                        |           | MP-TR 190                           | 0.78                    |
|         | 14.0                       | MP-TR 105 | MP-TR 105              | MP-TR 105 | MP-TR 105              | MP-TR 105              | MP-TR 130<br>MP-TR 160 |           | MP-TR 130<br>MP-TR 160              |           |                        |           | MP-TR 190                           | 0.99                    |
| DMD 445 | 16.8                       | MP-TR 105 | MP-TR 105              |           |                        | MP-TR 105<br>MP-TR 130 | MP-TR 160              | MP-TR 160 |                                     |           |                        |           |                                     | 1.28                    |
| BMD 145 | 22.0                       | MP-TR 105 | MP-TR 105              |           | MP-TR 105<br>MP-TR 130 | MP-TR 130              |                        | MP-TR 160 | MP-TR 130<br>MP-TR 160<br>MP-TR 190 | MP-TR 190 |                        |           |                                     | 1.76                    |
| BMD 170 | 34.0                       |           | MP-TR 105<br>MP-TR 130 | MP-TR 130 | MP-TR 130              | MP-TR 130              |                        |           | MP-TR 160<br>MP-TR 190              | MP-TR 190 |                        |           |                                     | 3.38                    |
|         | 45.0                       | MP-TR 130 | MP-TR 130              |           |                        | MP-TR 130<br>MP-TR 160 |                        |           | MP-TR 160<br>MP-TR 190              | MP-TR 190 |                        |           |                                     | 4.75                    |

|           | DISTRIBUZIONE DELLA COPPIA D'USCITA DEL RIDUTTORE [Nm] |     |     |     |     |     |      |      |      |      |      |      |  |  |  |
|-----------|--------------------------------------------------------|-----|-----|-----|-----|-----|------|------|------|------|------|------|--|--|--|
|           | 3                                                      | 4   | 5   | 6   | 7   | 10  | 16   | 20   | 25   | 40   | 50   | 70   |  |  |  |
| MP-TR 053 | 12                                                     | 15  | 15  | 15  | 15  | -   | 20   | 20   | 20   | -    | -    | -    |  |  |  |
| MP-TR 060 | 18                                                     | 25  | 25  | 25  | 25  | 18  | 30   | 30   | 30   | 30   | 30   | 30   |  |  |  |
| MP-TR 080 | 40                                                     | 50  | 50  | 50  | 50  | 40  | 70   | 70   | 70   | 70   | 70   | 70   |  |  |  |
| MP-TR 105 | 100                                                    | 140 | 140 | 140 | 140 | 100 | 170  | 170  | 170  | 170  | 170  | 170  |  |  |  |
| MP-TR 130 | 215                                                    | 380 | 380 | 380 | 380 | 215 | 450  | 450  | 450  | 450  | 450  | 450  |  |  |  |
| MP-TR 160 | 350                                                    | 500 | 500 | 500 | 500 | 350 | 700  | 700  | 700  | 700  | 700  | 700  |  |  |  |
| MP-TR 190 | 500                                                    | 700 | 700 | 700 | 700 | 500 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |  |  |  |

Note

velocità d'ingresso inferiore a 3000 min<sup>-1</sup>.

Fattore di sicurezza  $1 < S \le 4$ .

Per eventuali informazioni tecniche aggiuntive circa la selezione dei riduttori vedere i rispettivi cataloghi.

# Combinazione servomotore BMD / riduttore epicicloidale di precisione serie $\mathsf{TQ}$

### **RAPPORTI FROM 3:1 TO 70:1**

| TIPO      | COPPIA DI<br>STALLO MOTORE |                  |                  |                  |                  | RAPF             | PORTI            |                  |                  |                  |                  |                  | INERZIA<br>MOTORE |
|-----------|----------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------|
|           | [Nm]                       | 3:1              | 4:1              | 5:1              | 7:1              | 10:1             | 16:1             | 20:1             | 25:1             | 40:1             | 50:1             | 70:1             | kgm² x 10-3       |
|           | 0,85                       |                  |                  |                  |                  | TQ 060           | TQ 060           | TQ 060           | TQ 060<br>TQ 070 | TQ 070           | TQ 070           | TQ 070           | 0,02              |
| BMD 65    | 1,7                        | TQ 060<br>TQ 070 | TQ 070           | TQ 070           | TQ 070           |                  |                  | 0,04              |
|           | 2,2                        | TQ 060<br>TQ 070 | TQ 060<br>TQ 070 | TQ 060<br>TQ 070 | TQ 060<br>TQ 070 | TQ 070           | TQ 070           | TQ 070           | TQ 070           |                  |                  |                  | 0,06              |
| BMD 82    | 3,2                        | TQ 070           | TQ 070           | TQ 070           | TQ 070           | TQ 090           | TQ 070           | TQ 070           | TQ 090           | TQ 090           | TQ 090           |                  | 0,14              |
| DIVID 62  | 4,4                        | TQ 070           | TQ 070           | TQ 070           | TQ 070           | TQ 090           |                  |                  | 0,17              |
|           | 4,0                        | TQ 070           | TQ 070           | TQ 070           | TQ 070           | TQ 070<br>TQ 090 | TQ 070<br>TQ 090 | TQ 070<br>TQ 090 | TQ 090           | TQ 090           | TQ 090           | TQ 130           | 0,19              |
| BMD 102   | 7,2                        | TQ 070           | TQ 070           | TQ 070<br>TQ 090 | TQ 070<br>TQ 090 | TQ 090           | TQ 090           | TQ 090           | TQ 090           | TQ 130           | TQ 130           |                  | 0,34              |
|           | 9,6                        | TQ 070           | TQ 090           | TQ 090<br>TQ 090 | TQ 070<br>TQ 090 | TQ 090           | TQ 090           | TQ 130           | TQ 130           | TQ 130           |                  |                  | 0,47              |
|           | 5,6                        | TQ 070           | TQ 070           | TQ 070           | TQ 070           | TQ 090           | TQ 090           | TQ 090<br>TQ 130 | TQ 090<br>TQ 130 | TQ 130<br>TQ 160 | TQ 130<br>TQ 160 | TQ 130<br>TQ 160 | 0,45              |
| BMD 118   | 10,2                       | TQ 070<br>TQ 090 | TQ 070<br>TQ 090 | TQ 070<br>TQ 090 | TQ090            | TQ090            | TQ 130           | TQ 130           | TQ 130<br>TQ 160 | TQ 130<br>TQ 160 | TQ 160           | TQ 160           | 0,78              |
|           | 14,0                       | TQ 070<br>TQ 090 | TQ 070<br>TQ 090 | TQ 090           | TQ 090<br>TQ 130 | TQ130            | TQ 130           | TQ 130<br>TQ 160 | TQ 130<br>TQ 160 | TQ 160           | TQ 160           |                  | 0,99              |
| BMD 145   | 16,8                       | TQ 090           | TQ 090           | TQ 090           | TQ 090<br>TQ130  | TQ130            | TQ 160           | TQ 160           | TQ 160           | TQ 160           |                  |                  | 1,28              |
| DIVID 145 | 22,0                       | TQ 090           | TQ 090           | TQ 090           | TQ 090<br>TQ 130 | TQ130            | TQ 160           | TQ 160           | TQ 160           |                  |                  |                  | 1,76              |
| BMD 170   | 34,0                       | TQ 090<br>TQ 130 | TQ 090<br>TQ 130 | TQ 090<br>TQ 130 | TQ130            | TQ 160           | TQ 160           | TQ 160           |                  |                  |                  |                  | 3,38              |
| BIVID 170 | 45,0                       | TQ 130           | TQ 130           | TQ 130           | TQ130            | TQ 160           | TQ 160           |                  |                  |                  |                  |                  | 4,75              |

| DISTRIBUZIONE DELLA COPPIA D'USCITA DEL RIDUTTORE [Nm] |     |     |     |     |     |     |     |     |     |     |     |  |  |
|--------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|
|                                                        | 3   | 4   | 5   | 7   | 10  | 16  | 20  | 25  | 40  | 50  | 70  |  |  |
| TQ 060                                                 | 21  | 30  | 30  | 25  | 20  | 30  | 30  | 30  | 30  | 30  | 25  |  |  |
| TQ 070                                                 | 45  | 70  | 70  | 60  | 40  | 70  | 70  | 70  | 70  | 70  | 60  |  |  |
| TQ 090                                                 | 130 | 200 | 180 | 160 | 110 | 200 | 180 | 180 | 200 | 180 | 160 |  |  |
| TQ 130                                                 | 260 | 400 | 400 | 360 | 280 | 400 | 400 | 400 | 400 | 400 | 360 |  |  |
| TQ 160                                                 | 530 | 800 | 800 | 750 | 550 | 800 | 800 | 800 | 800 | 800 | 750 |  |  |

# Combinazione servomotore BMD / riduttore epicicloidale di precisione flangiato serie TQF

### **RAPPORTI FROM 4:1 TO 70:1**

| TIPO     | COPPIA DI<br>STALLO MOTORE |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    | INERZIA<br>MOTORE       |
|----------|----------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------------|
|          | [Nm]                       | 4:1                | 5:1                | 7:1                | 10:1               | 16:1               | 20:1               | 25:1               | 40:1               | 50:1               | 70:1               | kgm² x 10 <sup>-3</sup> |
|          | 0,85                       |                    |                    |                    | TQF 060            | TQF 060            | TQF 060            | TQF 060<br>TQF 070 | TQF 070            | TQF 070            | TQF 070            | 0,02                    |
| BMD 65   | 1,7                        | TQF 060<br>TQF 070 | TQF 070            | TQF 070            | TQF 070            |                    |                    | 0,04                    |
|          | 2,2                        | TQF 060<br>TQF 070 | TQF 060<br>TQF 070 | TQF 060<br>TQF 070 | TQF 070            | TQF 070            | TQF 070            | TQF 070            |                    |                    |                    | 0,06                    |
| DMD 03   | 3,2                        | TQF 070            | TQF 070            | TQF 070            | TQF 090            | TQF 070            | TQF 070            | TQF 090            | TQF 090            | TQF 090            |                    | 0,14                    |
| BMD 82   | 4,4                        | TQF 070            | TQF 070            | TQF 070            | TQF 090            |                    |                    | 0,17                    |
|          | 4,0                        | TQF 070            | TQF 070            | TQF 070            | TQF 070<br>TQF 090 | TQF 070<br>TQF 090 | TQF 070<br>TQF 090 | TQF 090            | TQF 090            | TQF 090            | TQF 130            | 0,19                    |
| BMD 102  | 7,2                        | TQF 070            | TQF 070<br>TQF 090 | TQF 070<br>TQF 090 | TQF 090            | TQF 090            | TQF 090            | TQF 090            | TQF 130            | TQF 130            |                    | 0,34                    |
|          | 9,6                        | TQF 090            | TQF 090<br>TQF 090 | TQF 070<br>TQF 090 | TQF 090            | TQF 090            | TQF 130            | TQF 130            | TQF 130            |                    |                    | 0,47                    |
|          | 5,6                        | TQF 070            | TQF 070            | TQF 070            | TQF 090            | TQF 090            | TQF 090<br>TQF 130 | TQF 090<br>TQF 130 | TQF 130<br>TQF 160 | TQF 130<br>TQF 160 | TQF 130<br>TQF 160 | 0,45                    |
| BMD 118  | 10,2                       | TQF 070<br>TQF 090 | TQF 070<br>TQF 090 | TQF090             | TQF090             | TQF 130            | TQF 130            | TQF 130<br>TQF 160 | TQF 130<br>TQF 160 | TQF 160            | TQF 160            | 0,78                    |
|          | 14,0                       | TQF 070<br>TQF 090 | TQF 090            | TQF 090<br>TQF 130 | TQF130             | TQF 130            | TQF 130<br>TQF 160 | TQF 130<br>TQF 160 | TQF 160            | TQF 160            |                    | 0,99                    |
| DMD 145  | 16,8                       | TQF 090            | TQF 090            | TQF 090<br>TQF130  | TQF130             | TQF 160            | TQF 160            | TQF 160            | TQF 160            |                    |                    | 1,28                    |
| BMD 145  | 22,0                       | TQF 090            | TQF 090            | TQF 090<br>TQF 130 | TQF130             | TQF 160            | TQF 160            | TQF 160            |                    |                    |                    | 1,76                    |
| BMD 170  | 34,0                       | TQF 090<br>TQF 130 | TQF 090<br>TQF 130 | TQF130             | TQF 160            | TQF 160            | TQF 160            |                    |                    |                    |                    | 3,38                    |
| 1/0 טואס | 45,0                       | TQF 130            | TQF 130            | TQF130             | TQF 160            | TQF 160            |                    |                    |                    |                    |                    | 4,75                    |

|         | DISTRIBUZIONE DELLA COPPIA D'USCITA DEL RIDUTTORE [Nm] |     |     |     |     |     |     |     |     |     |  |  |  |  |
|---------|--------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|--|--|--|
|         | 4                                                      | 5   | 7   | 10  | 16  | 20  | 25  | 40  | 50  | 70  |  |  |  |  |
| TQF 060 | 30                                                     | 30  | 25  | 20  | 30  | 30  | 30  | 30  | 30  | 25  |  |  |  |  |
| TQF 070 | 70                                                     | 70  | 60  | 40  | 70  | 70  | 70  | 70  | 70  | 60  |  |  |  |  |
| TQF 090 | 200                                                    | 180 | 160 | 110 | 200 | 180 | 180 | 200 | 180 | 160 |  |  |  |  |
| TQF 130 | 400                                                    | 400 | 360 | 280 | 400 | 400 | 400 | 400 | 400 | 360 |  |  |  |  |
| TQF 160 | 800                                                    | 800 | 750 | 550 | 800 | 800 | 800 | 800 | 800 | 750 |  |  |  |  |

# Presenza globale



Bonfiglioli vanta una presenza in ben 22 paesi nei 5 continenti, presupposto essenziale per occupare una posizione di spicco nel settore. La nostra struttura organizzativa sfrutta la vicinanza geografica per fornire soluzioni dedicate complete con efficacia e competenza.











### Siamo un'azienda globale

Grazie a una rete internazionale di filiali e impianti di produzione strettamente interconnessi, possiamo garantire gli stessi elevati livelli di qualità Bonfiglioli in qualunque parte del mondo ovunque e in qualsiasi momento. Con la nitida consapevolezza che la chiave di un successo duraturo sia la presenza diretta nei mercati locali, abbiamo strutturato la nostra azienda con 20 filiali commerciali, 13 stabilimenti produttivi e oltre 550 distributori in tutto il mondo.

La nostra presenza sui mercati di riferimento non si limita a offrire soluzioni complete ed efficienti, ma prevede anche assistenza capillare ai clienti con servizi dedicati, come il co-engineering o l'assistenza postvendita.







## Sedi nel mondo

#### Australia

**Bonfiglioli Transmission (Aust.) Pty Ltd** 2, Cox Place Glendenning NSW 2761

Locked Bag 1000 Plumpton NSW 2761 Tel. +61 2 8811 8000



### **Brasile**

### **Bonfiglioli Redutores do Brasil Ltda**

Travessa Cláudio Armando 171 - Bloco 3 CEP 09861-730 - Bairro Assunção São Bernardo do Campo - São Paulo Tel. +55 11 4344 2322



#### Cina

### Bonfiglioli Drives (Shanghai) Co. Ltd.

#68, Hui-Lian Road, QingPu District, 201707 Shanghai Tel. +86 21 6700 2000



### Francia

### Bonfiglioli Transmission s.a.

14 Rue Eugène Pottier Zone Industrielle de Moimont II 95670 Marly la Ville Tel. +33 1 34474510



### Germania

### **Bonfiglioli Deutschland GmbH**

Sperberweg 12 - 41468 Neuss Tel. +49 0 2131 2988 0



### **Bonfiglioli Vectron GmbH**

Europark Fichtenhain B6 - 47807 Krefeld Tel. +49 0 2151 8396 0



### **O&K Antriebstechnik GmbH**

Ruhrallee 8-12 - 45525 Hattingen Tel. +49 0 2324 2050 1





SERVICE

### India

### Bonfiglioli Transmission Pvt. Ltd.

Mobility & Wind Industries AC 7 - AC 11 Sidco Industrial Estate Thirumudivakkam Chennai - 600 044 Tel. +91 844 844 8649



## Discrete Manufacturing & Process Industries - Mechatronic &

**Motion** Survey No. 528/1 Perambakkam High Road Mannur Villa

Perambakkam High Road Mannur Village, Sriperumbudur Taluk Chennai - 602 105 Tel. +91 844 844 8649



### Discrete Manufacturing &

Process Industries Plot No.A-9/5, Phase IV MIDC Chakan, Village Nighoje Pune - 410 501 Tel. +91 844 844 8649



### Italia

### Bonfiglioli Riduttori S.p.A.

Discrete Manufacturing & Process Industries
Via Bazzane, 33/A
40012 Calderara di Reno
Tel. +39 051 6473111



### **Mobility & Wind Industries**

Via Enrico Mattei, 12 Z.I. Villa Selva 47100 Forlì

Tel. +39 0543 789111



### Discrete Manufacturing &

Process Industries Via Sandro Pertini lotto 7b 20080 Carpiano Tel. +39 02985081

### Bonfiglioli Mechatronic Research S.p.A

Via Unione 49 - 38068 Rovereto Tel. +39 0464 443435/36



### Bonfiglioli Transmission (Aust.) Pty Ltd

88 Hastie Avenue, Mangere Bridge, 2022 Auckland PO Box 11795, Ellerslie Tel. +64 09 634 6441



### Singapore

### **Bonfiglioli South East Asia Pte Ltd**

8 Boon Lay Way, #04-09, 8@ Tadehub 21, Singapore 609964 Tel. +65 6268 9869



### Slovacchia

### Bonfiglioli Slovakia s.r.o.

Robotnícka 2129 Považská Bystrica, 01701 Slovakia Tel. +421 42 430 75 64



### Sudafrica Bonfiglioli South Africa Pty Ltd.

55 Galaxy Avenue, Linbro Business Park, Sandton, Johannesburg 2090 South Africa Tel. +27 11 608 2030



### Spagna

### **Tecnotrans Bonfiglioli S.A**

Pol. Ind. Zona Franca, Sector C, Calle F, nº 6 - 08040 Barcelona Tel. +34 93 447 84 00



### Turchia

### **Bonfiglioli Turkey Jsc**

Atatürk Organize Sanayi Bölgesi, 10007 Sk. No. 30 Atatürk Organize Sanayi Bölgesi, 35620 Çiğli - Izmir Tel. +90 0 232 328 22 77



### **Gran Bretagna**

### Bonfiglioli UK Ltd.

Unit 1 Calver Quay, Calver Road, Winwick Warrington, Cheshire - WA2 8UD Tel. +44 1925 852667



### USA

### Bonfiglioli USA Inc.

3541 Hargrave Drive Hebron, Kentucky 41048 Tel. +1 859 334 3333



### **Vietnam**

### Bonfiglioli Vietnam Ltd.

Lot C-9D-CN My Phuoc Industrial Park 3 Ben Cat - Binh Duong Province Tel. +84 650 3577411





soluzioni di trasmissione e controllo di potenza per mantenere

### **HEADQUARTERS**

Bonfiglioli S.p.A

Sede legale: Via Bazzane, 33 40012 Calderara di Reno - Bologna (Italy) Tel. +39 051 6473111

Sede operativa: Via Isonzo, 65/67/69 40033 Casalecchio di Reno - Bologna (Italy)









